

Test Report

From

Kyocera Wireless Corp

Dual-Band Tri-mode AMPS/CDMA Cellular Phone

FCC Part 22 & 24 Certification
IC RSS-129 & 133

FCC ID: OVFKWC-KX1

Model: KX1

STATEMENT OF CERTIFICATION

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the measurements of the sample's radio frequency interference emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

Test performed by:	Kyocera Wireless Corp		
	10300 Campus Point Drive CA 92121		
Report Prepared by:	Lin Lu		
Engineer, Principal			

Tests that required an OATS site were performed by TUV Product Services.

TABLE OF CONTENTS

1	General Information	3
2	Product Description	3
3	Electronic Serial Numbers (ESN) Protection	3
4	FCC Compliance Emergency 911	4
5	TTY compliance	4
	Transmitter RF Power Output	4
	Transmitter Modulation Requirement	6
8	Occupied Bandwidth	9
9	Spurious Emissions At Antenna Terminals	18
10	Transmitter Radiated Spurious Emissions Measured Data	34
11	Receiver Spurious Emissions	34
	Transmitter RF Carrier Frequency Stability 12.1 AMPS Mode 12.2 CDMA 800 Mode 12.3 CDMA 1900 Mode	35 36
13	Exposure of Humans to RF Fields (SAR)	38
14	Test Equipment	38

1 General Information

Applicant:	Kyocera Wireles	Kyocera Wireless Corp					
	10300 Campus Point Drive						
	San Diego CA 9	San Diego CA 92121					
FCC ID:	OVFKWC-KX1						
Product:	Dual-Band Tri-m	ode Cellular Phone	9				
Model Number:	KX1						
EUT Serial Number:	6W-X0VX41S	3					
Type:	[] Prototype, [X	(] Pre-Production,	[] Production				
Device Category:	Portable						
RF Exposure	General Populat	ion / Uncontrolled					
Environment:							
Antenna:	Fixed Stubby						
Detachable Antenna:	Yes						
External Input:	Audio/Digital Dat	ta					
Quantity:	Quantity product	ion is planned					
FCC Rule Parts:	§22H	§22H	§22.901(d)	§24E			
Modes:	800 AMPS	800 CDMA	800 CDMA1X	1900 CDMA			
Multiple Access	FDMA	CDMA	CDMA	CDMA			
Scheme:							
TX Frequency (MHz):	824 - 849 824 - 849 824 - 849 1850 - 1910						
Emission	40K0F8W, 40K0F1D, 1M25F9W						
Designators:							
Max. Output Power	0.341 ERP						
(W)							

2 Product Description

The phone model KX1 is a Tri-mode Dual-Band 1XRTT product that integrates Assisted GPS capability to meet the emergency location requirements of the FCC's E911 Phase II mandate. The Tri-mode architecture is defined as 1900MHz (PCS CDMA), 800MHz (cellular CDMA and AMPS).

The phone is designed in compliance with the technical specifications for compatibility of mobile and base stations in the Cellular Radio telephone service contained in "Cellular System Mobile Station - Land Station Compatibility Specification" as specified in OET Bulletin 53 and TIA Standards

The phone will support certain CDMA2000 radio-configurations (RC) as describes in Exhibit 1 (operation description).

3 Electronic Serial Numbers (ESN) Protection

The Trimode Phone, FCC ID: OVFKWC-KX1 uses ESN. The ESN is a unique identification number to each phone, which is contained in the Numeric Assignment Module and is automatically transmitted to the base station whenever a call is placed. The ESN is stored in an EPROM and is isolated from fraudulent contact and tampering. Any attempt to change the ESN will render the portable phone inoperative.

The phone complies with all requirements for ESN under Part 22.919.

4 FCC Compliance Emergency 911

FCC § 22.921

When an emergency 911 call is originated by the user, the mobile will attempt to acquire any available system and originate the emergency call on that system, disregarding restrictions set by the roaming list. The FCC NPRM WT99-13, CC94-102 automatic analog A/B roaming option has been implemented for 911 emergency calls. Note that the KX1 has Global Positioning System (GPS) support.

5 TTY compliance

FCC § 255 of the Telecom Act

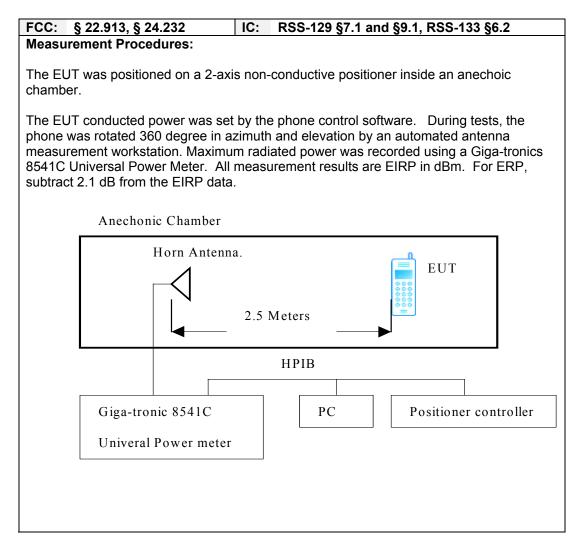
KX1 has been designed for TTY Compliance with Cellular Compatibility Standard.

