

Test Report

From

Kyocera Wireless Corp

FCC Part 24 Certification IC RSS-133

FCC ID: OVFKWC-KE433

Model: KE433

STATEMENT OF CERTIFICATION

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the measurements of the sample's radio frequency interference emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

Test performed by:	Kyocera Wireless Corp 10300 Campus Point Drive CA 92121
Report	C. K. Li
Prepared by:	Engineer, Senior Staff/Manager

Tests that required an OATS site were performed by TUV Product Services.

TABLE OF CONTENTS

1	General Information	3
2	Product Description	3
3	Electronic Serial Numbers (ESN) Protection	3
4	FCC Compliance Emergency 911	4
5	TTY compliance	4
6	Transmitter RF Power Output	4
7	Occupied Bandwidth	6
8	Spurious Emissions At Antenna Terminals	13
9	Transmitter Radiated Spurious Emissions Measured Data	17
10	Receiver Spurious Emissions	17
11	Transmitter RF Carrier Frequency Stability	18
12	Exposure of Humans to RF Fields (SAR)	19
13	Test Equipment	19

1 General Information

Applicant:	Kyocera Wireless Corp			
	10300 Campus Point Drive			
	San Diego CA 92121			
FCC ID:	OVFKWC-KE433			
Product:	Single-mode CDMA PCS Phone			
Model Number:	KE433			
EUT Serial Number:	5P_X_0DTKST			
Type:	[] Prototype, [X] Pre-Production, [] Production			
Device Category:	Portable			
RF Exposure Environment:	General Population / Uncontrolled			
Antenna:	Fixed Helix			
Detachable Antenna:	Yes			
External Input:	Audio/Digital Data			
Quantity:	Quantity production is planned			
FCC Rule Parts:	§24H			
Modes:	1900 CDMA			
Multiple Access Scheme:	CDMA			
TX Frequency :	1850 – 1910 MHz			
Emission Designators:	1M25F9W			
Max. Output Power:	0.389W (25.9 dBm) EIRP			

2 Product Description

The phone is a single board single-mode 1XRTT product that integrates Assisted GPS capability to meet the emergency location requirements of the FCC's E911 Phase II mandate. The single-mode architecture is defined as 1900MHz (PCS CDMA). The phone will support certain CDMA2000 radio-configurations (RC) as describes in Operation Description (Exhibit 1).

3 Electronic Serial Numbers (ESN) Protection

The Single-mode Phones, FCC ID: OVFKWC-KE433 uses ESN. The ESN is a unique identification number to each phone which is contained in the Numeric Assignment Module and is automatically transmitted to the base station whenever a call is placed. The ESN is stored in an EPROM and is isolated from fraudulent contact and tampering. Any attempt to change the ESN will render the portable phone inoperative.

The phone complies with all requirements for ESN under Part 22.919.

4 FCC Compliance Emergency 911

FCC § 22.921

When an emergency 911 call is originated by the user, the mobile will attempt to acquire any available system and originate the emergency call on that system, disregarding restrictions set by the roaming list. The FCC NPRM WT99-13, CC94-102 automatic analog A/B roaming option has been implemented for 911 emergency calls. Note that the KE413 has Global Positioning System (GPS) support.

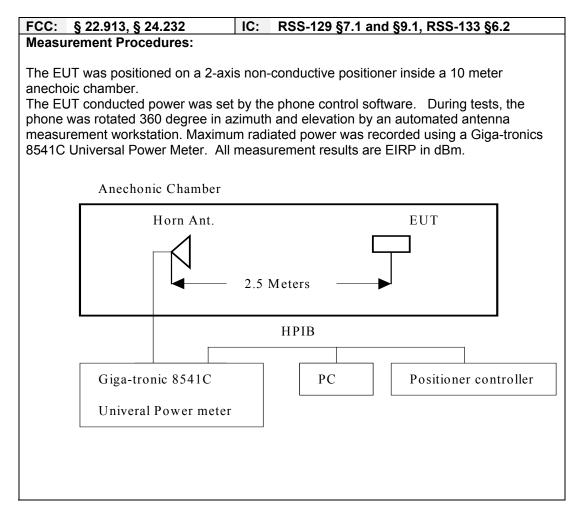
5 TTY compliance

FCC § 255 of the Telecom Act
KE433 has been designed for TTY Compliance with Cellular Compatibility Standard.

