

RADIATED SPURIOUS EMISSIONS PORTIONS OF FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT FOR

TRI-BAND CDMA PHONE WITH BLUETOOTH + EDR

FCC MODEL NUMBER: K55-02 IC MODEL NUMBER: S2100

> FCC ID: OVF-K5502 IC: 3572A- S2100

REPORT NUMBER: 10U13593-2, Revision A

ISSUE DATE: JANUARY 14, 2011

Prepared for KYOCERA COMMUNICATIONS, INC. 9520 TOWNE CENTER DRIVE, SAN DIEGO, CA 92121

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	01/11/11	Initial Issue	T. Chan
A	01/14/11	Updated IC ID in the header	A. Zaffar

Page 2 of 31

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	1
2.	TEST	T METHODOLOGY	5
3.	FAC	ILITIES AND ACCREDITATION	5
4.	CAL	IBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	SAMPLE CALCULATION	5
4	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQU	IPMENT UNDER TEST	3
5	5.1.	DESCRIPTION OF EUT	5
5	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	3
5	5.3.	SOFTWARE AND FIRMWARE	6
5	5.4.	WORST-CASE CONFIGURATION AND MODE	3
5	5.5.	DESCRIPTION OF TEST SETUP	7
6.	TES	T AND MEASUREMENT EQUIPMENT)
7.	RAD	IATED TEST RESULTS)
7	7.1.	LIMITS AND PROCEDURE)
7	7.2. 7.2.1 7.2.2		1
7	7.3.	WORST-CASE BELOW 1 GHz2	1
8.	AC P	POWER LINE CONDUCTED EMISSIONS	1
9.	SET	UP PHOTOS	3

Page 3 of 31

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	KYOCERA COMMUNICATIONS, INC. 9520 Towne Center Drive, San Diego, CA 92121
EUT DESCRIPTION:	TRI-BAND CDMA PHONE WITH BLUETOOTH + EDR
MODEL:	K55-02 for FCC & S2100 for IC
SERIAL NUMBER:	IVS30A23M00042
DATE TESTED:	JANUARY 7-10, 2011

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS (Radiated Portions)
INDUSTRY CANADA RSS-210 Issue 7 Annex 8	PASS (Radiated Portions)
INDUSTRY CANADA RSS-GEN Issue 2	PASS (Radiated Portions)

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN ENGINEERING MANAGER UL CCS

oliver Sn

OLIVER SU EMC ENGINEER UL CCS

Page 4 of 31

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth featured Tri-band CDMA Phone that is manufactured by Kyocera Communications, Inc.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal antenna, with a maximum gain of -1.0 dBi.

5.3. SOFTWARE AND FIRMWARE

The EUT driver and utility software installed in the host support equipment during testing was StarGraphitePassThru, rev. 1.0.0.1 and CSR Blue Suite (BtCliCtrl), rev. 2.0.0.0.

5.4. WORST-CASE CONFIGURATION AND MODE

The worst-position was the EUT with highest emissions. To determine the worst-case, the EUT was investigated for X, Y, and Z-Positions, and the worst case is X position with AC/DC adapter.

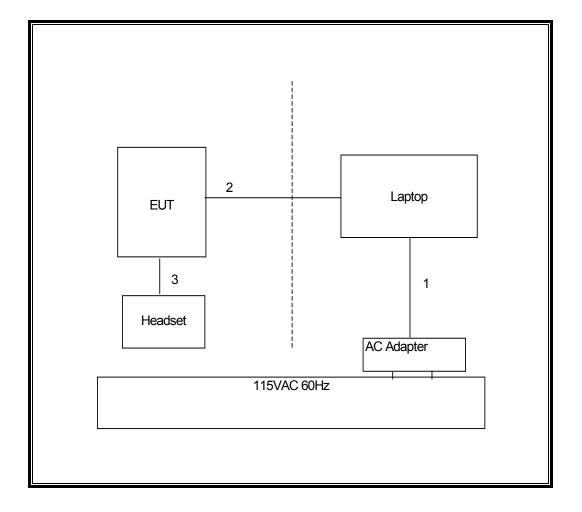
Page 6 of 31

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	PI	ERIPHERAL SUPP	ORT EQUIPMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
Laptop PC	DELL	D620	CCS # C01095	E2KWM3945ABG
AC Adapter	DELL	PA-1900-02D	CN-O9T215-71615-55A-0614	N/A
AC Adapter	Kyocera	TXTVL10148	N/A	DOC
Headset	Kyocera	N/A	N/A	N/A

I/O CABLES


			I/	O CABLE LIST		
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC Input	1	USB	Un-Shielded	1.85 m	N/A
2	USB	1	USB	Un-Shielded	1 m	N/A
3	AUDIO	1	Jack	Un-Shielded	1.2 m	NA

TEST SETUP

The EUT is a stand alone and with AC/DC adapter for below and above1GHz radiated emissions, and AC Line Conduction tests.

