

EMC TEST REPORT

Kyocera Wireless

PCS Handset

Model: K483JLC Pounder **FCC ID:** OVFKWC-K4X3

RADIATED EMISSIONS

FCC, PART 2.1053
FCC, PART 24 SUBPART E
INDUSTRY CANADA, RSS-133

TEST REPORT # 2006 011173 K483JLC 22/24 25-1173-KYO

> NEMKO USA, INC. 11696 SORRENTO VALLEY ROAD SUITE F SAN DIEGO, CA 92121 PHONE: 858-755-5525

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K	483JLC FCC Test Report	2006 011173 K483JLC 22/24	2 of27

TABLE OF CONTENTS
1. DESCRIPTION OF TESTING METHODS
2 TEST RESULTS
TEST SETUP DIAGRAMS
FIGURE 1. GENERAL EUT TEST SETUP PICTURE
FIGURE 2. RADIATED EMISSIONS TEST SETUP DIAGRAM
FIGURE 3. SUBSTITUTION METHOD TEST SETUP DIAGRAM
TEST CONFIGURATION PHOTOGRAPHS
PHOTOGRAPH 1. K483JLC POUNDER, TRI MODE MOBILE CELLULAR PHONE8
PHOTOGRAPH 2. FCC, PART 24 RADIATED EMISSIONS TEST CONFIGURATION16
PHOTOGRAPH 3. FCC, PART 24 RADIATED EMISSIONS TEST CONFIGURATION17
PHOTOGRAPH 4. FCC, PART 24 RADIATED EMISSIONS TEST CONFIGURATION18
APPENDICES
A. RADIATED EMISSIONS MEASUREMENT UNCERTAINTIES
B. NEMKO USA, INC.'S TEST EQUIPMENT & FACILITIES CALIBRATION PROGRAM21

Notation IVA Itan		orrento Valley Road, Suite F, San Diego Phone (858) 755-5525 Fax (85	/	
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K4	83JLC FCC Test Report	2006 011173 K483JLC 22/24	3 of27

EMC Test Report For Kyocera Wireless

Test Number : 25-1173-KYO

Product Name : PCS Handset

Regulation : FCC, Part 24, Subpart E

: Industry Canada, RSS-133

Date : January 5, 2006

Report Reviewed

Accepted by:

Kyocera Wireless

10300 Campus Point Drive

San Diego, CA 92121

Phone: 858 882-1773

Report Issued By: F. R. Fluery

F. R. Fluery, Frontline Manager

Tested By:

Mikel 7. Zil

Mike Krumweide, EMC Test Engineer

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K4	183JLC FCC Test Report	2006 011173 K483JLC 22/24	4 of27

Administrative Data

Regulation : FCC, Part 24, Subpart E

: Industry Canada, RSS-133

Level : Not Applicable

Test Method : ANSI C63.4 – 2003

: CSA C108. - M1983

: TIA/EIA 603B

Test Type : Compliance with Class II Permissive Change.

Manufacturer : Kyocera Wireless

EUT Type/:Model # : PCS Handset/ K483JLC Pounder

Date(s) of Test: January 4, 2006

Customer Personnel : Fernando Calimbahin, Engineer

Nemko Personnel : Mike Krumweide, EMC Test Engineer

:

Test Location : OPEN Area Test Site

Nemko USA, Inc.

11696 Sorrento Valley Road, Suite F

San Diego, CA 92121

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	5 of 27

EUT Description

The K483JLC Pounder is a PCS Handset. Its function is to provide communication for mobile phone users. The EUT was exercised in PCS Transmit mode for radiated emissions.

DEVICE	MANUFACTURER MODEL # SERIAL #	POWER CABLE
EUT - PCS Handset	Kyocera Wireless Model: K483JLC Pounder FCC ID: OVFKWC-K4X3 SN: F0000004626422	N/A

CONNECTION	I/O CABLE
No connections	

REASON FOR TEST

Class II Permissive Change. Tested to qualify for FCC Part 24, and RSS-133.

CHANGES MADE DURING TEST

The following design modifications were made to the EUT during testing.

