Appendix D: **Dipole Calibration Parameters** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Kyocera USA Certificate No: D1900V2-5d003 Mar06 | | | | | | | | | | Έ | | | | | | | | |--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--|--| | | | | | | | | | | | | | | | | | | Object D1900V2 - SN: 5d003 Calibration procedure(s) QA CAL-05.v6 Calibration procedure for dipole validation kits Calibration date: March 21, 2006 Condition of the calibrated item n Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------------|------------------|---|------------------------| | Power meter EPM-442A | GB37480704 | 04-Oct-05 (METAS, No. 251-00516) | Oct-06 | | Power sensor HP 8481A | US37292783 | 04-Oct-05 (METAS, No. 251-00516) | Oct-06 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 11-Aug-05 (METAS, No 251-00498) | Aug-06 | | Reference 10 dB Attenuator | SN: 5047.2 (10r) | 11-Aug-05 (METAS, No 251-00498) | Aug-06 | | Reference Probe ET3DV6 | SN: 1507 | 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) | Oct-06 | | DAE4 | SN: 601 | 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) | Dec-06 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (SPEAG, in house check Oct-05) | In house check: Oct-07 | | RF generator Agilent E4421B | MY41000675 | 11-May-05 (SPEAG, in house check Nov-05) | In house check: Nov-07 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (SPEAG, in house check Nov-05) | In house check: Nov-06 | | | Name | Function | Signature | | Calibrated by: | Judith Müller | Laboratory Technician | Anguit M | | | | | MINTUNITE | | Approved by: | Katja Pokovic | Technical Manager | Mulley | | | | | | Issued: March 22, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d003 Mar06 Page 1 of 9 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.72 mW / g | | SAR normalized | normalized to 1W | 38.9 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 38.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.21 mW / g | | SAR normalized | normalized to 1W | 20.8 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 20.6 mW / g ± 16.5 % (k=2) | ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 1.54 mho/m ± 6 % | | Body TSL temperature during test | (21.6 ± 0.2) °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.1 mW / g | | SAR normalized | normalized to 1W | 40.4 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 40.7 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.41 mW / g | | SAR normalized | normalized to 1W | 21.6 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 21.8 mW / g ± 16.5 % (k=2) | ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.7 Ω + 0.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.8 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.9 Ω + 2.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.1 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.186 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 14, 2002 | # **DASY4 Validation Report for Head TSL** Date/Time: 14.03.2006 14:48:25 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d003 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005 • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165 Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.5 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.1 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.72 mW/g; SAR(10 g) = 5.12 mW/g Maximum value of SAR (measured) = 11.0 mW/g 0 dB = 11.0 mW/g # Impedance Measurement Plot for Head TSL Date/Time: 21.03.2006 12:00:15 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d003 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 # Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.0 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5 mm, dy=5 mm, dz=5mm Reference Value = 91.5 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.41 mW/gMaximum value of SAR (measured) = 11.6 mW/g dB. 0.000 -7.00 0 dB = 11.6 mW/g # Impedance Measurement Plot for Body TSL # **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Kyocera USA Certificate No: D835V2-454 Mar06 | | V-1011 | | | |---|---|--|--| | Object | D835V2 - SN: 45 | | | | Calibration procedure(s) | QA CAL-05.v6 | dure for dipole validation kits | | | | Campation proce | udje ioj dipole validation kits | | | Calibration date: | March 15, 2006 | | | | Condition of the calibrated item | In Tolerance | | | | | | onal standards, which realize the physical units of obability are given on the following pages and are | | | | | y facility: environment temperature (22 ± 3)°C and | | | Calibration Equipment used /MAP | TE critical for calibration) | | | | Campianon Equipment used (Mo | TE CHUCALIOI CAIIDIAUOH) | | | | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Primary Standards | ı | Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) | Oct-06 | | Primary Standards
Power meter EPM-442A | ID# | | Oct-06
Oct-06 | | Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | ID#
GB37480704 | 04-Oct-05 (METAS, No. 251-00516) | Oct-06
Oct-06
Aug-06 | | Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator | ID #
GB37480704
US37292783 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator | ID #
GB37480704
US37292783
SN: 5086 (20g) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ET3-1507_Oct05) | Oct-06
Oct-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ET3-1507_Oct05) | Oct-06
Oct-06
Aug-06
Aug-06
Oct-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ET3-1507_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05) | Oct-06
Oct-06
Aug-06
Aug-06
Oct-06
Dec-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Judith Müller | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Laboratory-Technician | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY4100675 US37390585 S4206 Name | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | | Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Judith Müller | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Laboratory-Technician | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | Certificate No: D835V2-454_Mar06 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.94mho/m ± 6 % | | Head TSL temperature during test | (22.2 ± 0.2) °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.36 mW / g | | SAR normalized | normalized to 1W | 9.44 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 9.28 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.53 mW / g | | SAR normalized | normalized to 1W | 6.12 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 6.07 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-454_Mar06 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.8 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature during test | (21.4 ± 0.2) °C | | | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.44 mW / g | | SAR normalized | normalized to 1W | 9.76 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 9.87 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.61 mW / g | | SAR normalized | normalized to 1W | 6.44 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 6.51 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-454_Mar06 Page 4 of 9 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.3 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.6 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.6 Ω - 2.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.3 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.377 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 31, 2002 | Certificate No: D835V2-454_Mar06 Page 5 of 9 #### **DASY4 Validation Report for Head TSL** Date/Time: 15.03.2006 12:01:28 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:454 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 835 MHz; $\sigma = 0.942$ mho/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 4.9L; Type: QD000P49AA;; Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165 Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.57 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.4 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.53 mW/gMaximum value of SAR (measured) = 2.55 mW/g # Impedance Measurement Plot for Head TSL #### **DASY4 Validation Report for Body TSL** Date/Time: 14.03.2006 12:11:41 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:454** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 835 MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(5.84, 5.84, 5.84); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 4.9L; Type: QD000P49AA;; Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165 Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.63 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.1 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.66 mW/g 0 dB = 2.66 mW/g Certificate No: D835V2-454 Mar06 # Impedance Measurement Plot Body TSL