Page 7 of 31

SETUP DIAGRAM FOR TESTS

Page 8 of 31

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIP	MENT LIST		
Description	Manufacturer	Model	Asset	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01079	08/18/11
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/06/12
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/12/11
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/11
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR

Page 9 of 31

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

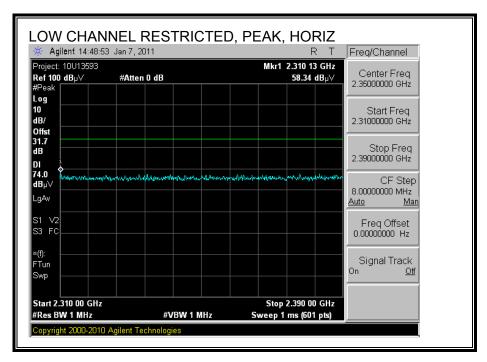
TEST PROCEDURE

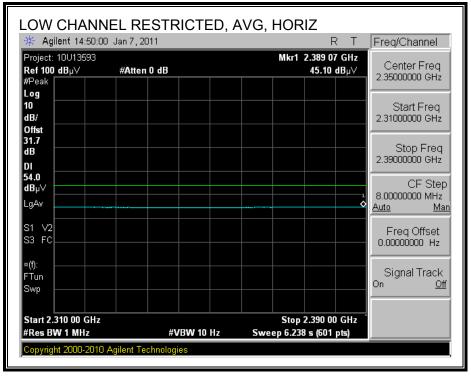
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

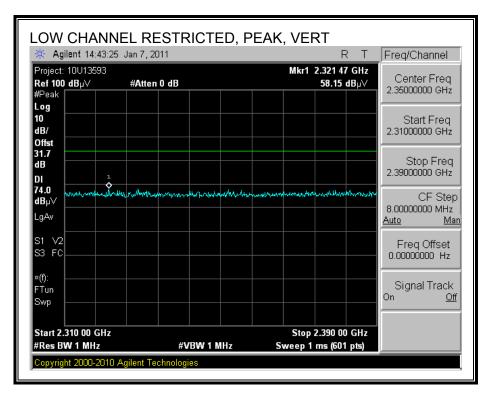
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