No design modifications were made to the EUT during testing

DEVIATIONS FROM STANDARD TEST METHOD

-- None

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		,
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K4	483JLC FCC Test Report	2006 011173 K483JLC 22/24	6 of27

CERTIFICATION AND TEST SUMMARY

Test Type	In Accordance with Document	Frequency Range Investigated	EUT Complies
Radiated Spurious Emissions	FCC, Part 24, Subpart E Industry Canada, RSS-133	824 – 20997 MHz	PASS

The PCS Handset complied with FCC Part 24; Industry Canada, RSS-133 when tested in the system configuration defined herein.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		,
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K4	483JLC FCC Test Report	2006 011173 K483JLC 22/24	7 of27

DESCRIPTION OF TEST SITE AND EQUIPMENT

Description of Test Site

The test site is located at 11696 Sorrento Valley Road, Suite F, San Diego, CA 92121. The site is physically located 18 miles Northwest of downtown San Diego. The general area is a valley 1.5 miles east of the Pacific Ocean. This particular part of the valley tends to minimize ambient levels, i.e. radio and TV broadcast stations and land mobile communications. The three and ten-meter Open Area Test Site (OATS) is located behind the office/lab building. It conforms to the normalized site attenuation limits and construction specifications as set in the EN 55022 (1998), CISPR 16 (2000) and 22 (1997) and ANSI C63.4 (2003) documents. The OATS normalized site attenuation characteristics are verified for compliance every.

1. DESCRIPTION OF TESTING METHODS

1.1. Introduction

As required in 47 CFR, Parts 2 and 15, the methods employed to test the radiated and conducted emissions (as applicable) of the EUT are those contained within the American National Standards Institute document ANSI C63.4 (2003), titled "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." All applicable FCC Rule Sections that provide further guidance for performance of such testing are also observed.

For General Test Configuration please refer to Figure 1 on the following page.

Digital devices sold in Canada are required to comply with the Interference Causing Equipment Standard for Digital Apparatus, ICES-003. These test methods and limits are specified in the Canadian Standards Association's (CSA) Standard C108.8-M1983 (1-1-94 version) and are "essentially equivalent" with FCC, Part 15 and CISPR 22 (EN55022) rules for unintentional radiators per EMCAB-3, Issue 3 (May 1998). No further testing is required for compliance to ICES-003.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		/
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	8 of27

Photograph 1. K483JLC Pounder, Tri Mode Mobile Cellular Phone

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		,
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K4	483JLC FCC Test Report	2006 011173 K483JLC 22/24	9 of27

Figure 1. General EUT Test Setup Picture

CONFIGURATION LEGEND

- 1. EUT: PCS Handset
- 2. 80cm Non-Conductive Support Table

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	10 of27

1.2. Configuration and Methods of Measurements for Radiated Emissions

Section 8 of ANSI C63.4 determines the general configuration and procedures for measuring the radiated emissions of equipment under test. Initially, the primary emission frequencies are identified inside the test lab by positioning a broadband receive antenna one meter from the EUT to locate frequencies of significant radiation. Next, the EUT and associated system are placed on a turntable on a ten meter open area test site (registered with the FCC in accord with its Rules and ANSI C63.4) and the receive antenna is located at a distance of three meters from the EUT.

The EUT and associated system are configured to operate continuously, representing a "normally operating" mode. All significant radiated emissions are recorded when maximum radiation on each frequency is observed, in accordance with part 8 of ANSI C63.4 and Section 15.33 of the FCC Rules. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to horizontal and vertical polarities, and the turntable is also rotated to determine the worst emitting configuration. The numerical results of the test are included herein to demonstrate compliance.

The numerical results that are applied to the emissions limits are arrived at by the following method:

Example: A=RR+CL+AF

A = Amplitude dBuV/M

RR = Receiver Reading dBuV

CL = cable loss dB

AF = antenna factor dBm-1

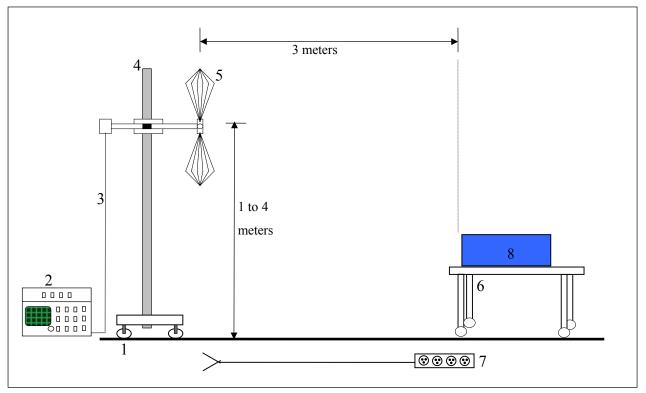
Example Frequency = 110MHz

18.5 dBuV (spectrum analyzer reading)