6 Transmitter RF Power Output

6.1 Conducted Power

FCC:	§ 2.1046	IC:	RSS-129 §7.1, RSS-133 §6.2
Mass	want Dragadiiraa		

Measurement Procedures:


The RF output power was measured using a Giga-tronics 8541C Universal Power Meter and HP 8594E Spectrum Analyzer that has the CDMA personality option. Terminated to a resistive coaxial load of 50 ohms.

Mode	Frequency (MHz)	Channel	Power (dBm)
AMPS	824.04	991	25.05
	836.49	383	25.04
	848.97	799	25.06
CDMA 800	824.70	1013	25.02
	836.52	384	25.01
	848.31	777	25.05
CDMA 1900	1851.25	25	23.17
	1880.00	600	23.13
	1908.75	1175	23.12

6.2 Radiated Power

Mode	Frequency (MHz)	Channel	Max. Power (dBm)	Ref.
AMPS	824.04	991	24.59	ERP
	836.49	383	24.35	
	848.97	799	25.33	
CDMA 800	824.70	1013	24.36	ERP
	836.52	384	24.39	
	848.31	777	25.02	
CDMA 1900	1851.25	25	25.63	EIRP
	1880.00	600	26.13	
	1908.75	1175	26.21	

7 **Transmitter Modulation Requirement**

7.1 Transmitter Audio Frequency Response

§ 2.1047, § 22.915 IC: RSS-129 §6.2

Measurement Procedures:

Measured with HP8920 RF communication test set & HP 3588A spectrum analyzer.

- Operate the transmitter with the compressor disabled, and monitor the output with HP8920 test receiver without de-emphasis. Apply a sine wave audio input to the transmitter external audio input port, vary the modulating frequency from 100 to 3000 Hz, and observe the input levels necessary to maintain a constant \pm 2.9 kHz system deviation.
- Adjust the audio input level to 20 dB greater than that required to produce \pm 8 kHz deviation with 1 kHz tone. Vary the modulation frequency from 3 kHz to 30 kHz and observe the deviation while maintaining a constant audio input level. Use the audio spectrum analyzer to measure the output deviation at the same frequency as the input signal.

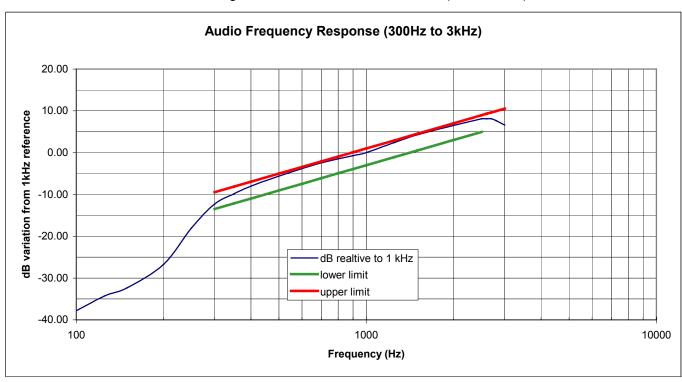
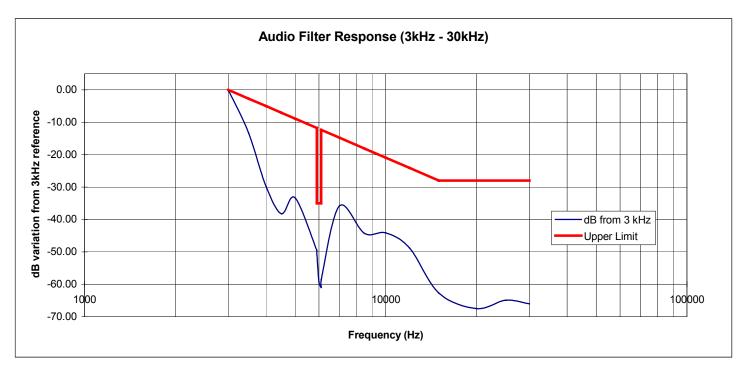



Figure 7.1 Audio Filter Characteristics (300-3000Hz)

Figure 7.2 Post Limiter Filter Attenuation

7.2 Transmitter Modulation Deviation Limiting

FCC:	§ 2.1047(b), § 22.915(b)(c)	IC:	RSS-129 §6.1

Measurement Procedures:

Measured with HP8920 RF communication test set as an audio signal generator.

With the compressor enabled and the SAT disabled, and at three different modulating frequencies (300Hz, 1kHz and 3kHz), adjust the audio input level from -20 dB to +20 dB in reference to the level required to generate 8kHz deviation at 1KHz.

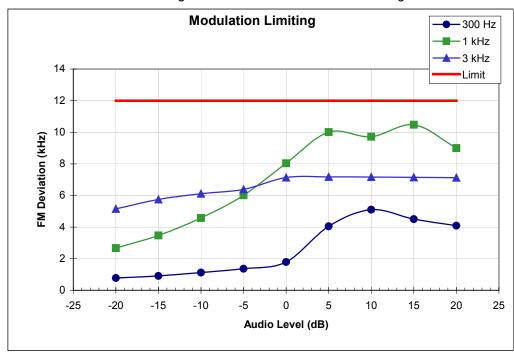


Figure 7.3 Modulation Deviation Limiting

8 Occupied Bandwidth

FCC: § 2.1049, § 22.917(b)(d), § 24.238 IC: RSS-129 §6.3, §8.1

Measurement Procedures:

The RF output of the EUT was connected to the input of the spectrum analyzer with sufficient attenuation. The spectrum with no modulation was recorded.

