Appendix D: **Dipole Calibration Parameters** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Kyocera USA Certificate No: D835V2-467_Nov06 # CALIBRATION CERTIFICATE Object D835V2 - SN: 467 Calibration procedure(s) QA CAL-05.v6 Calibration procedure for dipole validation kits Calibration date: November 14, 2006 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |---|---|--|--| | Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 (HF) DAE4 | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 1507
SN 601 | 03-Oct-06 (METAS, No. 217-00608)
03-Oct-06 (METAS, No. 217-00608)
10-Aug-06 (METAS, No 217-00591)
10-Aug-06 (METAS, No 217-00591)
19-Oct-06 (SPEAG, No. ET3-1507_Oct06)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05) | Oct-07
Oct-07
Aug-07
Aug-07
Oct-07
Dec-06 | | Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E | ID # MY41092317 MY41000675 US37390585 S4206 | Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) | Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Oct-07 | | Calibrated by: | Name
Mike Meili | Function
Laboratory Technician | Signature
f). Tei Y | | Approved by: | Katja Pokovic | Technical Manager |][C, - /L] | Issued: November 16, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D835V2-467_Nov06 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.29 mW / g | | SAR normalized | normalized to 1W | 9.16 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 9.23 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.51 mW / g | | SAR normalized | normalized to 1W | 6.04 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 6.08 mW / g ± 16.5 % (k=2) | Page 3 of 9 Certificate No: D835V2-467_Nov06 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature during test | (22.9 ± 0.2) °C | Make definition of parts | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.46 mW / g | | SAR normalized | normalized to 1W | 9.84 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 9.52 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.63 mW / g | | SAR normalized | normalized to 1W | 6.52 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 6.35 mW / g ± 16.5 % (k=2) | ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" Certificate No: D835V2-467_Nov06 Page 4 of 9 ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.1 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 39.4 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.1 Ω - 2.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.5 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) 1.394 ns | | | |---|-----------|--| | | · · · · · | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 27, 2002 | Certificate No: D835V2-467_Nov06 Page 5 of 9
DASY4 Validation Report for Head TSL Date/Time: 07.11.2006 12:21:06 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 467 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### **DASY4** Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 19.10.2006 • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 4.9L; Type: QD000P49AA Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 #### Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.51 mW/g Maximum value of SAR (measured) = 2.49 mW/g 0 dB = 2.49 mW/g Certificate No: D835V2-467_Nov06 # Impedance Measurement Plot for Head TSL #### **DASY4 Validation Report for Body TSL** Date/Time: 14.11.2006 12:22:15 Test Laboratory: SPEAG, Zurich, Switzerland #### **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:467** Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(5.75, 5.75, 5.75); Calibrated: 19.10.2006 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 4.9L; Type: QD000P49AA Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 #### Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.4 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.67 mW/g 0 dB = 2.67 mW/g # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Kucocca IISA | Client | Kyocera USA | | Certificate No: | D1800V2-220_Nov07 | |-----------|--------------------------|-----------------------------------|--|-----------------------------------| | CAL | IBRATION | | | | | Object | | D1800V2=SN:2 | 20 | | | Calibrati | ion procedure(s) | QA CAL-05;v7
Calibration proce | edure for dipole validation kits | | | Calibrati | ion date: | November 13, 20 | 007 | | | Conditio | n of the calibrated item | In Tolerance | | | | 1 | | _ | onal standards, which realize the physical units robability are given on the following pages and a | | | All calib | rations have been conduc | ted in the closed laborator | ry facility: environment temperature (22 ± 3)°C a | and humidity < 70%. | | Calibrati | ion Equipment used (M&T | E critical for calibration) | | • | | Primary | Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | | neter EPM-442A | GB37480704 | 04-Oct-07 (METAS, No. 217-00736) | Oct-08 | | Power s | ensor HP 8481A | US37292783 | 04-Oct-07 (METAS, No. 217-00736) | Oct-08 | | Referen | ce 20 dB Attenuator | SN: 5086 (20g) | 07-Aug-07 (METAS, No 217-00718) | Aug-08 | | Referen | ce 10 dB Attenuator | SN: 5047.2 (10r) | 07-Aug-07 (METAS, No 217-00718) | Aug-08 | | Referen | ce Probe ET3DV6 (HF) | SN: 1507 | 26-Oct-07 (SPEAG, No. ET3-1507_Oct07) | Oct-08 | | DAE4 | | SN 601 | 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) | Jan-08 | | | | L | | | | | ary Standards | ID# | Check Date (in house) | Scheduled Check | | | ensor HP 8481A | MY41092317 | 18-Oct-02 (SPEAG, in house check Oct-07) | In house check: Oct-08 | | _ | erator R&S SMT-06 | 100005