6 Transmitter RF Power Output

6.1 Conducted Power

FCC:	§ 2.1046	IC:	RSS-129 §7.1, RSS-133 §6.2				
Measu	Measurement Procedures:						


weasurement Procedures:

The RF output power was measured using a Giga-tronics 8541C Universal Power Meter and HP 8594E Spectrum Analyzer that has the CDMA personality option. Terminated to a resistive coaxial load of 50 ohms.

Mode	Frequency (MHz)	Channel	Power (dBm)
CDMA 1900	CDMA 1900 1851.25		23.22
	1880.00	600	23.16
	1908.75	1175	23.10

6.2 Radiated Power

Mode	Frequency	Channel	Max. Power (dBm)		Ref.
	(MHz)		W/ model "G" antenna	W/ model "Y" antenna	
CDMA 1900	1851.25	25	25.8	25.9	EIRP
	1880.00	600	25.7	25.2	
	1908.75	1175	25.5	25.4	

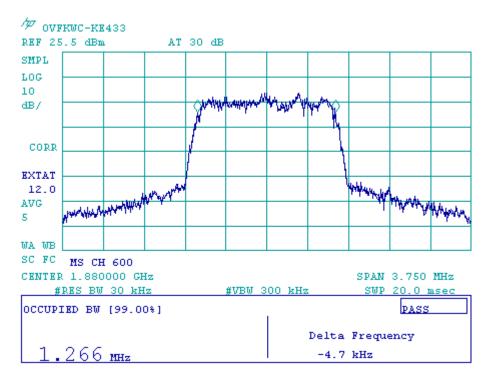
^{*} Note: The unit was tested with either model "G" or model "Y" antenna that will be used in production. Technical specifications for both antennas are identical but made by different manufacturers.

FCC ID: OVFKWC-KE433

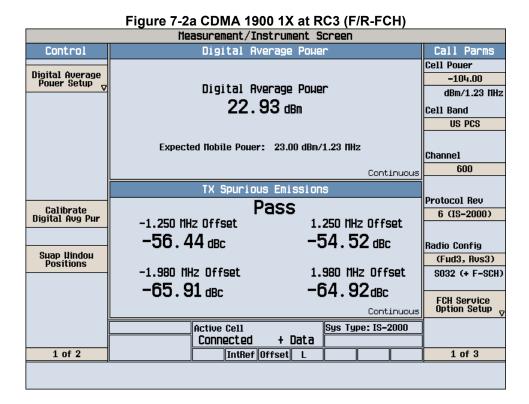
7 Occupied Bandwidth

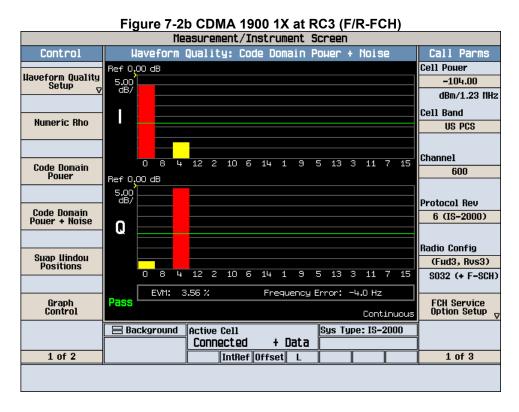
FCC:	§ 2.1049, § 22.917(b)(d), § 24.238	IC:	RSS-129 §6.3, §8.1
Measu	rement Procedures:		

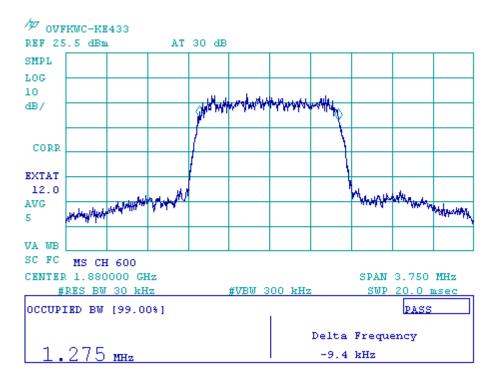
The RF output of the EUT was connected to the input of the spectrum analyzer with sufficient attenuation. The spectrum with no modulation was recorded.

