

Test Report On

Dual-Band Tri-mode AMPS/CDMA Cellular Phone

FCC Part 22 & 24 Certification (Class II Permissive Change)

FCC ID: OVFKWC-K24B

Models: K323, K323P

Date: July 31, 2006

STATEMENT OF CERTIFICATION

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the measurements of the sample's radio frequency interference emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

STATEMENT OF COMPLIANCE

This product has been shown to be capable of compliance with the applicable technical standards as indicted in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

Date of Test:	July 28 to July 31, 2006
Test performed by:	Kyocera Wireless Corp. 10300 Campus Point Drive San Diego, CA 92121
Report Prepared by:	Thuy To, Regulatory Engineer
Report Reviewed by:	C.K. Li, Senior Staff Manager

Nemko USA, Inc. performed the tests that required an OATS site.

Table of Contents

1	GENERAL INFORMATION	3
2	PRODUCT DESCRIPTION	4
3	ELECTRONIC SERIAL NUMBERS (ESN) PROTECTION	5
4	FCC COMPLIANCE EMERGENCY 911	5
5	TTY COMPLIANCE	5
6	MEASUREMENT CONDITIONS FOR CDMA2000	5
7	TRANSMITTER RF POWER OUTPUT	6
6	6.1 Conducted Power	
8	OCCUPIED BANDWIDTH	
9	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	16
10	TRANSMITTER RADIATED SPURIOUS EMISSIONS MEASURED DATA	26
11	RECEIVER SPURIOUS EMISSIONS	26
12	EXPOSURE OF HUMANS TO RF FIELDS (SAR)	26
13	TEST FOLIPMENT	26

1 General Information

Applicant:	Kyocera Wireless Corp 10300 Campus Point Drive San Diego CA 92121				
FCC ID:	OVFKWC-K24B				
Product:	K24 Dual-Band Tri-me	ode Cellular Phone			
Model Numbers:	K323P				
EUT Serial Number:	F0000007572169				
Туре:	[] Prototype, [X] Pre	-Production, [] Produc	tion		
Device Category:	Portable				
RF Exposure Environment:	General Population / Uncontrolled				
Antenna:	Internal Monopole				
Detachable Antenna:	No				
External Input:	Audio/Digital Data				
Quantity:	Quantity production is	planned			
FCC Rule Parts:	§22H	§22H	§24E		
Modes:	800 AMPS 800 CDMA 1900 CDMA				
Multiple Access Scheme:	FDMA CDMA CDMA				
TX Frequency (MHz):	824 – 849 824 – 849 1850 - 1910				
Emission Designators:	40K0F1D 40K0F8W 1M25F9W 1M25F9W				
Max. Output Power (W):	0.260 ERP	0.260 ERP	0.200 EIRP		

2 Product Description

The OVFKWC-K24B phones are Tri-mode Dual-Band 1XRTT products. The phones have assisted GPS software feature enabled to meet the emergency location requirements of the FCC's E911 Phase II mandate. The Tri-mode architecture is defined as 1900MHz (PCS CDMA), 800MHz (cellular CDMA and AMPS).

The phone is designed in compliance with the technical specifications for compatibility of mobile and base stations in the Cellular Radio telephone service contained in "Cellular System Mobile Station -Land Station Compatibility Specification" as specified in OET Bulletin 53 and TIA Standards

As described in Exhibit 1 (operation description), OVFKWC-K24B can operate in the CDMA mode specified in IS-2000.2 standard, release 0. It can only invoke a Spreading Rate 1 (SR1) operational mode. SR1 is defined as a 1.2288 Mcps chip rate-based system using a direct-spread single carrier, which limits the bandwidth to the same 1.25MHz bandwidth occupied by the legacy IS-95/8-A/B system. Thus, for SR1 in IS-2000, the frequency response is identical to the legacy IS-95 B system standard.

For Part 22 and 24, all of CDMA measurements were conducted with Agilent 8960 as a base station simulator. The base station simulator establishes a CDMA link with the test device. The CDMA link was configured via 8960 for all of measurements as follows:

Radio Configuration: RC1 Service Options: SO2

Code domain channels: R-FCH + R-PICH

Cell Power: -100 dBm/1.23MHz to -103 dBm/1.23MHz

Data Rate: full rate

Alterate components and New models were added to the originial filing. Please refer to operation description for the details.