+3.0 dB (cable loss @ frequency)

21.5 dBuV

+15.4 dBm-1 (antenna factor @ frequency)


36.9 dBuV/M Final adjusted value

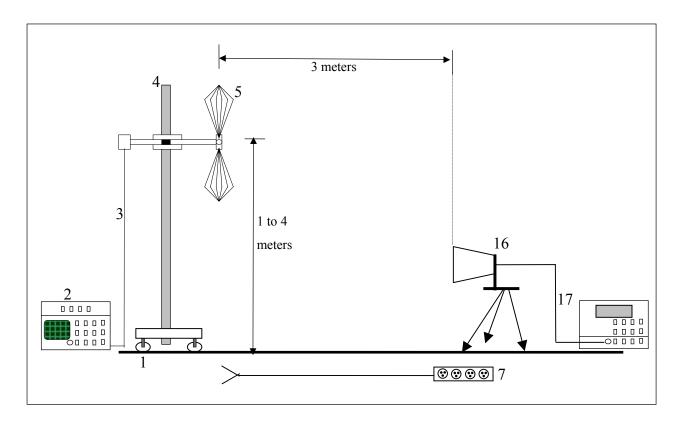
The final adjusted value is then compared to the appropriate emission limit to determine compliance.

For Radiated Emissions Test Configuration please refer to Figure 4 on the following page.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	11 of27

Figure 2. Radiated Emissions Test Setup Diagram

NOT TO SCALE


CONFIGURATION LEGEND

- 1. Ground plane (11 X 17 meters)
- 2. Spectrum Analyzer with Quasi-Peak Adapter
- 3. Coax interconnect from Receive Antenna to Spectrum Analyzer
- 4. Antenna Mast with motorized mounting assembly
- 5. Receive Antenna (basic relative position)
- 6. Non-Conducting table 80 cm above ground plane
- 7. AC power for devices
- 8. EUT: PCS Handset

Radiated emissions were measured on three orthogonal axes. Only the maximum emissions of the three axes are stated in this report. Test setup pictures of these axes are found further in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	12 of27

Figure 3. Substitution Method Test Setup Diagram

NOT TO SCALE

CONFIGURATION LEGEND

- 9. Ground plane (11 X 17 meters)
- 10. Spectrum Analyzer with Quasi-Peak Adapter
- 11. Coax interconnect from Receive Antenna to Spectrum Analyzer
- 12. Antenna Mast with motorized mounting assembly
- 13. Receive Antenna (basic relative position)
- 14. Non-Conducting table 80 cm above ground plane
- 15. AC power for devices
- 16. Radiating Horn Antenna
- 17. Signal Generator

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	13 of27

2 Test Results

2.1 Radiated Emissions Test Data

FCC Part 24 Emissions Substitution

- 1) Methodology Used: TIA/EIA603 (see attached excerpt).
- 2) The Substitution Method is used for fundamental power levels and spurious emissions when RF emission signals are measured within 20 dB of the limit.
- 3) Formula Used to calculate the values:
 - a) Measured value + antenna factor + cable loss preamplifier = Max Level
 - b) Margin = Max level Limit
 - c) Signal Generator power level cable loss + antenna gain = EIRP Part 24
 - d) Substituted Margin = ERP (or EIRP) Limit

Note: gain for dipole = 0; antenna factor is not the same as antenna gain

Note: The signal generator power level is the power required when transmitting into the substituting antenna to duplicate the Measured Value. Substituted margin is reported in 731 forms pertaining to certification grants and Class II Permissive Changes when a direct conducted power reading cannot be performed.

