

FCC CFR47 PART 22 SUBPART H AND PART 24 SUBPART E CERTIFICATION TEST REPORT

FOR

DUAL BAND 1xRTT CDMA PHONE WITH BLUETOOTH

MODEL NUMBER: E1000

FCC ID: OVF E1000-255

REPORT NUMBER: 07U11009-3

ISSUE DATE: MAY 09, 2007

Prepared for KYOCERA WIRELESS CORP. 10300 CAMPUS POINT DRIVE SAN DIEGO, CA 92121 U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
	05/09/07	Initial Issue	T. Chan

Page 2 of 21

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	
2. TEST METHODOLOGY	
3. FACILITIES AND ACCREDITATION	
4. CALIBRATION AND UNCERTAINTY	5
4.1. MEASURING INSTRUMENT CALIBRATION	5
4.2. MEASUREMENT UNCERTAINTY	5
5. EQUIPMENT UNDER TEST	
5.1. DESCRIPTION OF EUT	
5.2. SOFTWARE AND FIRMWARE	6
5.3. DESCRIPTION OF TEST SETUP	7
6. TEST AND MEASUREMENT EQUIPMENT	9
7. LIMITS AND RESULTS	
7.1. RF POWER OUTPUT	10
7.2. FIELD STRENGTH OF SPURIOUS RADIATION	13
7.3. MAXIMUM PERMISSIBLE EXPOSURE	
8. SETUP PHOTOS	19

Page 3 of 21

1. ATTESTATION OF TEST RESULTS

FCC PART 22 SU	JBPART H	NO NON-COMPLIANCE NOTED
STANDA	RD	TEST RESULTS
	APPLICAB	LE STANDARDS
DATE TESTED:	APRIL 24 – MA	Y 4, 2007
SERIAL NUMBER:	FFE1000000127	74
MODEL NUMBER:	E1000	
EUT DESCRIPTION:	DUAL BAND 1	xRTT CDMA PHONE WITH BLUETOOTH
	SAN DIEGO, C	A 92121 U.S.A.
COMPANY NAME:	KYOCERA WI 10300 CAMPUS	S POINT DRIVE

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

" huj

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

FCC PART 24 SUBPART E

Tested By:

NO NON-COMPLIANCE NOTED

MEGISTU MEKURIA EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 21

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603C (2004), ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 22H and 24E.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission, Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 21

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a dual band 1xRTT CDMA phone with BT.

The radio module is manufactured by Kyocera Wireless.

5.2. SOFTWARE AND FIRMWARE

The EUT is linked with Agilent Communication Test Set.

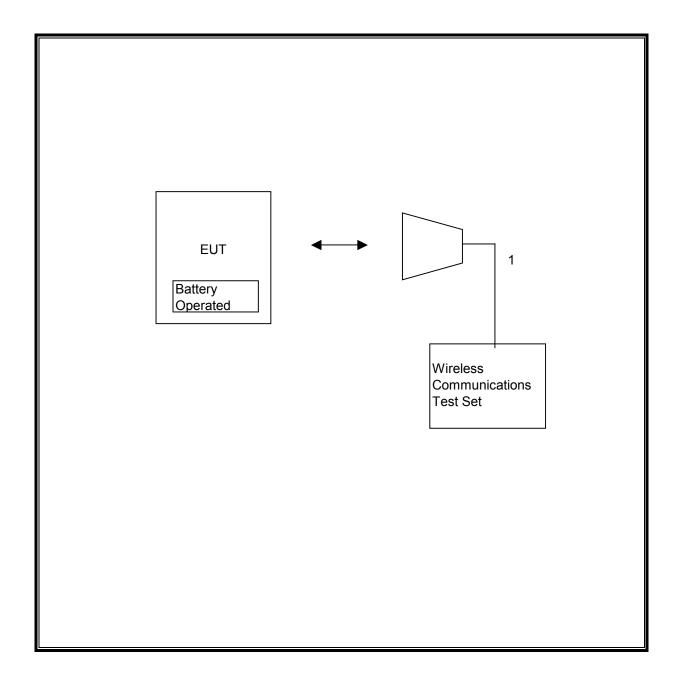
Page 6 of 21

5.3. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	FCC ID				
Wireless Communications Test Set	Agilent	E5515C	10092	DoC				
Horn	EMCO	3115	2238	NA				

I/O CABLES


	I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	RF In/out	1	N-Type	Shielded	1m	N/A	

TEST SETUP

The EUT is a standalone device. The Agilent Communication Test Set is used to link the EUT.