Part 22_24 Report Page 4 of 26 Model ID: K323, K323P

YUNCEDD FCC ID: OVFKWC-K24B

3 Electronic Serial Numbers (ESN) Protection

The Tri-mode Phone, FCC ID: OVFKWC-K24B uses ESN. The ESN is a unique identification number to each phone, which is contained in the Numeric Assignment Module and is automatically transmitted to the base station whenever a call is placed. The ESN is stored in an EPROM and is isolated from fraudulent contact and tampering. Any attempt to change the ESN will render the portable phone inoperative.

The phone complies with all requirements for ESN under Part 22.919.

4 FCC Compliance Emergency 911

FCC § 22.921

When an emergency 911 call is originated by the user, the mobile will attempt to acquire any available system and originate the emergency call on that system, disregarding restrictions set by the roaming list. The FCC NPRM WT99-13, CC94-102 automatic analog A/B roaming option has been implemented for 911 emergency calls. Note that the models that contain the letter "L" have Global Positioning System (GPS) support.

5 TTY compliance

FCC § 255 of the Telecom Act

The OVFKWC-K24B phone models have been designed for TTY Compliance with Cellular Compatibility Standard.

6 Measurement Conditions for CDMA2000

As described in Exhibit 1 (operation description), OVFKWC-K27 can operate in the CDMA mode specified in IS-2000.2 standard, release 0. It can only invoke a Spreading Rate 1 (SR1) operational mode. SR1 is defined as a 1.2288 Mcps chip rate-based system using a direct-spread single carrier, which limits the bandwidth to the same 1.25MHz bandwidth occupied by the legacy IS-95/8-A/B system. Thus, for SR1 in IS-2000, the frequency response is identical to the legacy IS-95 B system standard.

For Part 22 and 24, all of CDMA measurements were conducted with Agilent 8960 as a base station simulator. The base station simulator establishes a CDMA link with the test device. The CDMA link was configured via 8960 for all of measurements as follows:

Radio Configuration: RC1 Service Options: SO2

Code domain channels: R-FCH + R-PICH

Cell Power: -100 dBm/1.23MHz to -103 dBm/1.23MHz

Data Rate: full rate

Part 22_24 Report Page 5 of 26 Model ID: K323, K323P

7 Transmitter RF Power Output

6.1 Conducted Power

FCC: § 2.1046 IC: RSS-129 §7.1, RSS-133 §6.2

Measurement Procedures:

The RF output power was measured using a Giga-tronics 8541C Universal Power Meter. Terminated to a resistive coaxial load of 50 ohms.

Mode	Frequency (MHz)	Channel	Power (dBm)	
	824.04	991	25.05	
AMPS	836.49	383	25.03	
	848.97	799	25.07	
	824.70	1013	25.08	
CDMA 800	836.52	384	25.04	
	848.31	777	25.02	
	1851.25	25	23.02	
CDMA 1900	1880.00	600	23.01	
	1908.75	1175	23.0	

Part 22_24 Report Page 6 of 26 Model ID: K323, K323P

6.2 Radiated Power

FCC:	§ 22.913, § 24.232	IC:	RSS-129 §7.1 and §9.1, RSS-133 §6.2
------	--------------------	-----	-------------------------------------

Measurement Procedures:

The test was performed at an open area test site at Nemko USA, Inc. using substitution method.

Mode	Frequency (MHz)	Channel	Max. Power (dBm)	Ref.
	824.04	991	22.1	
AMPS	836.49	383	22.3	ERP
	848.97	799	23.05	
	824.70	1013	24.8	
CDMA 800	836.52	384	25.4	ERP
	848.31	777	25.75	
	1851.25	25	18.42	
CDMA 1900	1880.00	600	19.85	EIRP
	1908.75	1175	20.53	

 Part 22_24 Report
 Page 7 of 26
 Model ID: K323, K323P

8 Occupied Bandwidth

FCC: § 2.1049, § 22.917(b)(d), § 24.238 IC: RSS-129 §6.3, §8.1

Measurement Procedures:

The RF output of the EUT was connected to the input of the spectrum analyzer with sufficient attenuation. The spectrum with no modulation was recorded.

