Company	Document No.	
Kyocera Wireless Corp.		
	Issue No:	Date
KWC-7135 SAR RECONFIRMATION TEST		March 2003
FCC ID	Page Number	
OVFKWC-7135		25

APPENDIX C: PROBE CALIBRATION CERTIFICATE

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1712
Place of Calibration:	Zurich
Date of Calibration:	September 6, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

D. Vellen Bliosic Viatza

Approved by:

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1712

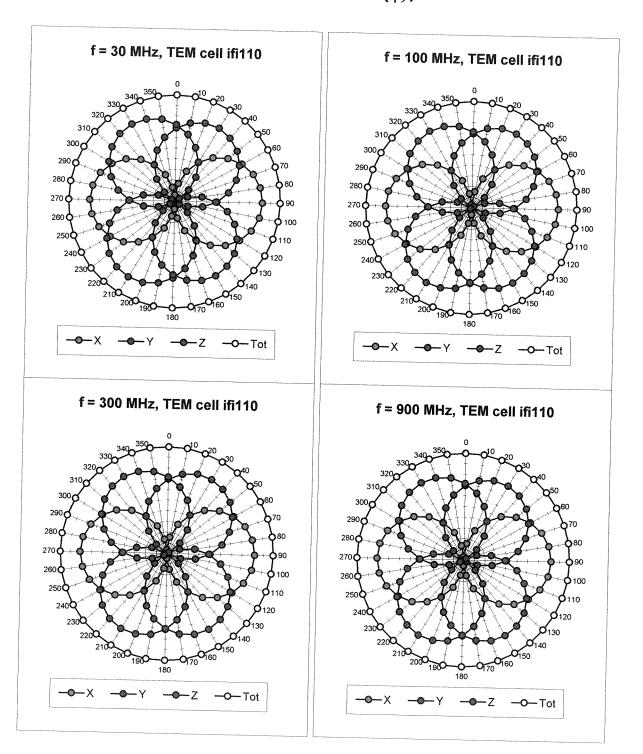
Manufactured: Last calibration: August 7, 2002 September 6, 2002

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

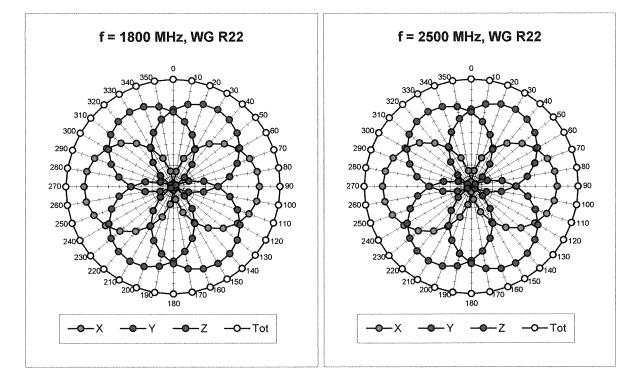
DASY - Parameters of Probe: ET3DV6 SN:1712

Sensitiv	rity in Free S	pace	Diode Compress	sion	
	NormX	1.59 μV/(V/m) ²	DCP X	95	mV
	NormY	1.53 μV/(V/m) ²	DCP Y	95	mV
	NormZ	1.61 μV/(V/m) ²	DCP Z	95	mV

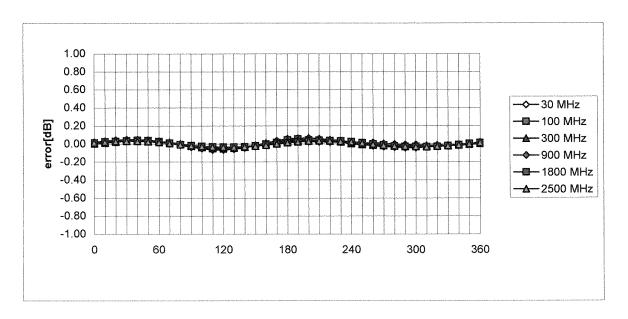

Sensitivity in Tissue Simulating Liquid

Head Head	900 MHz 835 MHz	ε _r = 41.5 ± 5% ε _r = 41.5 ± 5%	σ = 0.97 ± 5% mho/m σ = 0.90 ± 5% mho/m
	ConvF X	6.5 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.5 ± 9.5% (k=2)	Alpha 0.33
	ConvF Z	6.5 ± 9.5% (k=2)	Depth 2.72
Head Head	1800 MHz 1900 MHz	$\epsilon_r = 40.0 \pm 5\%$ $\epsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m σ = 1.40 ± 5% mho/m
		•	
	1900 MHz	$\varepsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m