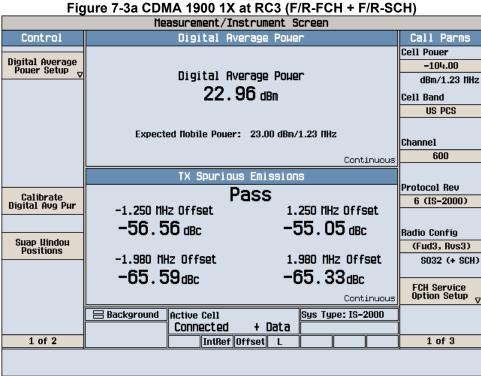

For Digital: Modulate with full rate.

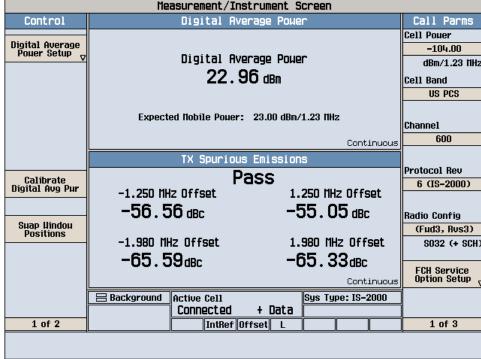
List of Figures


Figure	Mode	Description
7-1	CDMA 1900	CDMA at RC1
7-2		CDMA 1X, F/R-FCH at RC3
7-3		CDMA 1X, F/R-FCH + F/R-SCH at RC3
7-4		Lower Band Edge @ CH25
7-5		Upper Band Edge @ CH1175









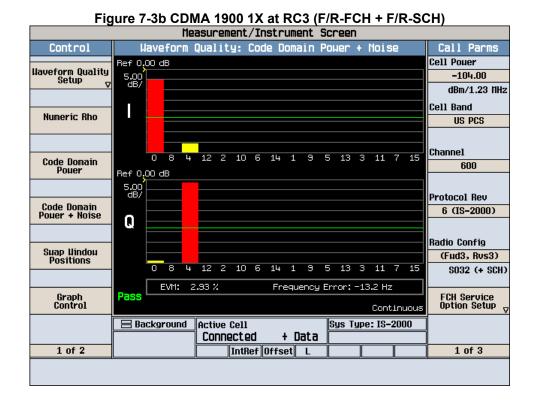


Figure 7-3c CDMA 1900 1X at RC3 (F/R-FCH + F/R-SCH)

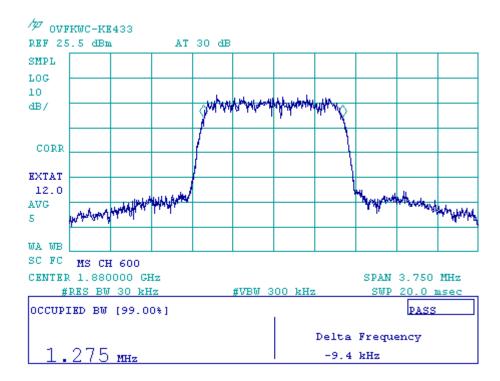
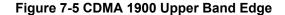
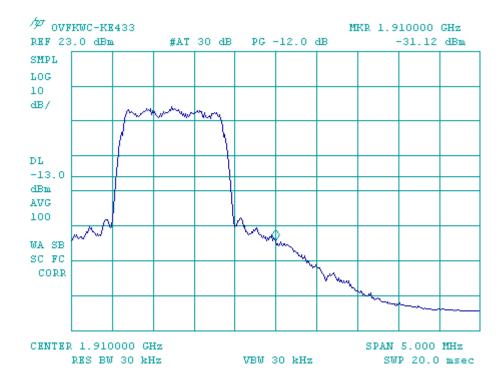




Figure 7-4 CDMA 1900 Lower Band Edge

8 Spurious Emissions At Antenna Terminals

FCC:	§ 2.1051, § 24.238	IC:	RSS-133 §6.3	
Moseuroment Procedures:				

Measurement Procedures:

<u>Out of Band:</u> The RF output of the EUT was connected to the input of the spectrum analyzer with sufficient attenuation. The audio modulating signal was applied as in Section 5.0. The frequency spectrum was investigated from the lowest frequency signal generated up to at least the tenth harmonic of the fundamental.