<u>For Analog:</u> The audio input signal was adjusted to as followings: (1) For combined voice and SAT, disable the compressor, modulate with a 2500 Hz sine wave 13.5 dB greater than that required to produce \pm 8 kHz peak deviation at 1000 Hz and a 6000 Hz SAT with \pm 2.0 kHz peak deviation. (2) For combined Signaling Tone and SAT, modulate with a 10 kHz ST with \pm 8 kHz peak deviation and a 6000 Hz SAT with \pm 2.0 kHz peak deviation. (3) For wideband data, modulate with a quasi-random 10 kbps data pattern with \pm 8 kHz peak deviation. (4) For voice only, disable the compressor, modulate with a 2500 Hz sine wave 13.5 dB greater than that required to produce \pm 8 kHz peak deviation at 1000 Hz. (5) For SAT only, modulate with a 6000 Hz SAT with \pm 2.0 kHz peak deviation. (6) For ST only, modulate with a 10 kHz ST with \pm 8 kHz peak deviation. (7) For combined SAT and DTMF, modulate with a 6000 Hz SAT with \pm 2.0 kHz peak deviation and one of the DTMF tones. All measurements were performed on middle channel.

For Digital: Modulate with full rate.

List of Figures

Figure	Mode	Description
8-1	AMPS	Voice
8-2		SAT
8-3		Voice + SAT
8-4		ST
8-5		SAT+ST
8-6		SAT + DTMF_9
8-7		10kb Wideband Data
8-8	CDMA 800	CDMA at RC1
8-9		CDMA 1X, at RC3
8-10	CDMA 1900	CDMA at RC1
8-11		CDMA 1X, at RC3
8-12		Lower Band Edge @ CH 25
8-13		Upper Band Edge @ CH 1175

Figure 8-1 AMPS Voice

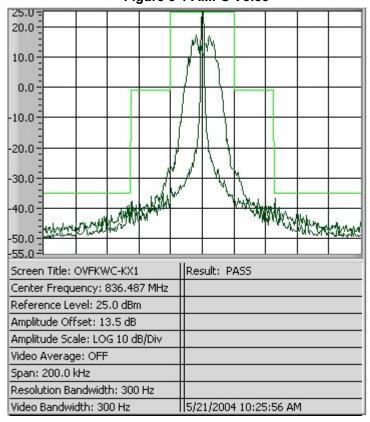
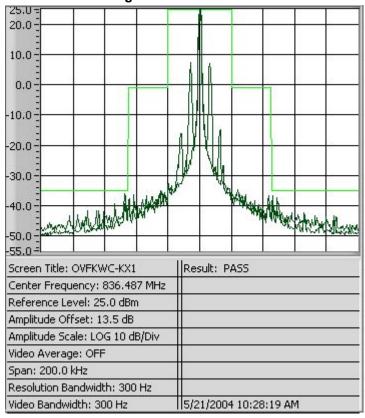



Figure 8-2 AMPS SAT

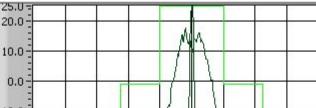
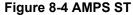
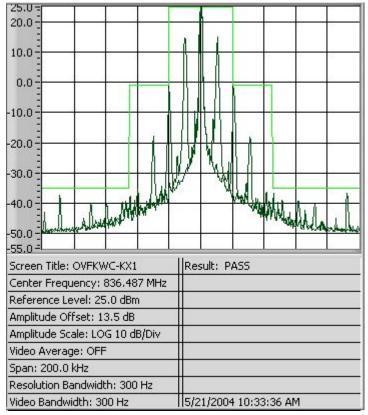




Figure 8-3 AMPS Voice + SAT

10.0 10.0 -20.0 30.0 AND THE PROPERTY OF THE PARTY O 40.0 50.0 -55.0 =l Screen Title: OVFKWC-KX1 Result: PASS Center Frequency: 836,487 MHz Reference Level: 25.0 dBm Amplitude Offset: 13.5 dB Amplitude Scale: LOG 10 dB/Div Video Average: OFF Span: 200.0 kHz Resolution Bandwidth: 300 Hz Video Bandwidth: 300 Hz 5/21/2004 10:26:48 AM

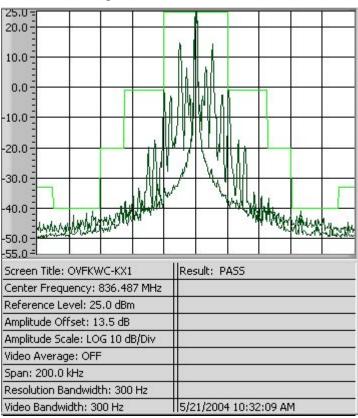
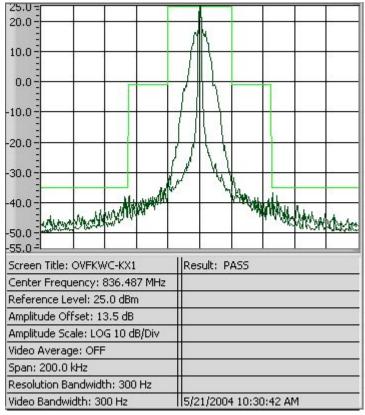



