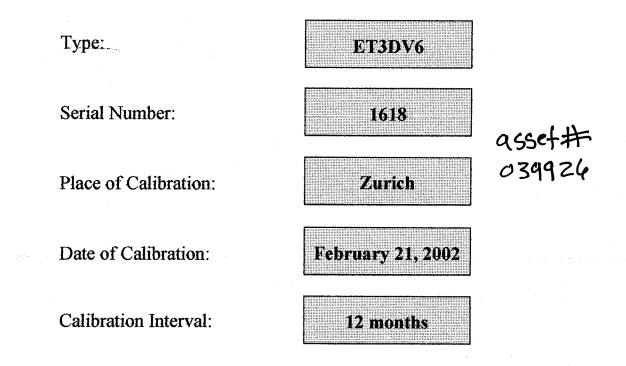
Company	Document No.	
Kyocera Wireless Corp.		
	Issue No:	Date
KWC-7135 SAR REPORT		June 2002
FCC ID	Page Number	
OVFKWC-7135		


APPENDIX C: PROBE CALIBRATION CERTIFICATE

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

Mari, Ka

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1618

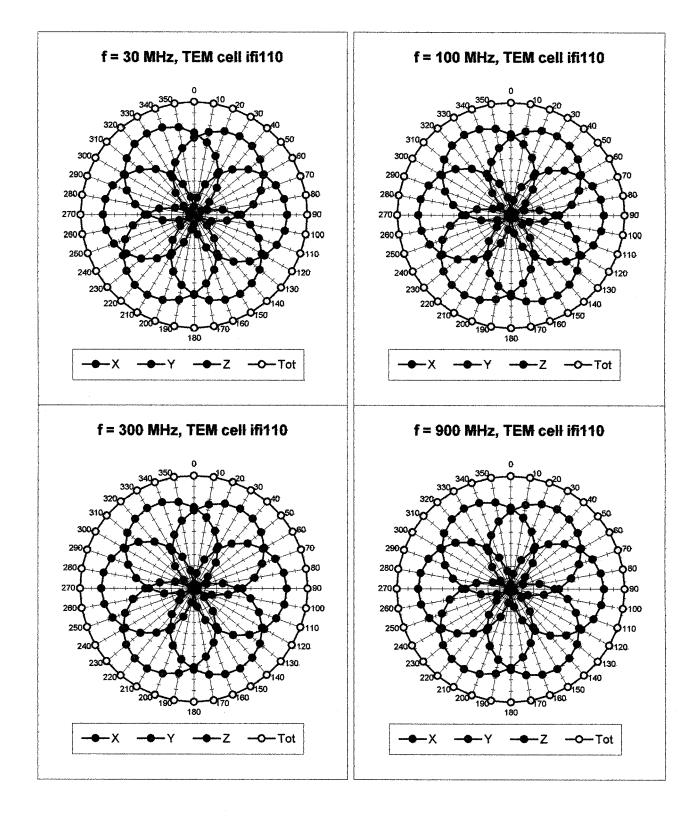
Manufactured: Last calibration: January 25, 2002 February 21, 2002

Calibrated for System DASY3

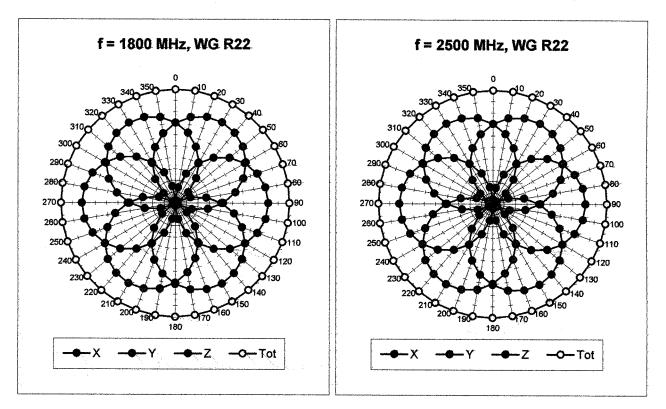
DASY3 - Parameters of Probe: ET3DV6 SN:1618

Sensitivity in Free Space		Diode Compression		
NormX	1.80 μV/(V/m) ²	DCP X	97	mV
NormY	1.75 μV/(V/m) ²	DCP Y	9 7	mV
NormZ	1.88 μV/(V/m) ²	DCP Z	9 7	mV
Sensitivity in Tissu	e Simulating Liquid			