<u>For Analog:</u> The audio input signal was adjusted to as followings: (1) For combined voice and SAT, disable the compressor, modulate with a 2500 Hz sine wave 13.5 dB greater than that required to produce \pm 8 kHz peak deviation at 1000 Hz and a 6000 Hz SAT with \pm 2.0 kHz peak deviation. (2) For combined Signaling Tone and SAT, modulate with a 10 kHz ST with \pm 8 kHz peak deviation and a 6000 Hz SAT with \pm 2.0 kHz peak deviation. (3) For wideband data, modulate with a quasi-random 10 kbps data pattern with \pm 8 kHz peak deviation. (4) For voice only, disable the compressor, modulate with a 2500 Hz sine wave 13.5 dB greater than that required to produce \pm 8 kHz peak deviation at 1000 Hz. (5) For SAT only, modulate with a 6000 Hz SAT with \pm 2.0 kHz peak deviation. (6) For ST only, modulate with a 10 kHz ST with \pm 8 kHz peak deviation. (7) For combined SAT and DTMF, modulate with a 6000 Hz SAT with \pm 2.0 kHz peak deviation and one of the DTMF tones. All measurements were performed on middle channel.

For Digital: Modulate with full rate.

To justify on the selection of applicable configurations, the EUT were put in varies R.C. and S.O. operation modes and the worst case is determined for final tests.

Mode	Ch/f (MHz)	EUT Configuration
CDMA-1900	600 (1880)	RC1 SO2
CDMA-1900	600 (1880)	RC3, SO2
CDMA-1900	600 (1880)	RC3, SO32 (+SCH)
CDMA-1900	600 (1880)	RC3, SO32 (+F- SCH)
CDMA-1900	600 (1880)	RC3, SO55
CDMA-1900	600 (1880)	RC4, SO55

Part 22_24 Report Page 8 of 26 Model ID: K323, K323P

List of Figures

Figure	Mode	Description		
7-1		Un-modulated signal		
7-2		SAT		
7-3		Voice + SAT		
7-4	AMPS	ST		
7-5		SAT+ST		
7-6		SAT + DTMF_9		
7-7		10kb Wideband Data		
7-8	CDMA 800	CDMA @ Ch383		
7-9		CDMA @ CH600		
7-10	CDMA 1900	Lower Band Edge @ CH 25		
7-11		Upper Band Edge @ CH 1175		