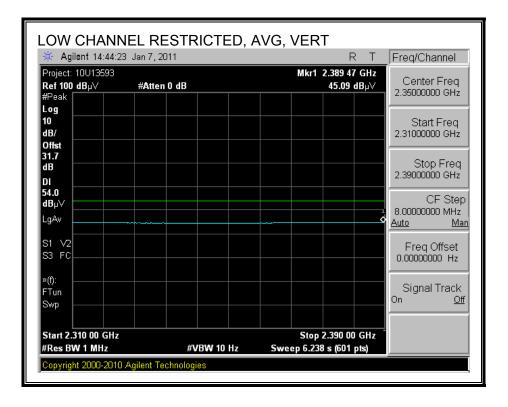

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


Page 10 of 31

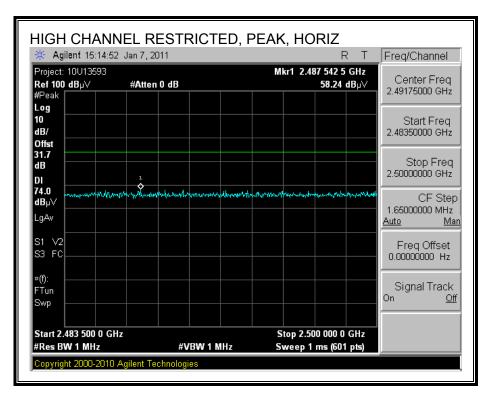
7.2. TRANSMITTER ABOVE 1 GHz

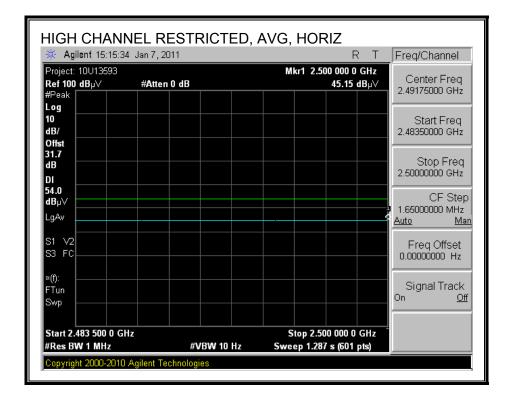
7.2.1. BASIC DATA RATE GFSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