Note: Per FCC Part 2:1051 the FCC does not require reporting of Spurious Emissions when they are more than 20dB below the permissible limit, therefore no signal substitution measurements will be performed on these signals.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 Fax (858) 452-181		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	14 of27

Radiated Emissions Data Job # : <u>25-1173-KYO</u> Test #: Page 1 οf Client Name: Kyocera-Wireless EUT Name: Cellular Phone EUT Model #: K483JLC F0000004626422 EUT Serial #: PCS TX Harmonics EUT Config. : Specification: FCC Part 24 Reference: Rod. Ant. #: 0 Temp. (°C): 20 Date: 01/04/06 Staff : Mike Krumweide 0 Humidity (%): Bicon Ant.#: 40 Log Ant.#: NA EUT Voltage: NA Peak Bandwidth: 1 MHz DRG Ant. # 529 **EUT Frequency:** NA Video Bandwidth 1 MHz Dipole Ant.#: NA Phase: NA Cable#: Location: RN # 329550-01 40ft Preamp#: 842 Distance: 3m EIRP conversion factor Spec An.#: 104 5.5 Meas. Vertical Horizontal Max Level Spec. Limit (ERIP) Margin FUT Ant. Pass Freq. (dBuV) (dBuV) CF (db) (dBm) (dBm) dΒ Rotation Height Fail (MHz) pk pk pk pk pk Unc. Comment Highest of 3 Axes 3702 50 66.5 69 1 -8 4 -34 6 -13 0 -21 6 1.5 Pass 5553.75 56.6 54.9 -0.8 -39.4 -13.0 -26.4 Pass 7405.00 50.6 50.6 3.3 -41.4 -13.0 -28.4 Pass NF 9256.25 46.2 46.2 9.8 -39.3 -13.0 NF -26.3 Pass 11107.50 44.3 44.3 14.6 -36.4 -13.0 -23.4 NF Pass 43.6 12958.75 43.6 16.0 -13.0 -22.6 NF -35.6 Pass 14810.00 39.6 39.6 21.2 -34.5 -13.0 -21.5 Pass NF - 300kHz RBW 16661.25 36.9 36.9 22.4 -36.0 -13.0 -23.0 Pass NF - 300kHz RBW 18512.50 37.8 -13.0 20363.75 38.5 -13.0 3760.00 61.9 68.8 -8.4 -34.9 -13.0 -21.9 1.4 Pass 5640.00 51.2 52.8 -0.8 -43.2 -13.0 -30.2 1.2 Pass 7520.00 49.5 49.6 4.5 -41.2 -13.0 -28.2 1.4 Pass 9400.00 42.8 42.8 9.8 -42.7 -13.0 -29.7 Pass -13.0 11280.00 40.9 40.9 14.6 -39.8 -26.8 Pass NF 13160.00 42.1 42.1 18.5 -34.7 -13.0 -21.7 Pass ΝF 15040.00 41.3 41.3 20.4 -33.5 -13.0 -20.5 Pass NF 16920.00 36.0 36.0 22.4 -36.9 -13.0 -23.9 Pass NF - 300kHz RBW 18800.00 23.1 23.1 37.9 -34.2 -13.0 -21.2 NF - 10kHz RBW Pass 20690 38.6 -13 0 3817.50 69.0 70.2 -8.4 -33.5 -13.0 -20.5 1.5 Pass Pass 5726.25 52.9 52.5 -0.8 -43.1 -13.0 1.4 -30 1 7635.00 48.1 48.0 4.5 -42.7 -13.0 -29.7 1.2 Pass 9543.75 41.5 41.5 9.5 -44.3 -13.0 -31.3 Pass NF 11452.50 42.1 42.1 14.6 -38.6 -13.0 -25.6 Pass NF 13361.25 42.0 42.0 18.5 -34.8 -13.0 -21.8 Pass NF 15270.00 41.4 41.4 20.4 -33.4 -13.0 -20.4 Pass NF 17178.75 31.7 31.7 29.9 -33.7 -13.0 -20.7 NF - 100kHz RBW Pass 19087.50 NF - 10kHz RBW 23.5 23.5 38.0 -33.7 -13.0-20.7 Pass 20996.25 -13.0

NF = Noise Floor, no signal observed, even at lower RBW.