Page 7 of 21

SETUP DIAGRAM FOR TESTS

Page 8 of 21

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQ	UIPMENT LIST		
Description	Manufacturer	Model	Serial Number	Cal Due
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/07
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/08
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/08
Signal Generator 2 -40 GHz	R & S	SMP04	DE 34210	6/2/07
Signal Generator 1024 MHz	R & S	SMY01	DE 12311	5/11/08
Dipole	EMCO	3121C-DB2	22435	5/7/08
2.7GHz HPF	MicroTronic	HPM13194	2	CNR
1.5GHz HPF	MicroTronic	HPM13195	1	CNR
Communication Test Set	Agilent	E5515C	91936	4/8/08
Power Splitter	HP	11667B	324	CNR
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY45300064	3/18/08
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	8/1/07

Page 9 of 21

7. LIMITS AND RESULTS

7.1. **RF POWER OUTPUT**

<u>LIMIT</u>

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. 24.232(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17

RESULTS

No non-compliance noted.

800MHz CELL CDMA Modulation

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	824.7	28.20	660.69
Middle	836.5	27.70	588.84
High	848.3	27.40	549.54

1900MHz PCS Modulation

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1851.25	30.80	1202.26
Middle	1880.00	29.50	891.25
High	1908.75	29.70	933.25

Page 10 of 21

Cellular Output Power (ERP)

	ingu riequ	ency bubaut	ution Measurer	nent					
Complianc	e Certification	n Services, I	Fremont 5m Cha	amber Site					
Company:	Vuesere								
	Cybrera 07U11009								
Date: 04-2									
	s-o7 neer: Mengist	n Molanio							
-	ion: EUT only								
Mode: Cei									
vioue. Ce.									
	ment [.]								
<u>Fest Equip</u> Receiving		and 5m Char	nher N-type Cal	la (Satun	this one for	testing FU	T)		
Receiving	Sunol T122, a		nber N-type Cal and 4ft SMA Ca	· •		0	T)		
Receiving	Sunol T122, a		nber N-type Cal and 4ft SMA Ca	· •		0	T)		
Receiving	Sunol T122, a n: Dipole S/N:		and 4ft SMA Ca	· •		0		Margin	Notes
Receiving: Substitutio	Sunol T122, a	00022117,	and 4ft SMA Ca SG reading	ble Wareh	ouse S/N: 1	77081002	T) Limit (dBm)	Margin (dB)	Notes
Receiving Substitutio	: Sunol T122, a n: Dipole S/N: SA reading	: 00022117, : Ant. Pol.	and 4ft SMA Ca	ble Wareh	ouse S/N: 1 Gain	77081002 ERP	Limit		Notes
Receiving Substitutio	: Sunol T122, a n: Dipole S/N: SA reading	: 00022117, : Ant. Pol.	and 4ft SMA Ca SG reading	ble Wareh	ouse S/N: 1 Gain	77081002 ERP	Limit		Notes
Receiving Substitutio f MHz	: Sunol T122, a n: Dipole S/N: SA reading (dBuV/m)	00022117, Ant. Pol. (H/V)	and 4ft SMA Ca SG reading (dBm)	ble Wareh CL (dB)	ouse S/N: 1 Gain (dBd)	77081002 ERP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substitutio f MHz 824.70 824.70	Sunol T122, ; n: Dipole S/N: SA reading (dBuV/m) 95.1 104.0	: 00022117, : Ant. Pol. (H/V) V H	and 4ft SMA Ca SG reading (dBm) 21.5 28.7	ble Wareh CL (dB) 0.5 0.5	ouse S/N: 1 Gain (dBd) 0.0 0.0	77081002 ERP (dBm) 21.0 28.2	Limit (dBm) 38.5 38.5	(dB) -17.4 -10.2	Notes
Receiving Substitutio f MHz 824.70 824.70 836.50	Sunol T122, a n: Dipole S/N: SA reading (dBuV/m) 95.1 104.0 94.1	: 00022117, : Ant. Pol. (H/V) V H	and 4ft SMA Ca SG reading (dBm) 21.5 28.7 21.1	ble Wareh CL (dB) 0.5 0.5 0.6	ouse S/N: 1 Gain (dBd) 0.0 0.0	77081002 ERP (dBm) 21.0 28.2 20.5	Limit (dBm) 38.5 38.5 38.5	(dB) -17.4 -10.2 -18.0	Notes
Receiving Substitutio f MHz 824.70 824.70	Sunol T122, ; n: Dipole S/N: SA reading (dBuV/m) 95.1 104.0	: 00022117, : Ant. Pol. (H/V) V H	and 4ft SMA Ca SG reading (dBm) 21.5 28.7	ble Wareh CL (dB) 0.5 0.5	ouse S/N: 1 Gain (dBd) 0.0 0.0	77081002 ERP (dBm) 21.0 28.2	Limit (dBm) 38.5 38.5	(dB) -17.4 -10.2	Notes
Receiving Substitutio f MHz 824.70 824.70 836.50	Sunol T122, a n: Dipole S/N: SA reading (dBuV/m) 95.1 104.0 94.1	: 00022117, : Ant. Pol. (H/V) V H	and 4ft SMA Ca SG reading (dBm) 21.5 28.7 21.1	ble Wareh CL (dB) 0.5 0.5 0.6	ouse S/N: 1 Gain (dBd) 0.0 0.0	77081002 ERP (dBm) 21.0 28.2 20.5	Limit (dBm) 38.5 38.5 38.5	(dB) -17.4 -10.2 -18.0	Notes
Receiving Substitutio f MHz 824.70 824.70 836.50	Sunol T122, a n: Dipole S/N: SA reading (dBuV/m) 95.1 104.0 94.1	: 00022117, : Ant. Pol. (H/V) V H	and 4ft SMA Ca SG reading (dBm) 21.5 28.7 21.1	ble Wareh CL (dB) 0.5 0.5 0.6	ouse S/N: 1 Gain (dBd) 0.0 0.0	77081002 ERP (dBm) 21.0 28.2 20.5	Limit (dBm) 38.5 38.5 38.5	(dB) -17.4 -10.2 -18.0	Notes