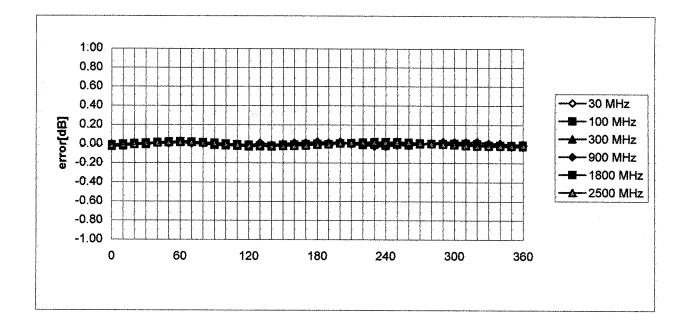
Head	900 MHz		$\varepsilon_r = 41.5 \pm 5\%$		0.97 ± 5%	
Head	835 MHz		$\varepsilon_r = 41.5 \pm 5\%$	α =	0.90 ± 5% I	mho/m
	ConvF X	6.8	± 9.5% (k=2)		Boundary e	effect:
	ConvF Y	6.8	± 9.5% (k=2)		Alpha	0.32
	ConvF Z	6.8	± 9.5% (k=2)		Depth	2.69
Head	1800 MHz		ε_r = 40.0 ± 5%	σ=	σ = 1.40 ± 5% mho/m	
Head	1900 MHz		$\varepsilon_r = 40.0 \pm 5\%$	σ=	1.40 ± 5%	mho/m
	ConvF X 5.3 ± 9.5%	± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	5.3	± 9.5% (k=2)		Alpha	0.45

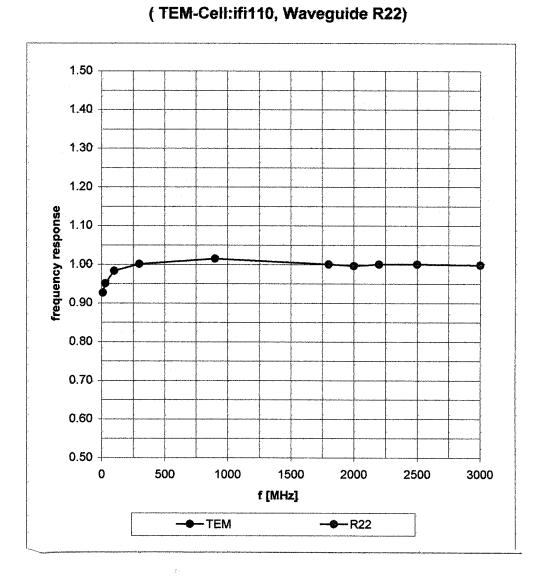

Boundary Effect

Head	900	MHz	Typical SAR gradien	t: 5 % per m	m	
	Probe Tip to	b Boundary			1 mm	2 mm
	SAR _{be} [%]	Without C	orrection Algorithm		9.3	5.4
	SAR _{be} [%]	With Corre	ection Algorithm		0.3	0.5
Head	1800	MHz	Typical SAR gradien	t: 10 % per r	nm	
	Probe Tip to	Boundary			1 mm	2 mm
	SAR _{be} [%]	Without C	orrection Algorithm		10.2	6.7
	SAR _{be} [%]	With Corre	ection Algorithm		0.2	0.2
Sensor	Offset					
	Probe Tip to	o Sensor Ce	enter	2.7		mm