= Signal Measured

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 Fax (858) 452-181		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	15 of27

RADIATED EMISSIONS TEST EQUIPMENT

Client	Client Kyocera-Wireless		EU	T Name	PCS Ha	ndset	
PAN # 25-1173-KYO		EU	T Model	K483JL	C Pounder		
Device T	lype	Model	#	Asset #	Used	Cal Done	Cal Due
Pre-Am	plifier						
High-Fre	equency	Nemko)	842	X	5/19/05	5/19/06
Antenn	a			I			
Antenna,	Ridged Guide	3115		529	X	4/13/05	4/13/06
Spectru	m Analyzer / Receiv	er					
Spectrum	n Analyzer, HP	8566	В	104	X	6/24/05	1/24/06
Spectrum	n Analyzer Display, HP	85662	2A	404	X	6/24/05	1/24/06

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kvocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	16 of27

Photograph 2. FCC, Part 24 Radiated Emissions Test Configuration

EUT IN "VERTICAL" POSITION

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	17 of27

Photograph 3. FCC, Part 24 Radiated Emissions Test Configuration


EUT IN "ON-SIDE" POSITION

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	18 of27

Photograph 4. FCC, Part 24 Radiated Emissions Test Configuration

EUT IN "FACE-UP" POSITION

Nemko USA

Kyocera Wireless Corp. K483JLC Pounder

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	19 of27

APPENDIX A

A. Radiated Emissions Measurement Uncertainties

1. Introduction

ISO/IEC 17025:1999 and ANSI/NCSL Z540-1-1994 require that all measurements contained in a test report be "traceable". "Traceability" is defined in the *International Vocabulary of Basic and General Terms in Metrology* (ISO: 1993) as: "the property of the result of a measurement... whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons, *all having stated uncertainties*".

The purposes of this Appendix are to "state the *Measurement Uncertainties*" of the conducted emissions and radiated emissions measurements contained in Section 5 of this Test Report, and to provide a practical explanation of the meaning of these measurement uncertainties.

2. Statement of the Worst-Case Measurement Uncertainties for the Conducted and Radiated Emissions Measurements Contained in This Test Report

Table 1: Worst-Case Expanded Uncertainty "U" of Measurement for a k=2 Coverage Factor

Radiated Emissions Measurement Detection Systems	Applicable Frequency Range	"U" for a k=2 Coverage Factor
HP8568B Spectrum Analyzer with QPA & HP8447F Preamplifier	30 MHz - 200 MHz	+4.0 dB, -4.1 dB
HP8568B Spectrum Analyzer with QPA & HP8447F Preamplifier	200 MHz-1000 MHz	+/- 3.5 dB
HP8566B Spectrum Analyzer with QPA & Preselector	30 MHz - 200 MHz	+3.9 dB, -4.0 dB
HP8566B Spectrum Analyzer with QPA & Preselector	200 MHz-1000 MHz	+/- 3.4 dB
HP8566B Spectrum Analyzer with QPA & HP 8449A Preamplifier	1 GHz - 18 GHz	+2.5 dB, -2.6 dB
HP8566B Spectrum Analyzer with QPA & HP8449A Preamplifier	18 GHz - 40 GHz	+/- 3.4 dB

NOTES:

- 1. Applies to 3 and 10 meter measurement distances
- 2. Applies to all valid combinations of Transducers (i.e. LISNs, Line Voltage Probes, and Antennas, as appropriate)
- 3. Excludes the Repeatability of the EUT

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	20 of27

3. Practical Explanation of the Meaning of Radiated Emissions Measurement Uncertainties

In general, a "Statement of Measurement Uncertainty" means that with a certain (specified) confidence level, the "true" value of a measurand will be between a (stated) upper bound and a (stated) lower bound.

In the specific case of EMC Measurements in this test report, the measurement uncertainties of the conducted emissions measurements and the radiated emissions measurements have been calculated in accordance with the method detailed in the following documents:

- o ANSI Z540.2 (2002) Guide to the Expression of Uncertainty in Measurement
- o NIS 81:1994, The Treatment of Uncertainty in EMC Measurements (NAMAS, 1994)
- NIST Technical Note 1297(1994), Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (NIST, 1994)

The calculation method used in these documents requires that the stated uncertainty of the measurements be expressed as an "expanded uncertainty", U, with a k=2 coverage factor. The practical interpretation of this method of expressing measurement uncertainty is shown in the following example:

EXAMPLE: Assume that at 39.51 MHz, the (measured) radiated emissions level was equal to ± 26.5 dBuV/m, and that the ± 2 standard deviations (i.e. 95% confidence level) measurement uncertainty was ± 3.4 dB.