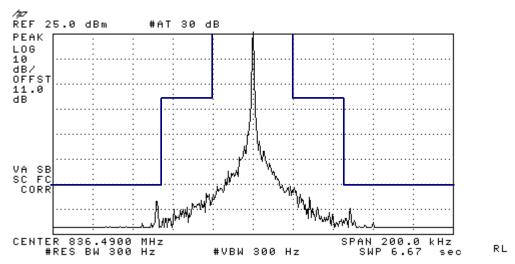


Figure 7-1 AMPS Unmodulated Signal

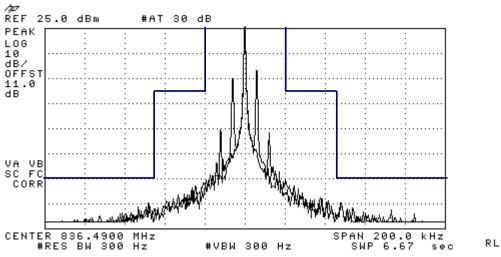


Figure 7-2 AMPS SAT

Part 22_24 Report Page 10 of 26 Model ID: K323, K323P

Figure 7-3 AMPS Voice + SAT

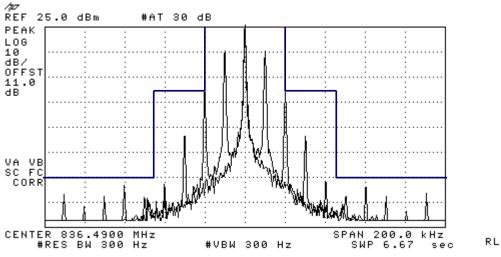


Figure 7-4 AMPS ST

Part 22_24 Report Page 11 of 26 Model ID: K323, K323P

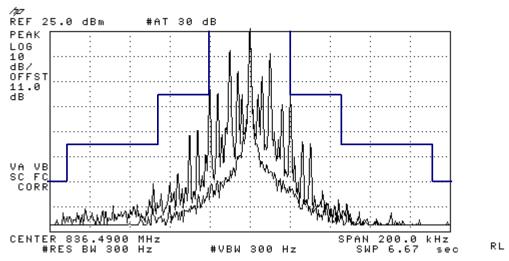


Figure 7-5 AMPS ST + SAT

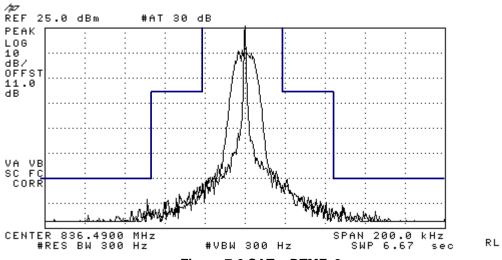


Figure 7-6 SAT + DTMF_9

Part 22_24 Report Page 12 of 26 Model ID: K323, K323P

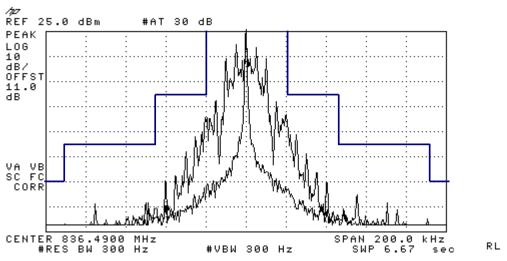


Figure 7-7 AMPS WIDEBAND

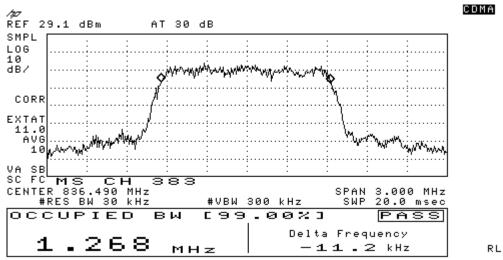


Figure 7-8 CDMA 800 @ CH 383

Part 22_24 Report Page 13 of 26 Model ID: K323, K323P

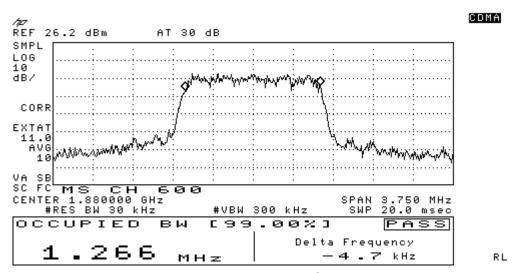


Figure 7-9 CDMA 1900 @ CH 600

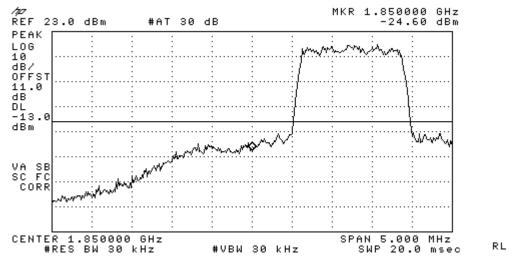


Figure 7-10 CDMA 1900 Lower Band Edge @ ch25

Part 22_24 Report Page 14 of 26 Model ID: K323, K323P

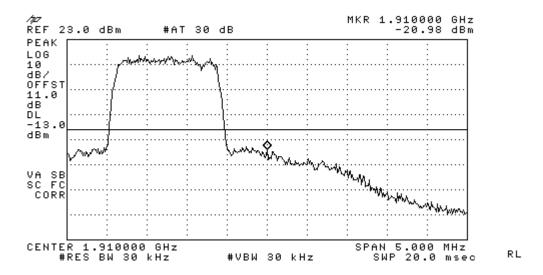


Figure 7-11 CDMA 1900 Upper Band Edge @ ch1175

9 Spurious Emissions At Antenna Terminals

FCC: § 2.1051, § 22.917(e)(f), § 24.238 IC: RSS-129 §6.3, §8.1, RSS-133 §6.3

Measurement Procedures:

Out of Band: The RF output of the EUT was connected to the input of the spectrum analyzer with sufficient attenuation. The modulating signal was applied accordingly. The frequency spectrum was investigated from the lowest frequency signal generated up to at least the tenth harmonic of the fundamental.