Page 11 of 21

PCS Output Power (EIRP)

High Frequency Fundamental Measurement
Compliance Certification Services, Fremont 5m Chamber Site

Company: Kyocera Project #: 07U11009 Date: 04-23-07 Test Engineer: Mengistu Mekuria Configuration: EUT only Mode: PCS Tx on

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
1.851	90.2	v	16.8	0.9	8.3	24.2	33.0	-8.8	
1.851	97 <i>3</i>	Н	23.4	0.9	8.3	30.8	33.0	-2.2	
1.880	90.2	v	15.9	0.9	8.3	23.4	33.0	-9.7	
1.880	96.9	H	22.1	0.9	8.3	29.5	33.0	-3.5	
1.909	89.0	v	15.7	0.9	8.4	23.2	33.0	-9.8	
1.909	95.0	Н	22.2	0.9	8.4	29.7	33.0	-3.4	

Page 12 of 21

7.2. FIELD STRENGTH OF SPURIOUS RADIATION

LIMIT

22.917 (e) and 24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.12, FCC 22.917 (h), & FCC 24.238 (b)

RESULTS

No non-compliance noted.

Note: No emissions were found within 30-1000MHz of 20dB below the system noise.

Page 13 of 21

800MHz Band CDMA Spurious & Harmonic (ERP)