In the example above, the phrase "k = 2 Coverage Factor" simply means that the measurement uncertainty is stated to cover ± 1.2 standard deviations (i.e. a 95% confidence interval) about the measurand. The measurand is the radiated emissions measurement of ± 26.5 dBuV/m at 39.51 MHz, and the 95% bounds for the uncertainty are ± 3.4 dB to ± 3.4 dB. One can thus be 95% confident that the "true" value of the radiated emissions measurement is between ± 23.1 dBuV/m and ± 29.5 dBuV/m. In effect, this means that in the above example there is only a 2.5% chance that the "true" radiated emissions value exceeds ± 29.5 dBuV/m.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	21 of27

APPENDIX B

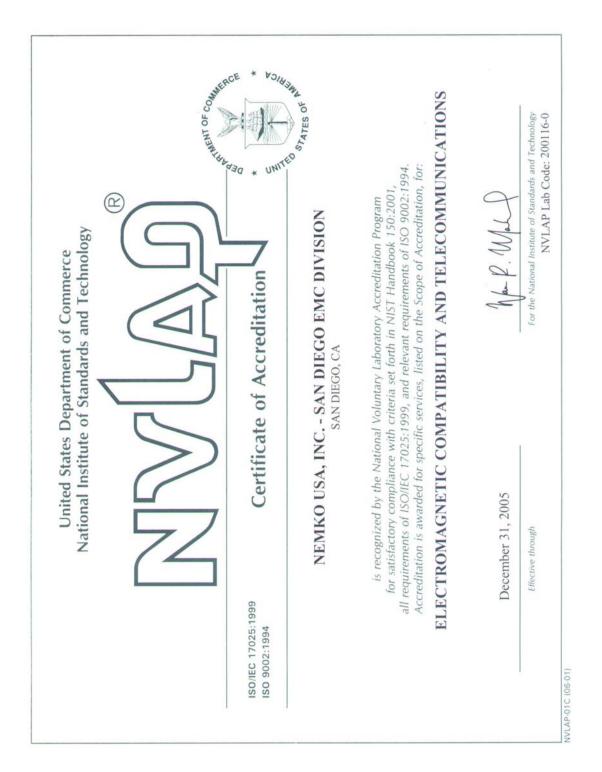
B. Nemko USA, Inc.'s Test Equipment & Facilities Calibration Program

Nemko USA, Inc. operates a comprehensive Periodic Calibration Program in order to ensure the validity of all test data. Nemko USA's Periodic Calibration Program is fully compliant to the requirements of NVLAP Policy Guide PG-1-1988, ANSI/NCSL Z540-1-1994, ISO 10012:2003, ISO/IEC 17025:1999, and ISO-9000:2000. Nemko USA, Inc.'s calibrations program therefore meets or exceed the US national commercial and military requirements [N.B. ANSI/NCSL Z540-1-1994 replaces MIL-STD-45662A].

Specifically, all of Nemko USA's *primary reference standard devices* (e.g. vector voltmeters, multimeters, attenuators and terminations, RF power meters and their detector heads, oscilloscope mainframes and plug-ins, spectrum analyzers, RF preselectors, quasi-peak adapters, interference analyzers, impulse generators, signal generators and pulse/function generators, field-strength meters and their detector heads, etc.) and certain *secondary standard devices* (e.g. RF Preamplifiers used in CISPR 11/22 and FCC Part 15/18 tests) are periodically recalibrated by:

- A Nemko USA-approved independent (third party) metrology laboratory that uses NISTtraceable standards and that is ISO Guide 25-accredited as a calibration laboratories by NIST; or,
- A Nemko USA-approved independent (third party) metrology laboratory that uses NIST-traceable standards and that is ISO Guide 25-accredited as a calibration laboratory by another accreditation body (such as A2LA) that is mutually recognized by NIST; or,
- A manufacturer of Measurement and Test Equipment (M&TE), if the manufacturer uses NIST-traceable standards and is ISO Guide 25-accredited as calibration laboratory either by NIST or by another accreditation body (such as A2LA) that is mutually recognized by NIST; or
- A manufacturer of M&TE (or by a Nemko USA-approved independent third party metrology laboratory) that is not ISO Guide 25-accredited. (In these cases, Nemko USA conducts an annual audit of the manufacturer or metrology laboratory for the purposes of proving traceabilty to NIST, ensuring that adequate and repeatable calibration procedures are being applied, and verifying conformity with the other requirements of ISO Guide 25).

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	22 of27


In all cases, the entity performing the Calibration is required to furnish Nemko USA with a calibration test report and/or certificate of calibration, and a "calibration sticker" on each item of M&TE that is successfully calibrated.