US37390585 S4206 | 4-Aug-99 (SPEAG, in house check Oct-07) | In house check: Oct-09 | | Network | Analyzer HP 8753E | Name | 18-Oct-01 (SPEAG, in house check Oct-07) Function | In house check: Oct-08 Signature | | Calibrate | ad hw | Claudio Leubler | Laboratory Technician | | | Calibra | ed by. | | Laboratory Commission | | | Approve | d by: | Katja Pokovic | Technical Manager | K. K. | | | | | | Issued: Nevember 15, 2007 | Certificate No: D1800V2-220_Nov07 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: tissue simulating liquid TSL ConvE N/A sensitivity in TSL / NORM x,v,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1800V2-220 Nov07 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature during test | (22.2 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.57 mW /g | | SAR normalized | normalized to 1W | 38.3 mW /g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 37.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL. | condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.07 mW /g | | SAR normalized | normalized to 1W | 20.3 mW /g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 20.1 mW / g ± 16.5 % (k=2) | Certificate No: D1800V2-220_Nov07 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | condition | | |---
--------------------|----------------------------| | SAR measured | 250 mW input power | 9.50 mW /g | | SAR normalized | normalized to 1W | 38.0 mW /g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 38.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.12 mW /g | | SAR normalized | normalized to 1W | 20.5 mW /g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 20.7 mW / g ± 16.5 % (k=2) | Certificate No: D1800V2-220_Nov07 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 46.7 jΩ - 3.1 jΩ | |--------------------------------------|------------------| | Return Loss | - 26.6 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 42.4 jΩ - 4.0 jΩ | |--------------------------------------|------------------| | Return Loss | - 20.7 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.181 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 01, 1997 | Certificate No: D1800V2-220_Nov07 #### **DASY4 Validation Report for Head TSL** Date/Time: 05.11.2007 12:01:10 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:220 Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.99, 4.99, 4.99); Calibrated: 26.10.2007 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.01.2007 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172 #### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.2 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.57 mW/g; SAR(10 g) = 5.07 mW/g Maximum value of SAR (measured) = 10.7 mW/g 0 dB = 10.7 mW/g # Impedance Measurement Plot for Head TSL #### **DASY4 Validation Report for Body TSL** Date/Time: 13.11.2007 11:27:48 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:220 Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB; Medium parameters used: f = 1800 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.56, 4.56, 4.56); Calibrated: 26.10.2007 • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.01,2007 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;; Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172 #### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.8 V/m; Power Drift = -0.026 dB Peak SAR (extrapolated) = 16.1 W/kg #### SAR(1 g) = 9.5 mW/g; SAR(10 g) = 5.12 mW/g Maximum value of SAR (measured) = 10.8 mW/g 0 dB = 10.8 mW/g # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CALIBRATION CERTICATE Client Kyocera USA Certificate No: D1900V2-5d016 Sep06 Accreditation No.: SCS 108 #### D1900V2 - SN: 5d016 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: September 20, 2006 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) Oct-06 Reference 20 dB Attenuator SN: 5086 (20g) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference Probe ET3DV6 SN: 1507 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) Oct-06 Reference Probe ES3DV3 SN: 3025 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) Oct-06 DAE4 SN: 601 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Dec-06 Secondary Standards ID# Scheduled Check Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 RF generator Agilent E4421B MY41000675 11-May-05 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 Name Function Signature Marcel Fehr Calibrated by: Laboratory Technician Technical Manager Issued: September 27, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Katja Pokovic Approved by: #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6
% | 1.41 mho/m ± 6 % | | Head TSL temperature during test | (22.4 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.54 mW / g | | SAR normalized | normalized to 1W | 38.2 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 37.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.05 mW / g | | SAR normalized | normalized to 1W | 20.2 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 19.9 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d016_Sep06 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.7 ± 6 % | 1.56 mho/m ± 6 % | | Body TSL temperature during test | (22.5 ± 0.2) °C | | *** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.2 mW / g | | SAR normalized | normalized to 1W | 40.8 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 39.