omplia			ution Measure , Fremont 5m A							
	y: Kyocera #: 07U11009									
ate: 04										
	gineer: Mengis	stu Mekuria								
÷	ration: EUT on	ly								
/Iode: C	Cell Tx on									
est Equ	uipment:									
	EMC O Horn 1-1	18GHz		Horn >	18GHz			Limit		High Pass Filter
Т	73; S/N: 6717 @	3m 🗸				-	ERP		•	
1			1				,			
Г	i Frequency Cables					Pre-amplifer l	-26GHz		Pre-amplifer 26	40 GHz
Γ	(2 ft)	(2 ~ 3 ft)	(4~6 ft) 🔽 (12	2 ft)		T34 HP 84491		Г		
						134 HF 84491	s 🔻			•
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	1,0163
	24.70MHz	(-2 •)		()	()	((
.649	71.8	V	-35.9	3.8	8.0	5.8	-33.9	-13.0	-20.9	
.474 .299	52.7	v	-50.9	4.9	9.5 9.8	7.4	-48.4	-13.0 -13.0	-35.4 -29.4	
.124	55.1 43.9		-44.4 -51.6	5.0 6.3	9.8 9.8	7.0	-42.4 -50.3	-13.0	-29.4 -37.3	
.649	79.2	H	-27.8	3.8	8.0	5.8	-25.8	-13.0	-12.8	
A74	56.9	H	-46.5	4.9	9.5	7.4	-44.0	-13.0	-31.0	
.299 .124	48.8 43.8	<u>Н</u> Н	-50.6 -51.4	5.6 6.3	9.8 9.8	7.6	-48.6 -50.0	-13.0 -13.0	-35.6 -37.0	
.1 4 4	43.0	п	-21.4	600	7.0		-2010	-130	-37.0	
	36.52MHz							•		
.673	60.9	v	-46.6	39 49	8.0	59	-44.6	-13.0	-31.6	
510 346	54.1 50.9	v	-49.3 -48.4	4.9 5.6	9.6 9.8	7.4	-46.8 -46.4	-13.0 -13.0	-33.8 -33.4	
.183	42.4	v	-53.0	63	9.9	7.7	-51.6	-13.0	-38.6	
.673	69 <i>.</i> 3	H	-37.5	39	8.0	59	-35.5	-13.0	-22.5	
510	57.4 45.6	H H	-45.8 -53.6	4.9 5.6	9.6 9.8	7.4	-43.3 -51.6	-13.0 -13.0	-30.3 -38.6	
.346 .183	45.0	H	-53.0	5.0 6.3	9.8 9.9	7.0	-51.0	-13.0	-38.0 -39.3	
									-	
6 Ch 848	·····				0.1		40.0	140	160	
.697 .545	75.7 59.2	v	-31.8 -44.1	3.9 4.9	8.1 9.6	59 7.4	-29.8 -41.6	-13.0 -13.0	-16.8 -28.6	
393	56.9	v	-42.2	5.7	9.7	7.6	-40.2	-13.0	-27.2	
	45.7	v	-49.6	6.4	99	7.8	-48.2	-13.0	-35.2	
	77.3	H	-29.5	3.9	8.1	59	-27.4	-13.0	-14.4	
.697	62.7	H H	-40.3 -47.7	49 5.7	9.6 9.7	7.4	-37.8 -45.8	-13.0 -13.0	-24.8 -32.8	
.241 .697 .545 .393	51.2	**				7.8	-48.6	-13.0	-35.6	
.697	51.2 45.0	н	-49.9	6.4	9.9					
.697 545 393		H	-49.9	0.4	<u> </u>					

Page 14 of 21

PCS Spurious & Harmonic (EIRP):