Base Band: Spectrum was investigated from 869-894 MHz for Cellular.

List of Figures

Figure	Mode	Channel	Plot Description
8-1a	CDMA	25	Conducted spurious emissions, 9kHz to 2.7GHz
8-1b	1900		Conducted spurious emissions, 2.7GHz to 20GHz
8-2a		600	Conducted spurious emissions, 9kHz to 2.7GHz
8-2b			Conducted spurious emissions, 2.7GHz to 20GHz
8-3a		1175	Conducted spurious emissions, 9kHz to 2.7GHz
8-3b			Conducted spurious emissions, 2.7GHz to 20GHz

Figure 8-1a CDMA 1900 - Conducted Spurious Emission (CH 25)

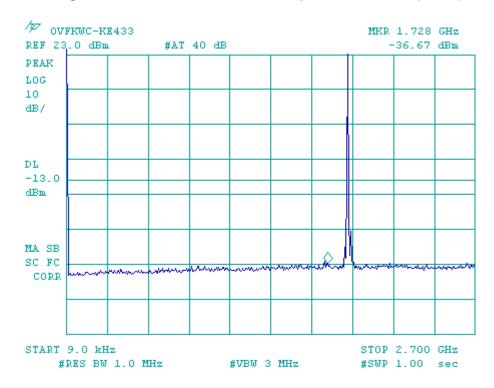


Figure 8-1b CDMA 1900 - Conducted Spurious Emission (CH 25)

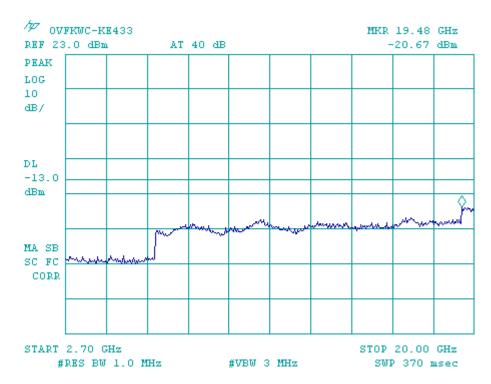


Figure 8-2a CDMA 1900 - Conducted Spurious Emission (CH 600)

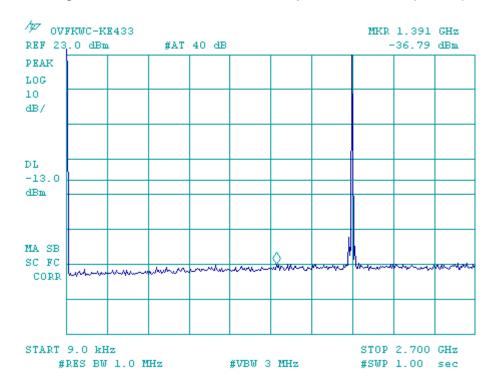


Figure 8-2b CDMA 1900 - Conducted Spurious Emission (CH 600)

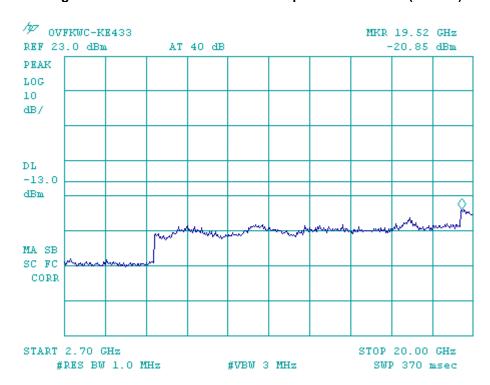


Figure 8-3a CDMA 1900 - Conducted Spurious Emission (CH 1175)