Base Band: Spectrum was investigated from 869-894 MHz for Cellular.

List of Figures:

Figure	Mode	Channel	Plot Description	
8-1		991	Emissions in base station frequency range, 869 - 894 MHz	
8-2		991	Conducted spurious emissions, 9kHz to 10GHz	
8-3	AMPS	383	Emissions in base station frequency range, 869 - 894 MHz	
8-4	AIVIPS	303	Conducted spurious emissions, 9kHz to 10GHz	
8-5		799	Emissions in base station frequency range, 869 - 894 MHz	
8-6		799	Conducted spurious emissions, 9kHz to 10GHz	
8-7		1013	Emissions in base station frequency range, 869 - 894 MHz	
8-8		1013	Conducted spurious emissions, 9kHz to 10GHz	
8-9	CDMA	383	Emissions in base station frequency range, 869 - 894 MHz	
8-10	800	303	Conducted spurious emissions, 9kHz to 10GHz	
8-11		777	Emissions in base station frequency range, 869 - 894 MHz	
8-12	777		Conducted spurious emissions, 9kHz to 10GHz	
8-13	25		Conducted spurious emissions, 9kHz to 20GHz	
8-14	1900	600	Conducted spurious emissions, 9kHz to 20GHz	
8-15	1175		Conducted spurious emissions, 9kHz to 20GHz	

Part 22_24 Report Page 16 of 26 Model ID: K323, K323P

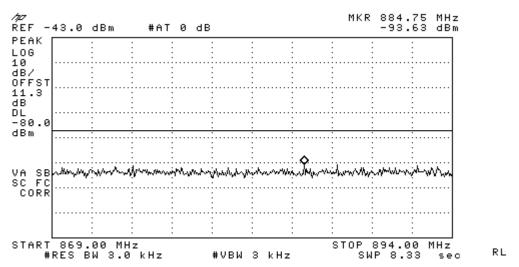


Figure 8-1 AMPS - Emissions in base station frequency range (CH 991)

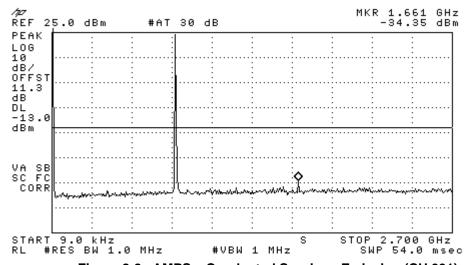


Figure 8-2a AMPS – Conducted Spurious Emission (CH 991)

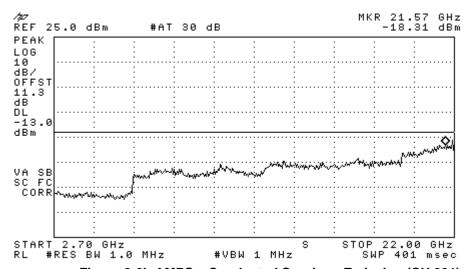


Figure 8-2b AMPS – Conducted Spurious Emission (CH 991)

Part 22_24 Report Page 17 of 26 Model ID: K323, K323P

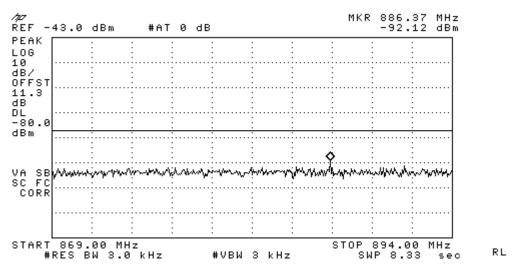


Figure 8-3 AMPS - Emissions in base station frequency range (CH 383)