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Compan	ance Certificati 1y: Kyocera		tution Measure , Fremont 5m A								
Per Engistu Mekuria Sonfguratori: EUT onja est Equipment: Limit Jagen Viewer State Strate Stra												
Jode: PCS Tx on iest Equipment: EMCO Horn 1-18GHz Limit Image: Ima	Fest En	gineer: Mengi		l								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Iy									
Intrivision	Fest Eq	uipment:										
Intrivision												
HPre-amplifer 1-26 GHz Pre-amplifer 1-26 GHz C A Frequency Cables Pre-amplifer 1-26 GHz Pre-amplifer 26-40 GHz T34 HP 8449B T34 HP 8449B Pre-amplifer 26-40 GHz Pre-amplifer 26-40 GHz GHz (dBu/m) (H/V) (dBm) (dB) (dBh) (dBm) (dBm) (dBm) Notes f SA reading Ant. Pol. SG reading CL Gain Gain (dBm)		EMC O Horn 1-1	18GHz		Horn >	18GHz			Limit			
Image: Pre-amplifier 1-26-00 GHz Pre-amplifier 1-26-00 GHz Pre-amplifier 26-40 GHz Image: Transmitter 1 Transmitter 1 Pre-amplifier 1-26-00 GHz Pre-amplifier 1-26-00 GHz Image: Transmitter 1 SG reading (H/V) CL (dBm) Gain (dB) Gain (dBd) EIRP (dBm) Limit (Margin (dB)) Notes Image: Transmitter 1 Image: Transmitter	1	[73; S/N: 6717 @	3m 🗸				-	EIRP		•	 High Pass Filter 	
Image: Pre-amplifier 1-26-00 GHz Pre-amplifier 1-26-00 GHz Pre-amplifier 26-40 GHz Image: Transmitter 1 Transmitter 1 Pre-amplifier 1-26-00 GHz Pre-amplifier 1-26-00 GHz Image: Transmitter 1 SG reading (H/V) CL (dBm) Gain (dB) Gain (dBd) EIRP (dBm) Limit (Margin (dB)) Notes Image: Transmitter 1 Image: Transmitter		Hi Frequency Cables		,			_					
f SA reading Ant. Pol. SG reading CL Gain Gain EIRP Limit Margin Notes GHz (dBuV/m) (H/V) (dBm) (dB) (dBi) (dBd) (dBm) (dB) (dBm) (dB) ow Ch 181.25MHz			(22 0) E	(46 0) 🔽 (1	2.65		Pre-amplifer l	-26GHz		Pre-amplifer	26-40GHz	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(2~310)	(4~01)	210		T34 HP 8449I	3 🗸			•	
ow Ch 1851 25MHz Image: Constraint of the second seco	f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	EIRP	Limit	Margin	Notes	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		····•	v	-36.5	50	07	76	327	-130	-19.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.703 554											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.703											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.554	45.4	H	-45.9	7.4	113	9.1	-42.0	-13.0	-29.0		
640 50.6 V -41.9 7.4 11.5 9.3 -37.9 -13.0 -24.9 760 52.0 H -45.0 6.0 9.7 7.6 -41.3 -13.0 -28.3 640 45.4 H -46.1 7.4 11.5 9.3 -42.1 -13.0 -28.3 640 45.4 H -46.1 7.4 11.5 9.3 -42.1 -13.0 -29.1 6 (h 1908.75MHz	Mid Ch 1	880.00MHz										
760 52.0 H -45.0 6.0 9.7 7.6 -41.3 -13.0 -28.3 640 45.4 H -46.1 7.4 11.5 9.3 -42.1 -13.0 -29.1 660 45.4 H -46.1 7.4 11.5 9.3 -42.1 -13.0 -29.1 660 67.7 7.6 -41.3 -13.0 -29.1 -29.1 661 60 9.7 7.5 -40.4 -13.0 -27.4 726 49.4 V -43.4 7.5 11.6 9.5 -39.2 -13.0 -26.2 818 51.6 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 726 44.1 H -47.7 7.5 11.6 9.5 -39.2 -13.0 -26.2 818 51.6 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5	8.760											
640 45.4 H -46.1 7.4 11.5 9.3 -42.1 -13.0 -29.1 660 45.4 H -46.1 7.4 11.5 9.3 -42.1 -13.0 -29.1 660 52.8 V -44.1 6.0 9.7 7.5 -40.4 -13.0 -27.4 726 49.4 V -43.4 7.5 11.6 9.5 -39.2 -13.0 -26.2 818 51.6 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5 726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5 726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5												
A Ch 1908.75MHz Control Contr												
818 52.8 V -44.1 6.0 9.7 7.5 -40.4 -13.0 -27.4 726 49.A V -43.4 7.5 11.6 9.5 -39.2 -13.0 -26.2 818 51.6 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 7.26 44.1 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 7.26 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5		•••••										
726 49.4 V -43.4 7.5 11.6 9.5 -39.2 -13.0 -26.2 818 51.6 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -28.4			37	44.5	<u> </u>	0.7		40.4	100	07.4		
818 51.6 H -45.1 6.0 9.7 7.5 -41.4 -13.0 -28.4 .726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5												
726 44.1 H -47.7 7.5 11.6 9.5 -43.5 -13.0 -30.5	.818											
ev. 4.12.7	5.726	44.1	H	-47.7	75	11.6	9.5	-43.5	-13.0	-30.5		
ev. 4.12.7												
ev. 4.12.7										Å	Å	
	lev. 4.12.	7										

Page 15 of 21

7.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

			. ,	
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

f = frequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 16 of 21

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

 $S = E^{2}/3770$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 17 of 21

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power	
	Distance	Power	Gain	Density	
	(cm)	(dBm)	(dBi)	(mW/cm^2)	
800MHz Celllar	20.0	28.20	0.00	0.131	
1900 MHz PCS	20.0	30.80	0.00	0.239	

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 18 of 21