Figure 8-5 AMPS ST + SAT

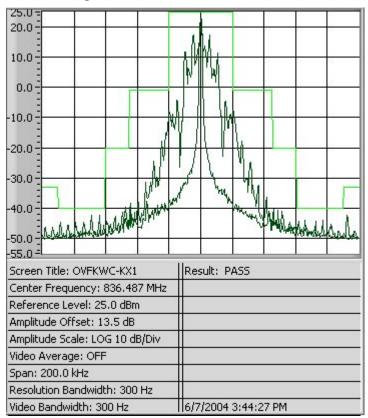


Figure 8-7 AMPS WIDEBAND

Figure 8-8 CDMA 800 at RC1

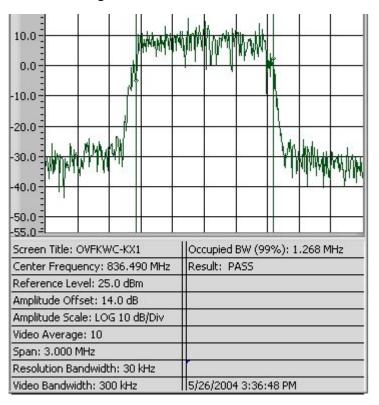


Figure 8-9 CDMA 800 1X at RC3

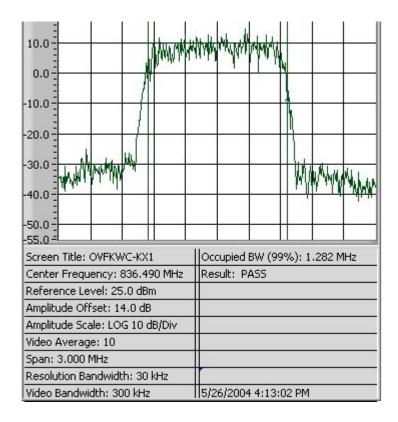


Figure 8-10 CDMA 1900 at RC1 10.0 0.0 -10.0 -20.0 -30.0 -40.0 -50.0 -57.0 = Screen Title: OVFKWC-KX1 Occupied BW (99%): 1.268 MHz Result: PASS Center Frequency: 1880,000 MHz Reference Level: 23.0 dBm Amplitude Offset: 14.0 dB Amplitude Scale: LOG 10 dB/Div Video Average: 10 Span: 3,000 MHz Resolution Bandwidth: 30 kHz Video Bandwidth: 300 kHz ||5/26/2004 3:58:03 PM

Figure 8-11 CDMA 1900 1X at RC3 10.0 0.0 -10.0 -20.0 -30.0 WY JANAHAMANAN MANAMORE -40.0 -50.0 -57.0 = Occupied BW (99%): 1.268 MHz Screen Title: OVFKWC-KX1 Center Frequency: 1880,000 MHz Result: PASS Reference Level: 23.0 dBm Amplitude Offset: 14.0 dB Amplitude Scale: LOG 10 dB/Div Video Average: 10 Span: 3,000 MHz Resolution Bandwidth: 30 kHz Video Bandwidth: 300 kHz ||5/26/2004 4:17:14 PM

Kyocera Wireless Corp.

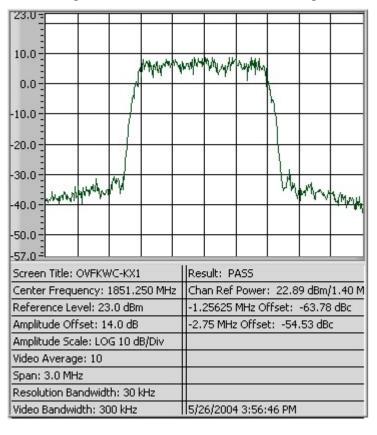


Figure 8-12 CDMA 1900 Lower Band Edge

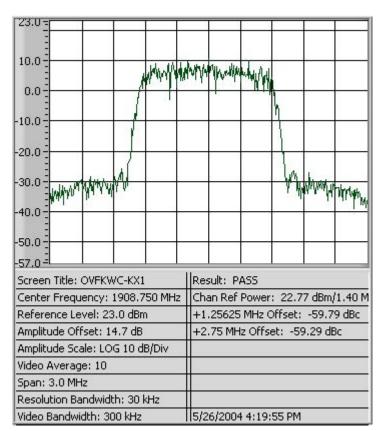


Figure 8-13 CDMA 1900 Upper Band Edge

FCC ID: OVFKWC-KX1

9 Spurious Emissions At Antenna Terminals

FCC: § 2.1051, § 22.917(e)(f), § 24.238 IC: RSS-129 §6.3, §8.1, RSS-133 §6.3 Measurement Procedures:

Out of Band: The RF output of the EUT was connected to the input of the spectrum analyzer with sufficient attenuation. The modulating signal was applied accordingly. The frequency spectrum was investigated from the lowest frequency signal generated up to at least the tenth harmonic of the fundamental.

Base Band: Spectrum was investigated from 869-894 MHz for Cellular.