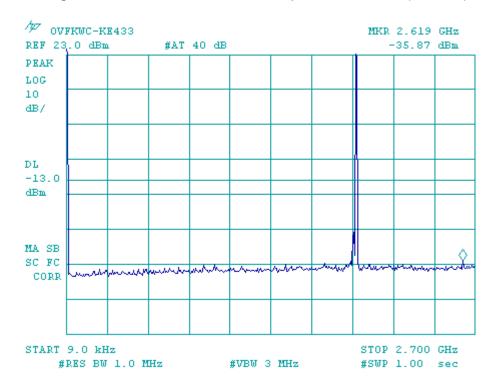
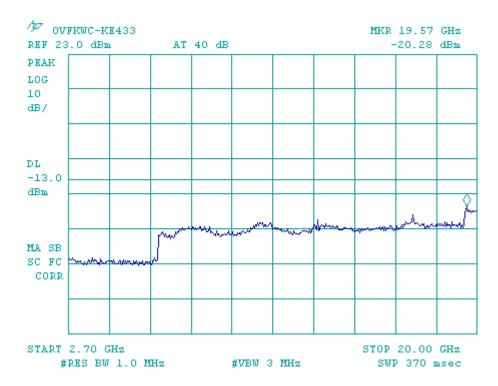



Figure 8-3b CDMA 1900 - Conducted Spurious Emission (CH 1175)

9 Transmitter Radiated Spurious Emissions Measured Data

FCC:	§ 2.1053, § 24.238	IC:	RSS-133 §6.3

Measurement Procedures:

The radiated spurious emission test was performed at TUV in San Diego, California. The test report is attached in a separate attachment.

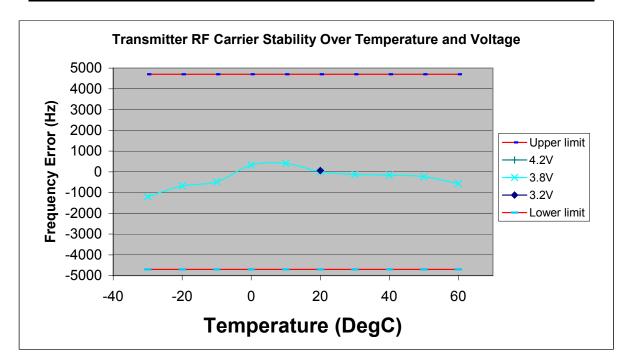
10 Receiver Spurious Emissions

		IC:	RSS-133 §9		

Measurement Procedures:

The receiver radiated spurious emission test was performed at TUV in San Diego, California. The test report is attached in a separate attachment.

11 Transmitter RF Carrier Frequency Stability


	FCC:	§ 2.1055, § 24.235	IC:	RSS-133 §7
--	------	--------------------	-----	------------

Measurement Procedures:

The EUT was placed in an environmental chamber. The RF output of the EUT was connected to a frequency counter via attenuator. A power supplier was connected as primary voltage supply.

Tx Frequency:	1880.00 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/-4700 Hz)	Ch:	600

Temperature	Deviation of Carrier (Hz)			Specification (Hz)		
(°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit	
-30		-1200		-4700	4700	
-20		-675		-4700	4700	
-10		-483		-4700	4700	
0		325		-4700	4700	
10		408		-4700	4700	
20	56	0	66	-4700	4700	
30		-128		-4700	4700	
40		-155		-4700	4700	
50		-231		-4700	4700	
60		-566		-4700	4700	

FCC ID: OVFKWC-KE433

12 Exposure of Humans to RF Fields (SAR)

The SAR Test Report is showed in a separate attachment as Exhibit 8.

13 Test Equipment

Description	Manufacturer	Model Number	Serial Number	Cal Due Date
Power Meter	Giga-tronics	8541C	1835203	01/04/04
Spectrum Analyzer	Hewlett	8593EM	3710A00203	04/15/04
	Packard			
Spectrum Analyzer	Hewlett	8594E	3810A06429	11/19/03
	Packard			
Wireless Communications	Agilent	8960	GB41251014	11/15/03
Test Set				
RF communication test set	Hewlett	8920B	US35320824	12/21/03
	Packard			
Temperature Chamber	CSZ	Z2033	Z9343034	02/14/04