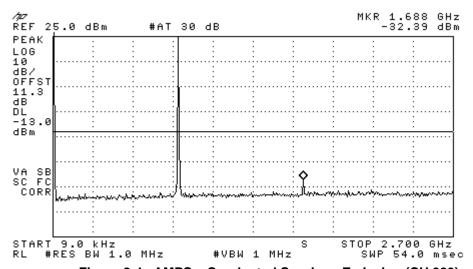


Figure 8-4a AMPS – Conducted Spurious Emission (CH 383)

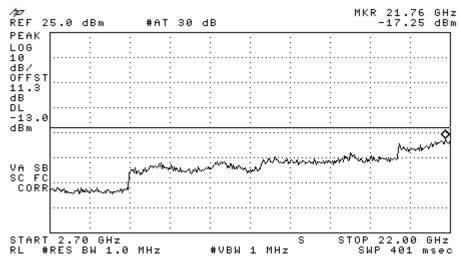


Figure 8-4b AMPS – Conducted Spurious Emission (CH 383)

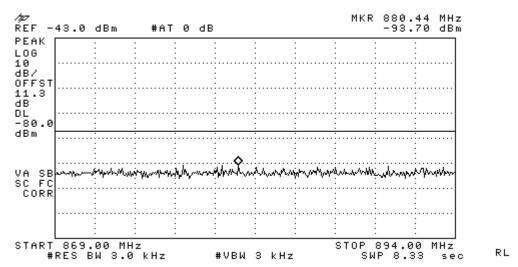


Figure 8-5 AMPS - Emissions in base station frequency range (CH 799)

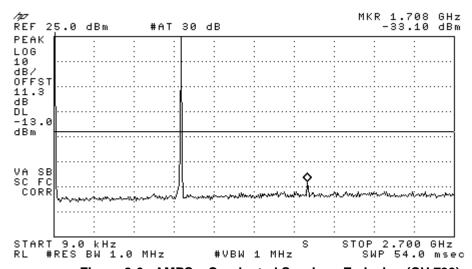


Figure 8-6a AMPS – Conducted Spurious Emission (CH 799)

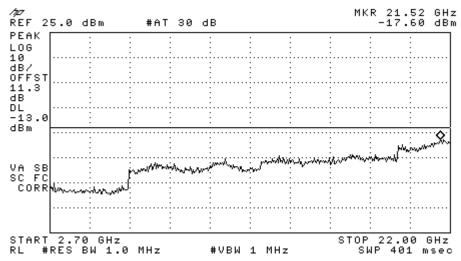


Figure 8-6b AMPS – Conducted Spurious Emission (CH 799)

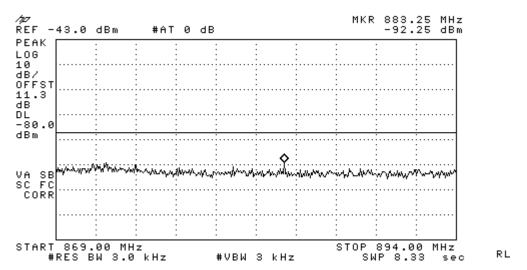


Figure 8-7 CDMA 800 - Emissions in base station frequency range (CH 1013)

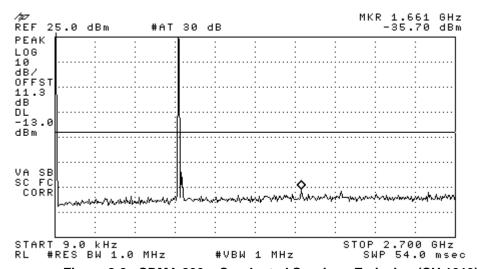


Figure 8-8a CDMA 800 – Conducted Spurious Emission (CH 1013)

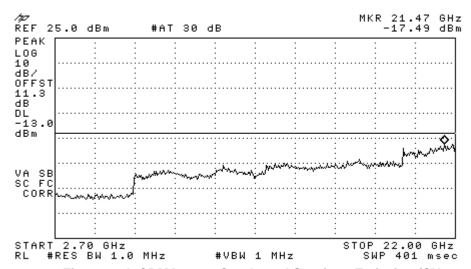


Figure 8-8b CDMA 800 – Conducted Spurious Emission (CH 1013)