List of Figures:

Figure	Mode	Channel	Plot Description		
9-1	AMPS	991	Emissions in base station frequency range, 869 - 894 MHz		
9-2			Conducted spurious emissions, 9kHz to 10GHz		
9-3		383	Emissions in base station frequency range, 869 - 894 MHz		
9-4			Conducted spurious emissions, 9kHz to 10GHz		
9-5		799	Emissions in base station frequency range, 869 - 894 MHz		
9-6			Conducted spurious emissions, 9kHz to 10GHz		
9-7	CDMA	1013	Emissions in base station frequency range, 869 - 894 MHz		
9-8	800		Conducted spurious emissions, 9kHz to 10GHz		
9-9		383	Emissions in base station frequency range, 869 - 894 MHz		
9-10			Conducted spurious emissions, 9kHz to 10GHz		
9-11		777	Emissions in base station frequency range, 869 - 894 MHz		
9-12			Conducted spurious emissions, 9kHz to 10GHz		
9-13	CDMA	25	Conducted spurious emissions, 9kHz to 20GHz		
9-14	1900	600	Conducted spurious emissions, 9kHz to 20GHz		
9-15		1175	Conducted spurious emissions, 9kHz to 20GHz		

Figure 9-1 AMPS - Emissions in base station frequency range (CH 991)

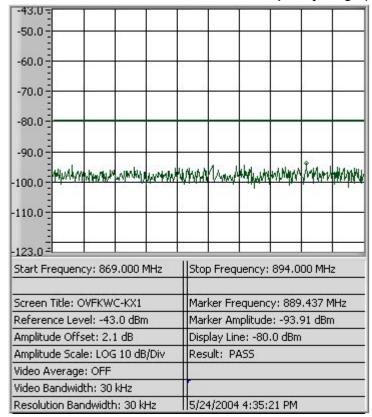


Figure 9-2a AMPS - Conducted Spurious Emission (CH 991)

Figure 9-2b AMPS - Conducted Spurious Emission (CH 991)

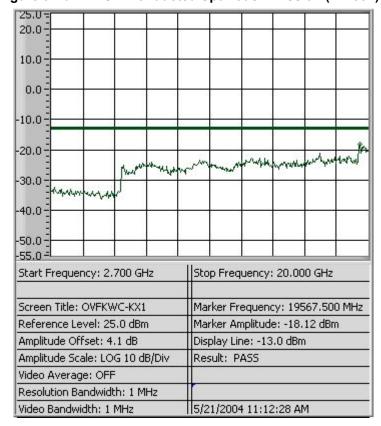


Figure 9-3 AMPS - Emissions in base station frequency range (CH 383)

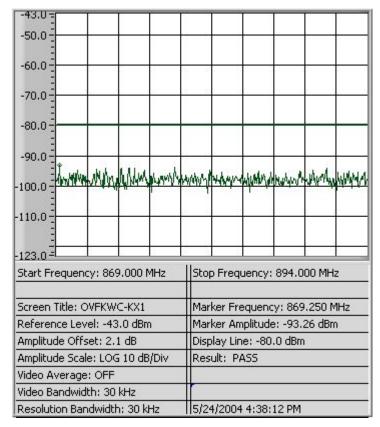


Figure 9-4a AMPS - Conducted Spurious Emission (CH 383)

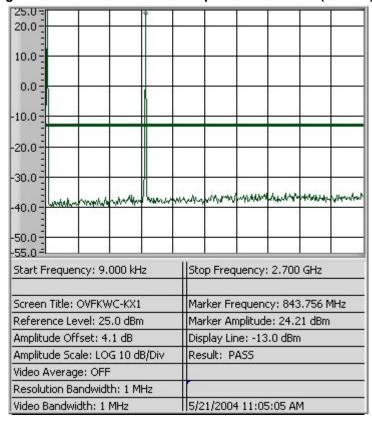
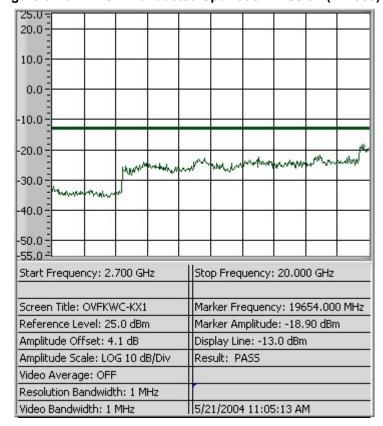



Figure 9-4b AMPS - Conducted Spurious Emission (CH 383)

-43.U -50.0 -60.0--70.0 -80.0 -90.0 and have the state of the state -100.0 -110.0 -123.0 =l Start Frequency: 869,000 MHz Stop Frequency: 894,000 MHz Screen Title: OVFKWC-KX1 Marker Frequency: 878,875 MHz Reference Level: -43.0 dBm Marker Amplitude: -92.90 dBm Amplitude Offset: 2.1 dB Display Line: -80.0 dBm Amplitude Scale: LOG 10 dB/Div Result: PASS Video Average: OFF Video Bandwidth: 30 kHz

5/24/2004 4:39:39 PM

Resolution Bandwidth: 30 kHz

Figure 9-5 AMPS - Emissions in base station frequency range (CH 799)

Figure 9-6a AMPS - Conducted Spurious Emission (CH 799)

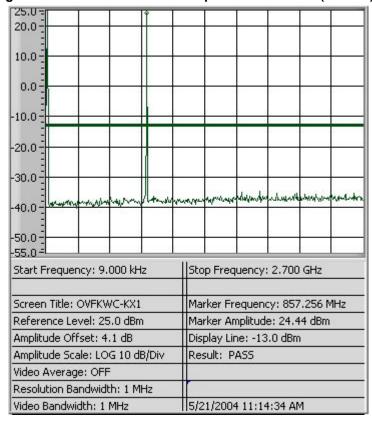


Figure 9-6b AMPS - Conducted Spurious Emission (CH 799)