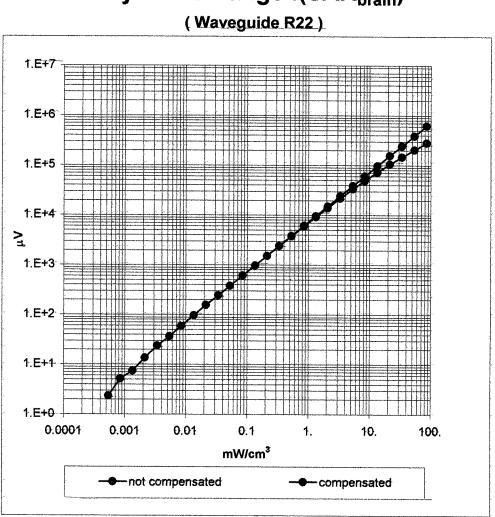

Optical Surface Detection

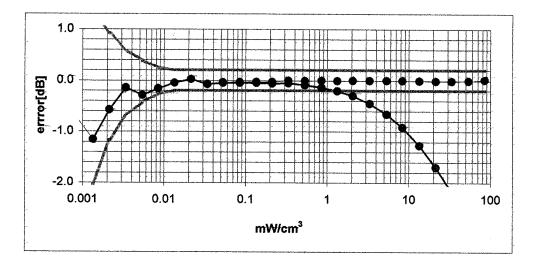
1.3 ± 0.2


mm

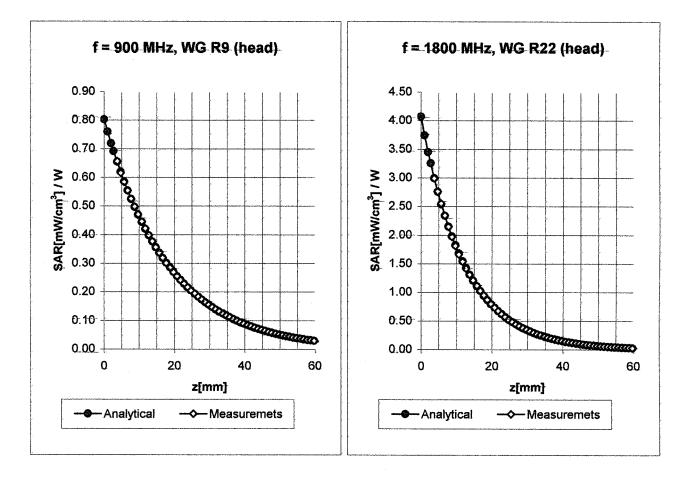


Receiving Pattern (\phi), \theta = 0°

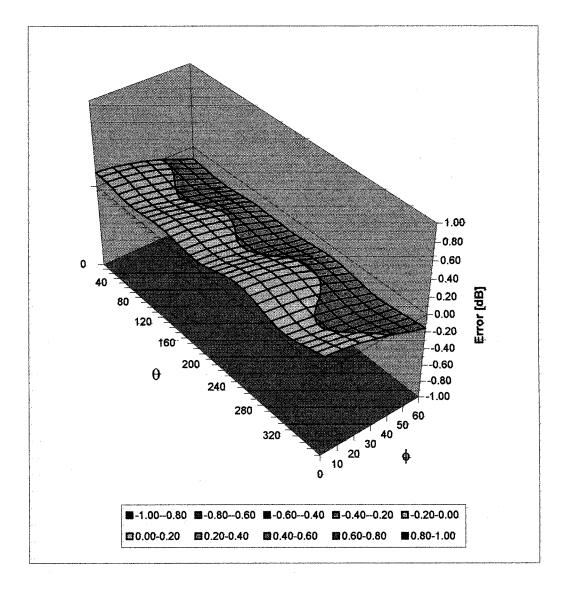

Isotropy Error (\phi), \theta = 0°



Frequency Response of E-Field


Page 5 of 8

Page 6 of 8


Conversion Factor Assessment

900 MHz	$\epsilon_{\rm r}$ = 41.5 ± 5%	σ = 0.97 ± 5% mho/m		
d 835 MHz $\epsilon_r = 41.5 \pm 5\%$		σ = 0.90 ± 5% mho/m		
ConvF X	6.8 ± 9.5% (k=2)	Boundary effect:		
ConvF Y	6.8 ± 9.5% (k=2)	Alpha	0.32	
ConvF Z	6.8 ± 9.5% (k=2)	Depth	2.69	
	835 MHz ConvF X. ConvF Y	835 MHz $\epsilon_r = 41.5 \pm 5\%$ ConvF X.6.8 $\pm 9.5\%$ (k=2).ConvF Y6.8 $\pm 9.5\%$ (k=2)	835 MHz $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.90 \pm 5\%$ mho/r ConvF X 6.8 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Y 6.8 $\pm 9.5\%$ (k=2) Alpha	

Head	1800 MHz	$\varepsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho	/m
Head	1900 MHz	ε _r = 40.0 ± 5%	σ = 1.40 ± 5% mho	/m
	ConvF X	5.3 ± 9.5% (k=2)	Boundary effec	t:
	ConvF Y	5.3 ± 9.5% (k=2)	Alpha	0.45
	ConvF Z	5.3 ± 9.5% (k=2)	Depth	2.37

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