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.42 mW / g | | SAR normalized | normalized to 1W | 21.7 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 21.4 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d016_Sep06 Page 4 of 9 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.7 Ω + 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.7 Ω + 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.2 dB | # **General Antenna Parameters and Design** | | the state of s | |----------------------------------|--| | Electrical Delay (one direction) | 1.196 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 02, 2002 | Certificate No: D1900V2-5d016_Sep06 Date/Time: 13.09.2006 14:37:28 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d016 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ; Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 #### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.5 V/m; Power Drift = -0.029 dB Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 9.54 mW/g; SAR(10 g) = 5.05 mW/g Maximum value of SAR (measured) = 10.7 mW/g 0 dB = 10.7 mW/g Certificate No: D1900V2-5d016_Sep06 # Impedance Measurement Plot for Head TSL Date/Time: 20.09.2006 11:17:30 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d016 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 1900 MHz; $\sigma = 1.56 \text{ mho/m}$; $\epsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ES3DV2 - SN3025 (HF); ConvF(4.38, 4.38, 4.38); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ; Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.2 V/m; Power Drift = 0.054 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.42 mW/g Maximum value of SAR (measured) = 11.3 mW/g 0 dB = 11.3 mW/g Certificate No: D1900V2-5d016_Sep06 # Impedance Measurement Plot for Body TSL #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Kyosera USA Certificate No: D2450V2-776 Apr08 | Object | D2450V2 - SN: 7 | 776 | | |--|--|---|---| | Calibration procedure(s) | QACAL-05.v7 | | | | | Calibration proce | edure for dipole validation kits | | | | | | | | Calibration date: | April 22, 2008 | | | | Condition of the callbrated item | In Tolerance | | | | | _ | ional standards, which realize the physical uni | | | | | | | | All calibrations have been conduc | cted in the closed laborator | ry facility: environment temperature (22 ± 3)°C | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 04-Oct-07 (No. 217-00736) | Oct-08 | | Power sensor HP 8481A | US37292783 | 04-Oct-07 (No. 217-00736) | Oct-08 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 07-Aug-07 (No 217-00718) | Aug-08 | | | SN: 5047.2 / 06327 | | - | | • | 3N. 5047.27 00327 | 08-Aug-07 (No. 217-00721) | Aug-08 | | • | SN: 3025 | 08-Aug-07 (No. 217-00721)
01-Mar-08 (No. ES3-3025_Mar08) | - | | Reference Probe ES3DV2 | ľ | | Aug-08 | | Reference Probe
ES3DV2
DAE4 | SN: 3025 | 01-Mar-08 (No. ES3-3025_Mar08) | Aug-08
Mar-09 | | Reference Probe ES3DV2
DAE4
Secondary Standards | SN: 3025
SN: 601 | 01-Mar-08 (No. ES3-3025_Mar08)
14-Mar-08 (No. DAE4-601_Mar08) | Aug-08
Mar-09
Mar-09 | | Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A | SN: 3025
SN: 601 | 01-Mar-08 (No. ES3-3025_Mar08)
14-Mar-08 (No. DAE4-601_Mar08)
Check Date (in house) | Aug-08
Mar-09
Mar-09
Scheduled Check | | Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | SN: 3025
SN: 601
ID#
MY41092317 | 01-Mar-08 (No. ES3-3025_Mar08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) | Aug-08 Mar-09 Mar-09 Scheduled Check In house check: Oct-09 | | Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | SN: 3025
SN: 601
ID#
MY41092317
100005 | 01-Mar-08 (No. ES3-3025_Mar08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) | Aug-08 Mar-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 | | Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 3025
SN: 601
ID #
MY41092317
100005
US37390585 S4206 | 01-Mar-08 (No. ES3-3025_Mar08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) | Aug-08 Mar-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08 | | Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 3025
SN: 601
ID#
MY41092317
100005
US37390585 S4206
Name | 01-Mar-08 (No. ES3-3025_Mar08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) | Aug-08 Mar-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08 | | Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 3025
SN: 601
ID #
MY41092317
100005
US37390585 S4206
Name
Marcel Fehr | 01-Mar-08 (No. ES3-3025_Mar08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) Function Laboratory Technician | Aug-08 Mar-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08 | | Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 3025
SN: 601
ID #
MY41092317
100005
US37390585 S4206
Name
Marcel Fehr | 01-Mar-08 (No. ES3-3025_Mar08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) Function Laboratory Technician | Aug-08 Mar-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08 | Certificate No: D2450V2-776_Apr08 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: TSL tissue simulating liquid sensitivity in TSL / NORM x,v,z ConvF N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-776_Apr08 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | no tono mig parameter and a contract of the co | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature during test | (21.1 ± 0.2) °C | | <u></u> | #### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.7 mW/g | | SAR normalized | normalized to 1W | 54.8 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 54.5 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.38 mW / g | | SAR normalized | normalized to 1W | 25.5 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 25.5 mW /g ± 16.5 % (k=2) | Certificate No: D2450V2-776_Apr08 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.3 Ω + 9.0 jΩ | |--------------------------------------|-----------------|
 Return Loss | - 20.1 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.156 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 04, 2005 | Certificate No: D2450V2-776_Apr08 Page 4 of 6 #### **DASY4 Validation Report for Head TSL** Date/Time: 22.04.2008 16:04:49 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN776 Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB: Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 01.03.2008 Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172 ### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.5 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.38 mW/g Maximum value of SAR (measured) = 16.3 mW/g 0 dB = 16.3 mW/g Certificate No: D2450V2-776 Apr08 Page 5 of 6 # Impedance Measurement Plot for Head TSL