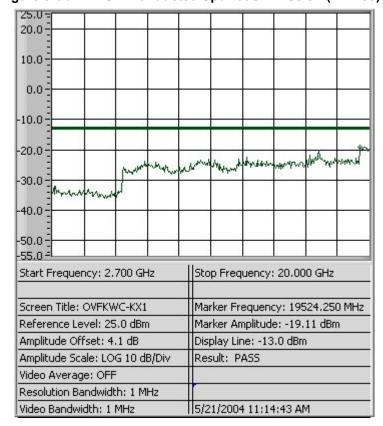


Figure 9-7 CDMA 800 - Emissions in base station frequency range (CH 1013)

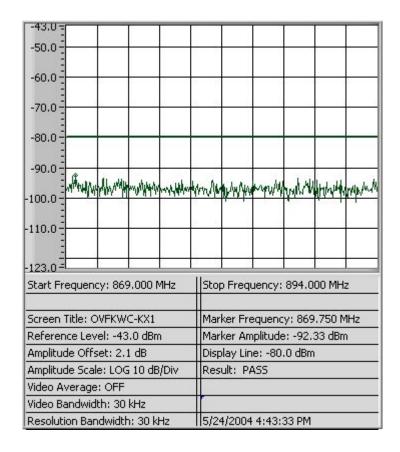


Figure 9-8a CDMA 800 – Conducted Spurious Emission (CH 1013)

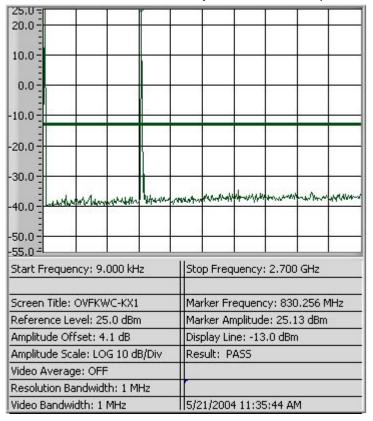


Figure 9-8b CDMA 800 - Conducted Spurious Emission (CH 1013)

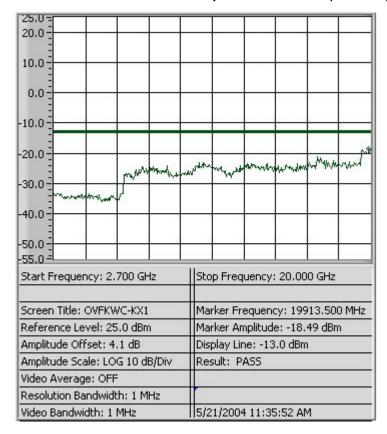


Figure 9-9 CDMA 800 - Emissions in base station frequency range (CH 383)

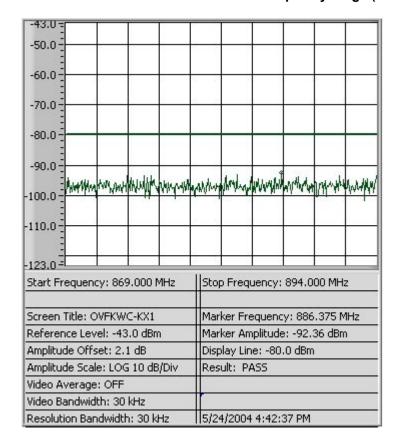


Figure 9-10a CDMA 800 - Conducted Spurious Emission (CH 383)

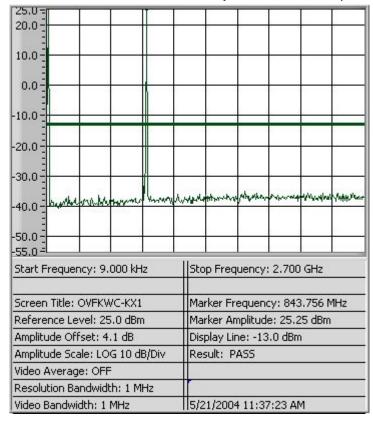


Figure 9-10b CDMA 800 – Conducted Spurious Emission (CH 383)

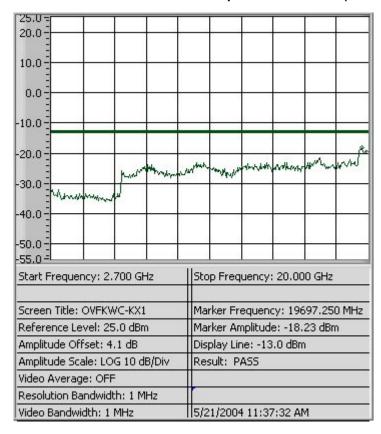


Figure 9-11 CDMA 800 - Emissions in base station frequency range (CH 777)

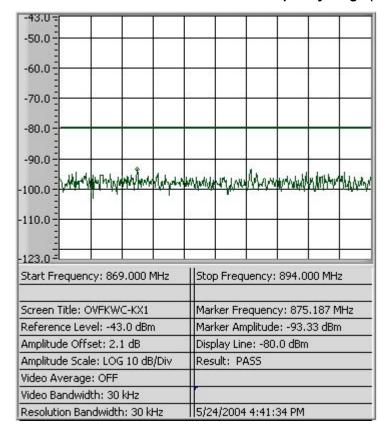


Figure 9-12a CDMA 800 – Conducted Spurious Emission (CH 777)