Boundary Effect

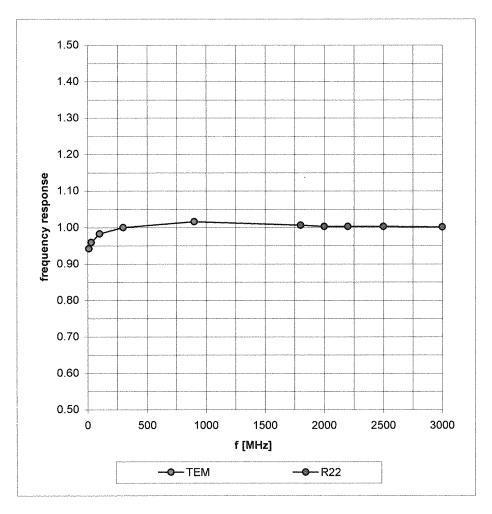

Head	900	MHz	Typical SAR gradient	t: 5 % per m	ım		
	Probe Tip to	Boundary			1 mm	2 m	ım
	SAR _{be} [%]	Without Co	prrection Algorithm		9.8	5.7	
	SAR _{be} [%]	With Corre	ction Algorithm		0.4	0.6	
Head	1800	MHz	Typical SAR gradien	t: 10 % per	mm		
	Probe Tip to	Boundary			1 mm	2 m	m
	SAR _{be} [%]	Without Co	prrection Algorithm		12.3	8.2	:
	SAR _{be} [%]	With Corre	ection Algorithm		0.1	0.2	1
Sensor	[.] Offset						
	Probe Tip to	o Sensor Ce	enter	2.7		mm	

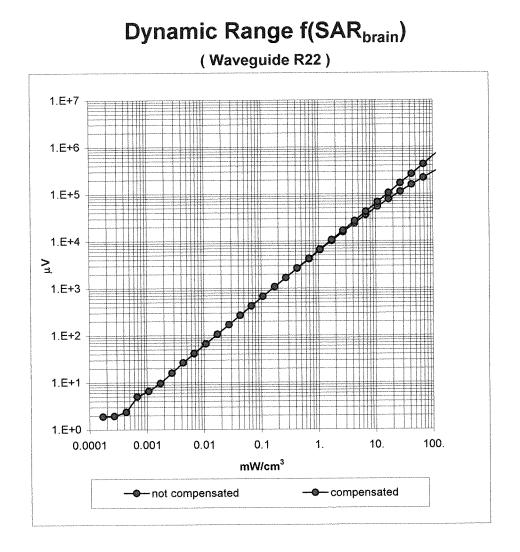
Probe Tip to Sensor Center	2.1	mm
Optical Surface Detection	1.3 ± 0.2	mm