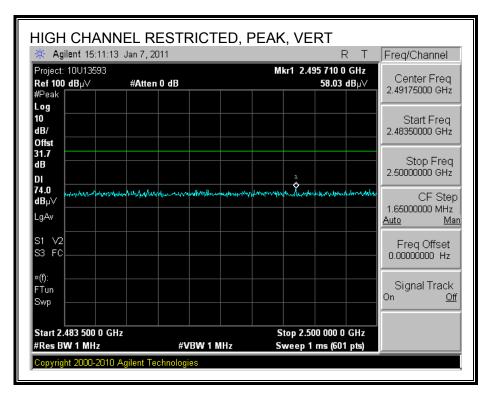


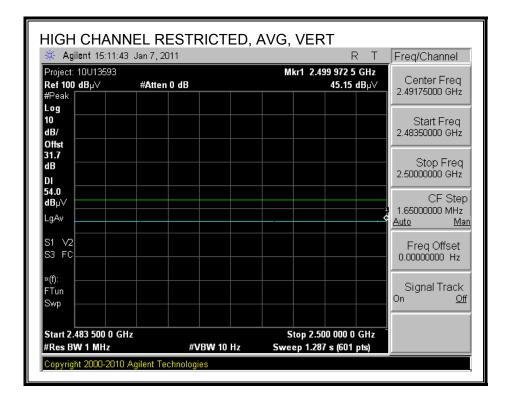
Page 11 of 31


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 12 of 31


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

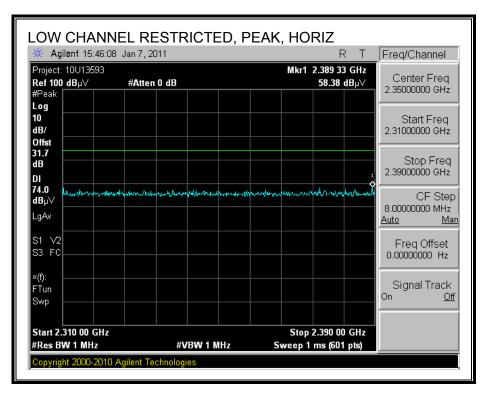


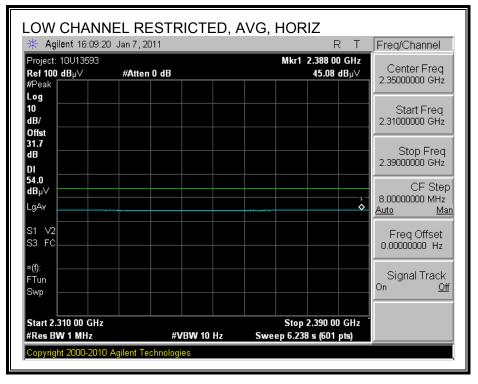
Page 13 of 31

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 14 of 31

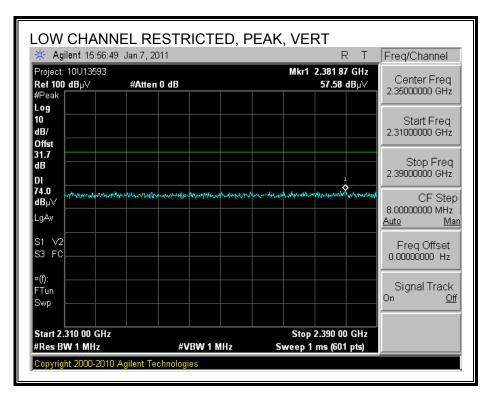
HARMONICS AND SPURIOUS EMISSIONS

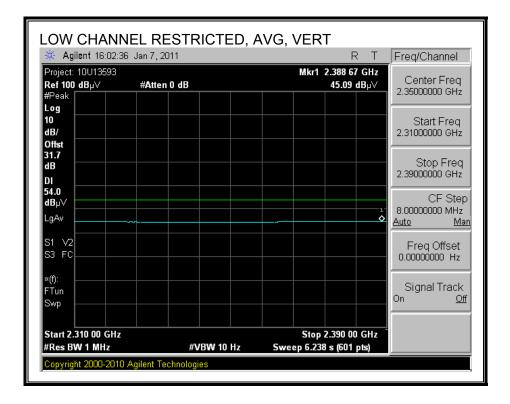

-		Measuren tification		s, Frei	mont 51	n Chamb	er						
Test Engi		Oliver S	iu										
Date:		01/07/11											
Project #		10U1359	3										
Company	r:	Kyocera											
Test Target: FCC 15.247													
Mode Op	er:	BT, GFS	к, тх, х	posit	ion (wor	st case)							
	f	Measuren	nent Freq	piency	Amp	Preamp (Gain			Average	Field Stren	gth Limit	
	Dist	Distance to Antenna D				Distance		rt to 3 me	ters	-	ld Strength	-	
	Read Analyzer Reading				Avg	Average	Field S	trength @)3 m	Margin v	rs. Average	Limit	
	AF	Antenna	Factor		Peak	Calculate	d Peak	: Field Str	ength	Margin v	rs. Peak Lii	mit	
	HPF	High Pas	s Filter	r									
f	Dist	Read	AF	CL	Amp	D Corr	Margin Ant. Pol. Det. Notes						
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low ch, 2													
4.804	3.0	44.8	33.0	5.8	-36.5	0.0	0.0	47.1	74.0	-26.9	V	Р	
4.804	3.0	30.3	33.0	5.8	-36.5	0.0	0.0	32.7	54.0	-21.3	<u>v</u>	A	
4.804 4.804	3.0	42.8 29.8	33.0	5.8 5.8	-36.5	0.0 0.0	0.0 0.0	45.1 32.1	74.0	-28.9	H	Р	
4.804 Mid ch, 2			33.0	2.0	-36.5	0.0	0.0	34.1	54.0	-21.9	H	A	
4.882	3.0	43.9	33.1	5.8	-36.5	0.0	0.0	46.4	74.0	-27.6	н	Р	
4.882	3.0	29.8	33.1	5.8	-36.5	0.0	0.0	32.3	54.0	-21.7	H	Ā	
7.323	3.0	36.3	35.3	7.3	-36.2	0.0	0.0	42.7	74.0	-31.3	H	Р	
7.323	3.0	24.5	35.3	7.3	-36.2	0.0	0.0	30.9	54.0	-23.1	H	A	
4.882	3.0	43.7	33.1	5.8	-36.5	0.0	0.0	46.1	74.0	-27.9	V	Р	
4.882	3.0	29.7	33.1	5.8	-36.5	0.0	0.0	32.2	54.0	- 21.8	V	A	
7.323	3.0	36.1	35.3	7.3	-36.2	0.0	0.0	42.5	74.0	-31.5	V	Р	
7.323	3.0	24.2	35.3	7.3	-36.2	0.0	0.0	30.5	54.0	-23.5	V	A	
High ch,									- 10				
4.960	3.0	45.6	33.2	5.9	-36.5	0.0	0.0	48.2	74.0	-25.8	V	Р	
4.960 7.440	3.0 3.0	30.4 44.0	33.2 35.5	5.9 7.3	-36.5 -36.2	0.0 0.0	0.0 0.0	33.1 50.6	54.0 74.0	-20.9 -23.4	v v	A P	
7.440 7.440	3.0	44.0 27.5	35.5	7.3 7.3	-36.2	0.0	0.0	34.1	74.0 54.0	-43.4	v V	P A	
	3.0	45.1	33.2	7.3 5.9	-36.5	0.0	0.0	47.7	54.0 74.0	-19.9	v H	P	
4 960	3.0	30.7	33.2	5.9	-36.5	0.0	0.0	33.3	54.0	-20.7	H	A	
		37.1	35.5	7.3	-36.2	0.0	0.0	43.7	74.0	-30.3	H	P	
4.960	3.0			¢	¢					*			
4.960 4.960 7.440 7.440	3.0 3.0	25.3	35.5	7.3	-36.2	0.0	0.0	31.9	54.0	-22.1	н	A	


COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

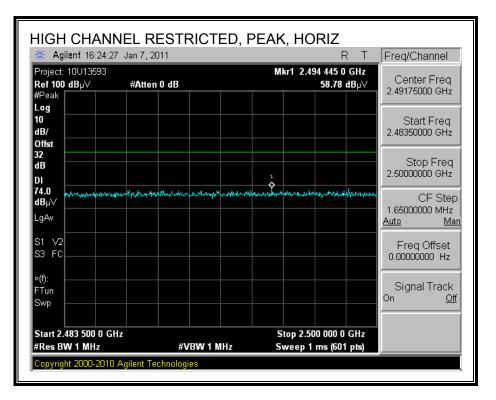
Page 15 of 31

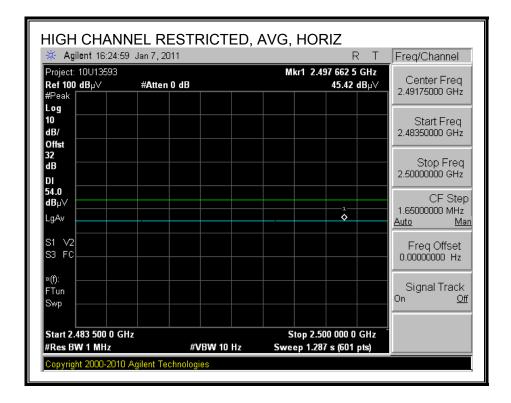
7.2.2. ENHANCED DATA RATE 8PSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