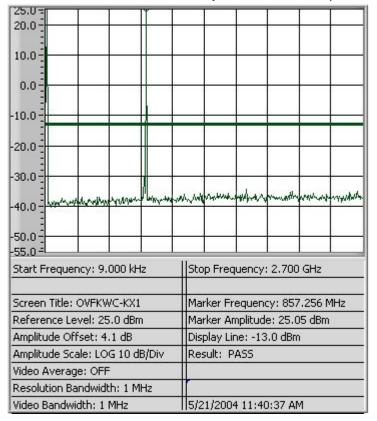
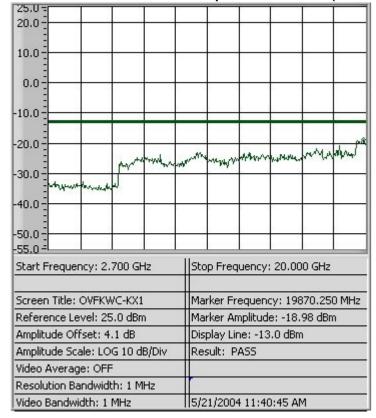



Figure 9-12b CDMA 800 – Conducted Spurious Emission (CH 777)

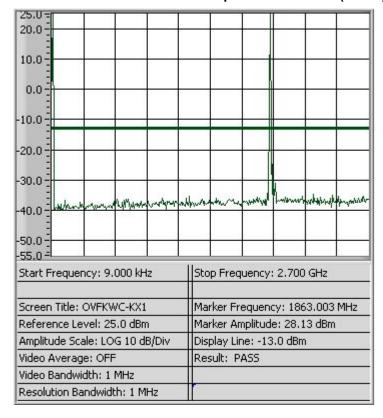


Figure 9-13a CDMA 1900 - Conducted Spurious Emission (CH 25)

Figure 9-13b CDMA 1900 - Conducted Spurious Emission (CH 25)

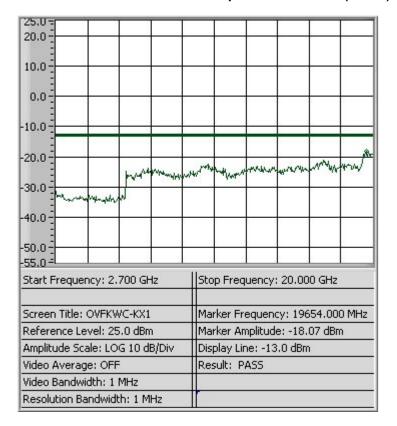


Figure 9-14a CDMA 1900 - Conducted Spurious Emission (CH 600)

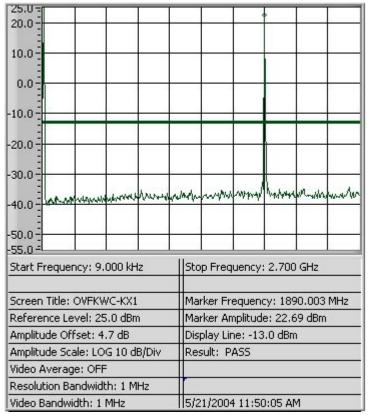
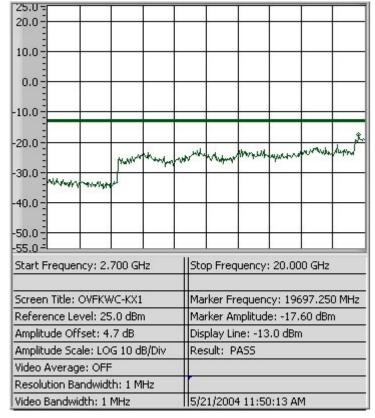



Figure 9-14b CDMA 1900 - Conducted Spurious Emission (CH 600)

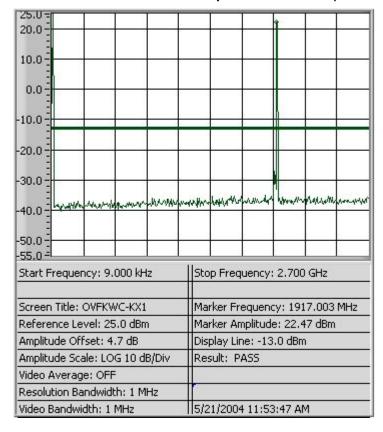


Figure 9-15a CDMA 1900 - Conducted Spurious Emission (CH 1175)

10 **Transmitter Radiated Spurious Emissions Measured Data**

FCC: § 2.1053, § 22.91, § 24.238 IC: RSS-129 §8.1, RSS-133 §6.3 Measurement Procedures:

The radiated spurious emission test was performed at TUV in San Diego, California. The test report is attached in a separate attachment.

11 **Receiver Spurious Emissions**

FCC: § 15.109 IC: RSS-129 §10, RSS-133 §9

Measurement Procedures:

The receiver radiated spurious emission test was performed at TUV in San Diego, California. The test report is attached in a separate attachment.

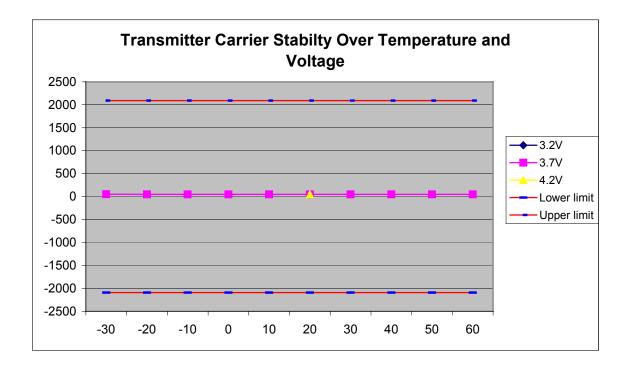
Note -

This product is a clam shell phone. There are two industry designs on the top half, named KX1 ID1 and KX1 ID2 (See pictures below).