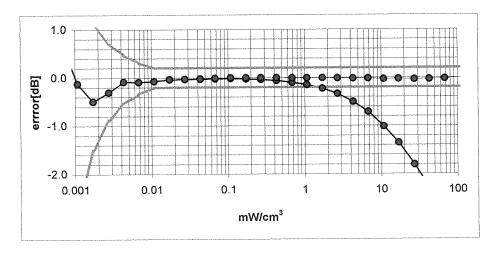


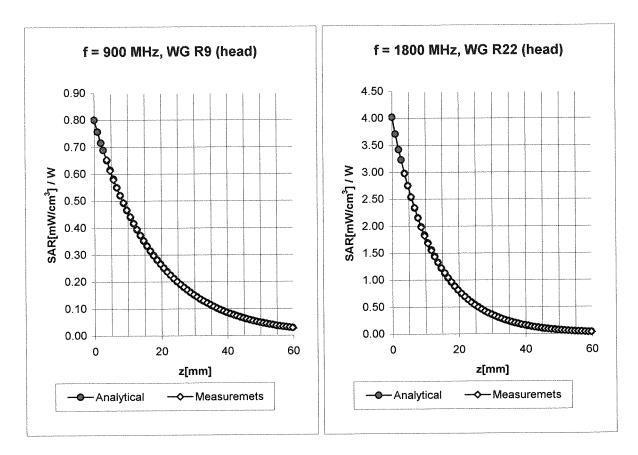
Receiving Pattern (ϕ **),** θ = 0°

ET3DV6 SN:1712

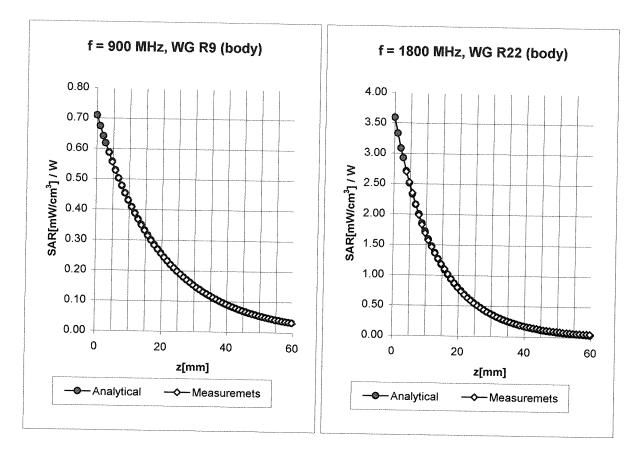



Isotropy Error (ϕ), $\theta = 0^{\circ}$




Frequency Response of E-Field

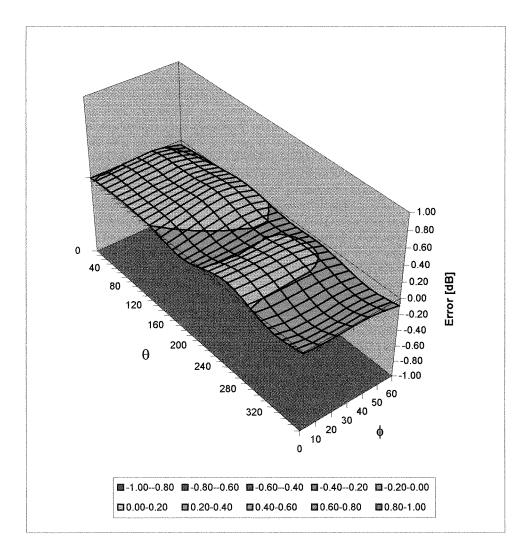
(TEM-Cell:ifi110, Waveguide R22)



Conversion Factor Assessment

Head	900 MHz	$\epsilon_{r} = 41.5 \pm 5\%$	σ = 0.97 ± 5% mho/m	
Head	835 MHz	ε _r = 41.5 ± 5%	σ = 0.90 ± 5% mho/m	
	ConvF X	6.5 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	6.5 ± 9.5% (k=2)	Alpha 0.33	
	ConvF Z	6.5 ± 9.5% (k=2)	Depth 2.72	

Head	1800 MHz	ε _r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
Head	1900 MHz	ε _r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
	ConvF X	5.4 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.4 ± 9.5% (k=2)	Alpha 0.48
	ConvF Z	5.4 ± 9.5% (k=2)	Depth 2.52



Conversion Factor Assessment

Body	900 MHz	$\epsilon_r = 55.0 \pm 5\%$	σ = 1.05 ± 5% mh	io/m
Body	835 MHz	ε _r = 55.2 ± 5%	$\sigma = 0.97 \pm 5\%$ mho	
	ConvF X	6.3 ± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	6.3 ± 9.5% (k=2)	Alpha	0.41
	ConvF Z	6.3 ± 9.5% (k=2)	Depth	2.49

Body	1800 MHz	ε _r = 53.3 ± 5%	σ = 1.52 ± 5% m	lho/m
Body	1900 MHz	ε _r = 53.3 ± 5%	σ = 1.52 ± 5% m	ho/m
	ConvF X	5.0 ± 9.5% (k=2)	Boundary eff	fect:
	ConvF Y	5.0 ± 9.5% (k=2)	Alpha	0.60
	ConvF Z	5.0 ± 9.5% (k=2)	Depth	2.30

Deviation from Isotropy in HSL Error (θ, ϕ) , f = 900 MHz