Calibration intervals are normally one year, except when the manufacture advises a shorter interval (e.g. the HP 8568B Spectrum Analyzer is recalibrated every six months) or if US Government directives or client requirements demand a shorter interval. Items of instrumentation/related equipment which fail during routine use, or which suffer visible mechanical damage (during use or while in transit), are sidelined pending repair and recalibration. (Repairs are carried out either in-house [if minor] or by a Nemko USA-approved independent [third party] metrology laboratory, or by the manufacturer of the item of M&TE).

Each antenna used for CISPR 11 and CISPR 22 and FCC Part 15 and Part 18 radiated emissions testing (and for testing to the equivalent European Norms) is calibrated annually by either a NIST (or A2LA) ISO Standard 17025-Accredited third-party Antenna Calibration Laboratory or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory. The antenna calibrations are performed using the methods specified in Annex G.5 of CISPR 16-1(2003) or ANSI C63.5-2004, including the "Three-Antenna Method". Certain other kinds of antennas (e.g. magnetic-shielded loop antennas) are calibrated annually by either a NIST (or A2LA) ISO Standard 17025-accredited third-party antenna calibration laboratory, or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory using the procedures specified in the latest version of SAE ARP-958.

In accordance with FCC and other regulations, Nemko USA recalibrates its suite of antennas used for radiated emissions tests on an annual basis. These calibrations are performed as a precursor to the FCC-required annual revalidation of the Normalized Site Attenuation properties of Nemko USA's Open Area Test Site. Nemko USA, Inc. uses the procedures given in both Subclause 16.6 and Annex G.2 of CISPR 16-1 (2003), and, ANSI C63.4-2003 when performing the normalized site attenuation measurements.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	23 of27

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 Fax (858) 452-181		*
DATE DOCUMENT NAME		DOCUMENT #	PAGE	
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	24 of27

SCOPE OF ACCREDITATION TO ISO/IEC 17025:1999

Nemko USA, Inc. - San Diego EMC Division

11696 Sorrento Valley Road, Suite F San Diego, CA 92121

Mr. Ricky Hill Phone: 858-755-5525 x207 Fax: 858-793-9914

> E-Mail: rick.hill@nemko.com URL: http://www.nemko.com

Revised Scope 06/22/2005

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200116-0

NVLAP Code Designation / Description

Emissions Test Methods:

12/CIS14 CISPR 14-1 (March 30, 2000): Limits and Methods of Measurement of Radio interference Characteristics of Household Electrical Appliances, Portable Tools and Similiar Electrical Apparatus - Part 1: Emissions EN 55014-1 (1993), A1 (1997), A2 (1999): 12/CIS14a 12/CIS14b AS/NZS 1044 (1995): 12/CIS14c CNS 13783-1: Electromagnetic Compatibility Requirements for household appliances, electric tools and similar apparatus - Part 1: Emissions 12/CIS15b CNS 13439 (2000) + A1 (2001): Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment 12/CIS22 IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio 12/CIS22a disturbance characteristics of information technology equipment, Amendment 1 (1995) and

CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference

Characteristics of Information Technology Equipment

2005-01-01 through 2005-12-31

Amendment 2 (1996)

Effective dates

For the National Institute of Standards and Technolog

NVLAP-01S (REV. 2005-05-19)

Page 1 of 4

12/CIS22b

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	25 of27

Revised Scope 06/22/2005 ELECTROMAGNETIC COMPATIBILITY

NVI API AR CODE 200116-0

MANUEL A MADELLA	AGNETIC COMPATIBILITY OMMUNICATIONS	NVLAP LAB CODE 200116-0
NVLAP Code	Designation / Description	
12/EM02a	IEC 61000-3-2, Edition 2.1 (2001-10), EN 6 Electromagnetic compatibility (EMC) Part 3 emissions (equipment input current <= 16 A)	
12/EM03b	IEC 61000-3-3, Edition 1.1(2002-03) & EN (Limitations of voltage changes, voltage fluct supply-systems, for equipment with rated cur conditional connections	
12/F18	FCC OST/MP-5 (1986): FCC Methods of M Equipment (cited in FCC Method 47 CFR Pa Equipment)	easurement of Radio Noise Emissions for ISM art 18 - Industrial, Scientific, and Medical
12/T51	AS/NZS CISPR 22 (2002) and AS/NZS 3548 and Methods of Measurement of Information	3 (1997): Electromagnetic Interference - Limits Technology Equipment
Immunity Test	Methods:	
12/I01	IEC 61000-4-2, Ed. 1.2 (2001) + A1, A2; EN Test	61000-4-2: Electrostatic Discharge Immunity
12/I02	IEC 61000-4-3, Ed. 2.0 (2002-03); EN 61000 Electromagnetic Field Immunity Test	0-4-3 (2002): Radiated Radio-Frequency
12/I03	IEC 61000-4-4(1995), A1(2000), A2(2001);	EN 61000-4-4: Electromagnetic compatibility