The KX1 ID1 has removable housings, i.e., 'Feng' and 'Shui'. Those two housings are made from the same material, kept the same dimessions, just has different pattern on the surface. Therefore, there is no any difference on all of electrical performace between those two housings. All of conducted testing, radiated spurs and emission testing have been only conducted on KX1 ID 1 'Feng' and the reslults have been reported in a seperate attachment.

The only difference between KX1 ID1 and ID2 is the oritation of the sub-LCD shown on the picture below. The schematic and main board layout are same. The electrical conducted performance shall be indentical between ID1 and ID2. The radiated spurs and emission test have been re-performed for ID2 to insure a complience with FCC requirement. The results are reported in a seperate attachment.

12 Transmitter RF Carrier Frequency Stability

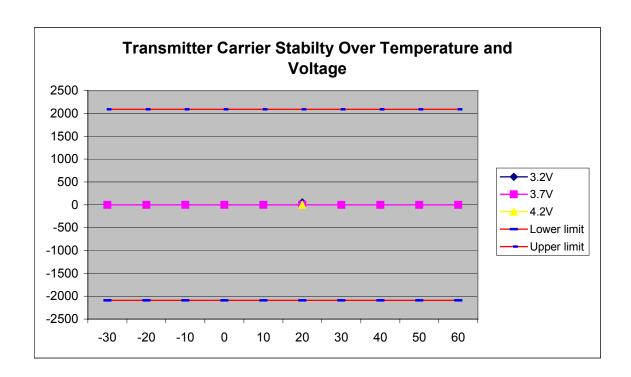

FCC: § 2.1055, § 22.355, § 24.235 IC: RSS-129 §7.2 and §9.2, RSS-133 §7 Measurement Procedures:

The EUT was placed in an environmental chamber. The RF output of the EUT was connected to Agilent 8960 Series 10 E5515C. A power supplier was connected as primary voltage supply.

12.1 AMPS Mode

Tx Frequency:	836.49 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/- 2091 Hz)	Ch:	383

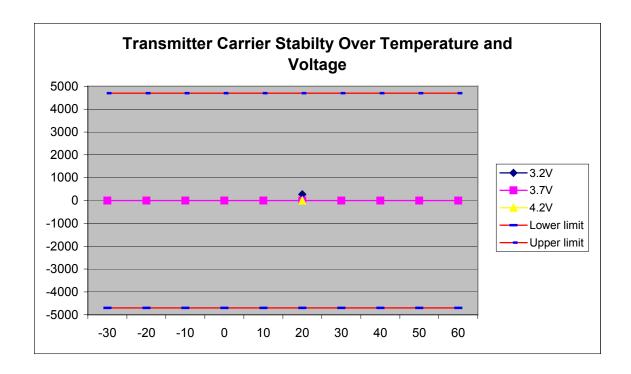
Temperature	Devia	ation of Carrie	r (Hz)	Specifica	ition (Hz)
(°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit
-30		51.00		-2091	2091
-20		50.00		-2091	2091
-10		50.00		-2091	2091
0		50.00		-2091	2091
10		50.00		-2091	2091
20	44.00	50.00	50.00	-2091	2091
30		50.00		-2091	2091
40		50.00		-2091	2091
50		50.00		-2091	2091
60		50.00		-2091	2091



12.2 CDMA 800 Mode

Tx Frequency:	836.49 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/- 2091 Hz)	Ch:	383

Temperature	Deviation of Carrier (Hz)			Specification (Hz)	
(°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit
-30		0.33		-2091	2091
-20		0.39		-2091	2091
-10		0.39		-2091	2091
0		-0.26		-2091	2091
10		-0.74		-2091	2091
20	50.89	-0.39	-0.11	-2091	2091
30		0.32		-2091	2091
40		0.66		-2091	2091
50		-0.15		-2091	2091
60		0.62		-2091	2091



12.3 CDMA 1900 Mode

Tx Frequency:	1880.00 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/-4700 Hz)	Ch:	600

Temperature	Deviation of Carrier (Hz)			Iz) Specification (Hz)		
(°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit	
-30		0.11		-4700	4700	
-20		0.15		-4700	4700	
-10		-0.42		-4700	4700	
0		-0.44		-4700	4700	
10		0.43		-4700	4700	
20	273.05	-1.90	0.28	-4700	4700	
30		-0.75		-4700	4700	
40		-0.60		-4700	4700	
50		-1.50		-4700	4700	
60		-0.80		-4700	4700	

13 Exposure of Humans to RF Fields (SAR)

The SAR Test Report is showed in a separate attachment as Exhibit 9.

14 Test Equipment

Description	Manufacturer	Model	Serial Number	Cal Due Date
		Number		
Power Meter	Giga-tronics	8541C	1835203	11/09/04
Spectrum Analyzer	Hewlett	8593EM	3710A00203	04/30/05
	Packard			
Spectrum Analyzer	Hewlett	8594E	3810A06429	05/16/05
	Packard			
Wireless Communications	Agilent	8960	US41140252	05/17/06
Test Set				
RF communication test set	Hewlett	8924B	US35320824	06/28/04
	Packard			
Temperature Chamber	CSZ	Z2033	Z9343034	04/02/05