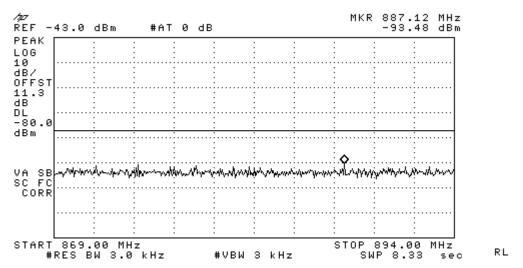


Figure 8-9 CDMA 800 - Emissions in base station frequency range (CH 383)

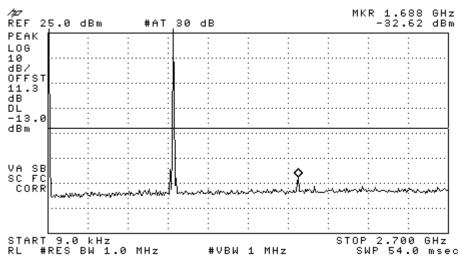


Figure 8-10a CDMA 800 - Conducted Spurious Emission (CH 383)

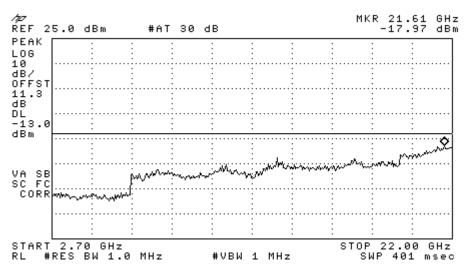


Figure 8-10b CDMA 800 – Conducted Spurious Emission (CH 383)

Part 22_24 Report Page 21 of 26 Model ID: K323, K323P

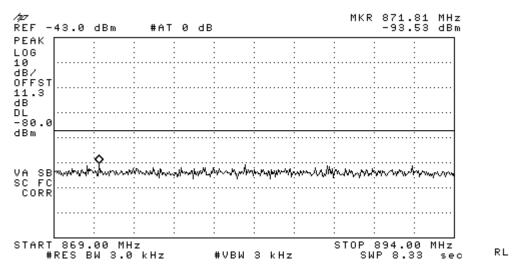


Figure 8-11 CDMA 800 - Emissions in base station frequency range (CH 777)

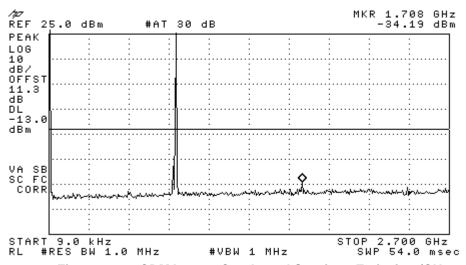


Figure 8-12a CDMA 800 – Conducted Spurious Emission (CH 777)

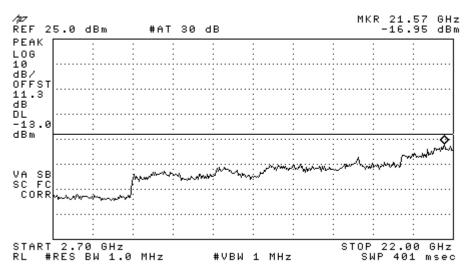
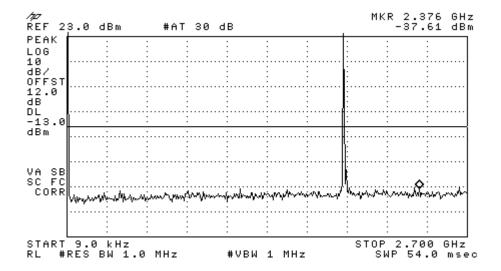



Figure 8-12b CDMA 800 - Conducted Spurious Emission (CH 777)

Figure 8-13a CDMA 1900 - Conducted Spurious Emission (CH 25)