12/102	Electromagnetic Field Immunity Test
12/I03	IEC 61000-4-4(1995), A1(2000), A2(2001); EN 61000-4-4: Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test
12/I04	IEC 61000-4-5, Ed. 1.1 (2001-04); EN 61000-4-5: Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test
12/I05	IEC 61000-4-6, Ed. 2.0 (2003-05); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I06	IEC 61000-4-8, Ed. 1.1 (2001); EN 61000-4-8: Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test

2005-01-01 through 2005-12-31

Effective dates

al Institute of Standards and Technology

NVLAP-01S (REV. 2005-05-19)

Page 2 of 4

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 Fax (858) 452-1810		,
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	26 of27

Revised Scope 06/22/2005

12/A13

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200116-0

NVLAP Code	Designation / Description
------------	---------------------------

12/I07 IEC 61000-4-11, Ed. 1.1 (2001-03); EN 61000-4-11: Voltage Dips, Short Interruptions and

Voltage Variations Immunity Tests

MIL-STD-462 Version D Method CE101

MIL-STD-462: Conducted Emissions:

12/A14	MIL-STD-462 Version D Method CE102
12/A15	MIL-STD-462 Version D Method CE106
12/A16	MIL-STD-461 Version E Method CE101
12/A17	MIL-STD-461 Version E Method CE102
12/A18	MIL-STD-461 Version E Method CE106
MIL-STD-4	62 : Conducted Susceptibility:
12/B12	MIL-STD-462 Version D Method CS101
12/B13	MIL-STD-462 Version D Method CS103
12/B14	MIL-STD-462 Version D Method CS104
12/B15	MIL-STD-462 Version D Method CS105
12/B16	MIL-STD-462 Version D Method CS109
12/B17	MIL-STD-462 Version D Method CS114
12/B18	MIL-STD-462 Version D Method CS115
12/B19	MIL-STD-462 Version D Method CS116
12/B20	MIL-STD-461 Version E Method CS101
12/B21	MIL-STD-461 Version E Method CS103
12/B22	MIL-STD-461 Version E Method CS104

2005-01-01 through 2005-12-31

Effective dates

For the National Institute of Standards and Technology

NVLAP-01S (REV. 2005-05-19)

Page 3 of 4

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		·
DATE	DOCUMENT N	AME	DOCUMENT #	PAGE
January 5, 2006	Kyocera Wireless Corp. K483JLC FCC Test Report		2006 011173 K483JLC 22/24	27 of27

Revised Scope 06/22/2005 ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200116-0

NVLAP Code	Designation / Description
12/B23	MIL-STD-461 Version E Method CS105
12/B24	MIL-STD-461 Version E Method CS109
12/B25	MIL-STD-461 Version E Method CS114
12/B26	MIL-STD-461 Version E Method CS115
12/B27	MIL-STD-461 Version E Method CS116
MIL-STD-462: Radiated Emissions:	
12/D04	MIL-STD-462 Version D Method RE101
12/D05	MIL-STD-462 Version D Method RE102
12/D06	MIL-STD-462 Version D Method RE103
12/D07	MIL-STD-461 Version E Method RE101
12/D08	MIL-STD-461 Version E Method RE102
12/D09	MIL-STD-461 Version E Method RE103
MIL-STD-462 : Radiated Susceptibility:	
12/E08	MIL-STD-462 Version D Method RS101
12/E09	MIL-STD-462 Version D Method RS103
12/E10	MIL-STD-462 Version D Method RS105
12/E11	MIL-STD-461 Version E Method RS101
12/E12	MIL-STD-461 Version E Method RS103
12/E13	MIL-STD-461 Version E Method RS105

2005-01-01 through 2005-12-31

Effective dates

NVLAP-01S (REV. 2005-05-19)

Page 4 of 4