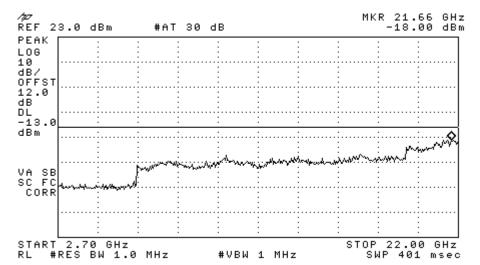


Figure 8-13b CDMA 1900 - Conducted Spurious Emission (CH 25)

Part 22_24 Report Page 23 of 26 Model ID: K323, K323P

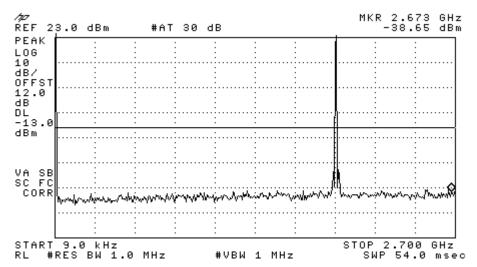


Figure 8-14a CDMA 1900 - Conducted Spurious Emission (CH 600)

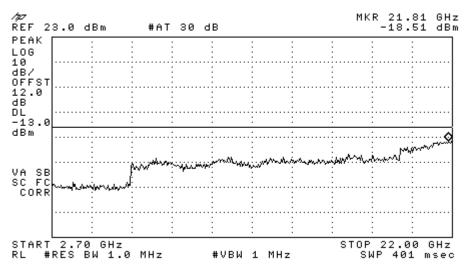


Figure 8-14b CDMA 1900 - Conducted Spurious Emission (CH 600)

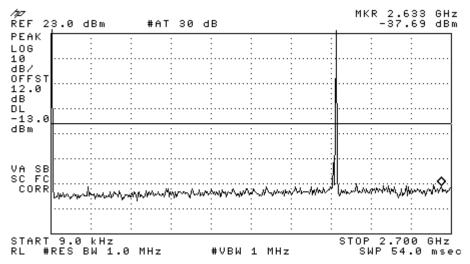


Figure 8-15a CDMA 1900 - Conducted Spurious Emission (CH 1175)

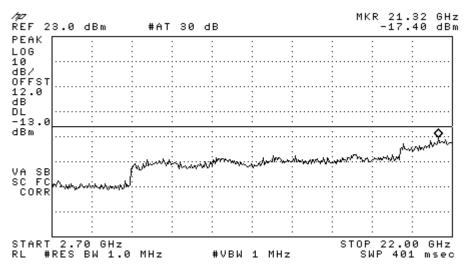


Figure 8-15b CDMA 1900 - Conducted Spurious Emission (CH 1175)

VUNCEDD FCC ID: OVFKWC-K24B

10 Transmitter Radiated Spurious Emissions Measured Data

FCC: § 2.1053, § 22.91, § 24.238 IC: RSS-129 §8.1, RSS-133 §6.3

Measurement Procedures:

To determine the applicable configurations on CDMA system, the EUT were put in varies R.C. and S.O. operation modes. Radiated Emissions were pre-scanned with a GTEM system to determine the worst case configurations for final OATS tests.

The worst case configurations found from prescan were fully tested on a 3 meter site at Nemko in San Diego, California. The test report is attached in a separate attachment.

11 Receiver Spurious Emissions

FCC: § 15.109 IC: RSS-129 §10, RSS-133 §9

Measurement Procedures:

The receiver radiated spurious emission test was performed at Nemko in San Diego, California. The test report is attached in a separate attachment.

12 Exposure of Humans to RF Fields (SAR)

The SAR Test Report is showed in a separate attachment as Exhibit 9.

13 Test Equipment

Description	Manufacturer	Model Number	Serial Number	Cal Due Date
Power Meter	Giga-tronics	8541C	1834884	03/03/07
Spectrum Analyzer	Hewlett Packard	8593EM	3710A00203	03/23/07
Spectrum Analyzer	Hewlett Packard	8595E	3911A03899	07/11/07
Wireless Communications Test Set	Agilent	8960	US41140252	06/02/07
Temperature Chamber	Test Equity	105	0500507	09/02/06

Part 22_24 Report Page 26 of 26 Model ID: K323, K323P