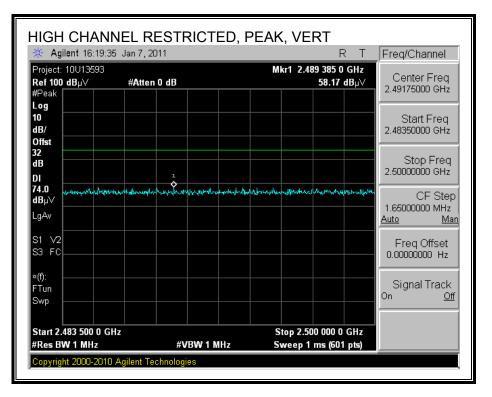


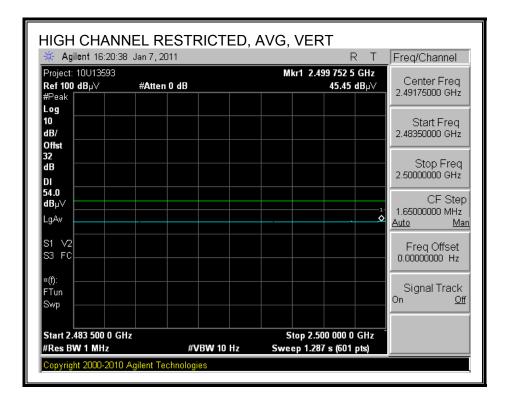
Page 16 of 31


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 17 of 31


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



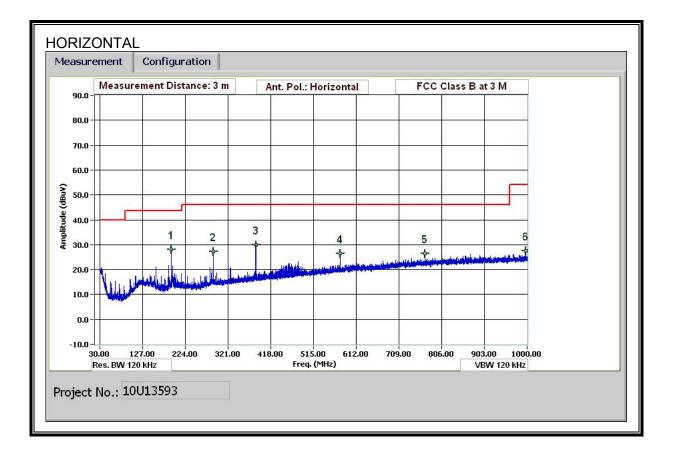
Page 18 of 31

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 19 of 31

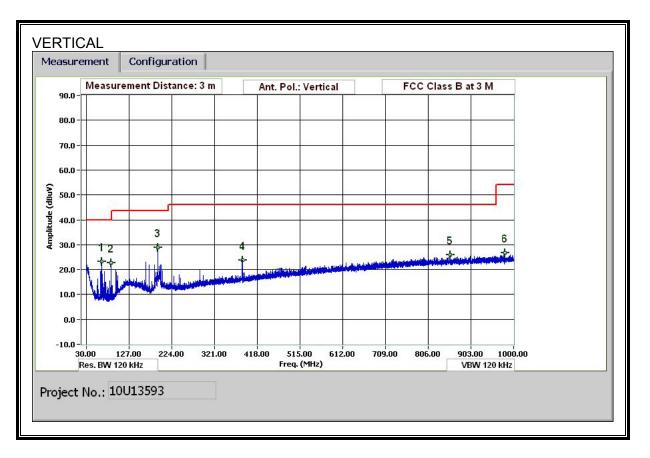
HARMONICS AND SPURIOUS EMISSIONS

-		Measures tification		s, Fre	mont 51	n Chamb	er								
Test Eng Date: Project # Compan Test Tar; Mode Oj	⊧: y: ;et:	Oliver S 01/07/11 10U1359 Kyocera FCC 15. BT, 8PSI	3 247	Positi	ion (wo	rst case)									
	f	Measurer	nent Fre	piency	r Amp	Preamp (Gain			Average	Field Stren	gth Limit			
	Dist	Distance	to Anter	ına	D Corr	Distance	Correc	t to 3 me	eters	Peak Fie	ld Strength	Limit			
	Read	Analyzer	Reading		Avg	Average	Field St	trength @)3m	Margin v	rs. Average	Limit			
	AF	Antenna	Factor		Peak	Calculate	d Peak	Field Str	ength	Margin v	rs. Peak Lii	mit			
	CL	Cable Lo:	55		HPF	High Pas	s Filter		-	-					
f	Dist	Read	AF	CL	Атр	D Corr	Fltr	Согт.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/n	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
High ch,															
4.960	3.0	40.7	33.2	5.9	-36.5	0.0	0.0	43.3	74.0	-30.7	V	Р	100.1	102.1	
4.960	3.0	26.3	33.2	5.9	-36.5	0.0	0.0	28.9	54.0	-25.1	V	A	100.1	102.1	
7.440	3.0	36.9	35.5	7.3	-36.2	0.0	0.0	43.6	74.0	-30.4	V	P	100.1	102.1	
7.440	3.0	24.8	35.5	7.3	-36.2	0.0	0.0	31.4	54.0	-22.6	V	A	100.1	102.1	
4.960	3.0	41.4	33.2	5.9	-36.5	0.0	0.0	44.0	74.0	-30.0	H	P	100.4	5.8	
4.960	3.0	26.5	33.2	5.9	-36.5	0.0	0.0	29.1	54.0	-24.9	H	A	100.4	5.8	
7.440	3.0	37.6	35.5	7.3	-36.2	0.0	0.0	44.2	74.0	-29.8	H	Р	100.4	5.8	
7.440	3.0	24.8	35.5	7.3	-36.2	0.0	0.0	31.5	54.0	-22.5	H	A	100.4	5.8	
Mid ch, 2			33.7					42.6	740			n	1042		
4.882	3.0	41.1	33.1 33.1	5.8	-36.5 -36.5	0.0	0.0 0.0	43.6	74.0	-30.4 -25.4	H	P	104.3	5.6	
4.882 7.323	3.0	26.1 36.5	35.3	5.8 7.3	-36.5	0.0 0.0	0.0 0.0	28.6 42.8	54.0 74.0	-25.4 -31.2	H H	A P	104.3 104.3	5.6 5.6	
7.323	3.0	30.5 24.2	35.3	7.3	-36.2	0.0	0.0 0.0	42.8	74.0 54.0	-31.2	H H	P A	104.3	5.6	
4.882	3.0	40.3	33.1	5.8	-36.5	0.0	0.0	30.5 42.8	54.0 74.0	-23.5	n V	P P	104.5	5.0 314.2	
4.882	3.0	40.3	33.1	5.8	-36.5	0.0	0.0	42.8 28.5	74.0 54.0	-31.4	v	P A	100.6	314.2	
4.002 7.323	3.0	36.6	35.3	7.3	-36.2	0.0	0.0	43.0	54.0 74.0	-49.9	v	P P	100.6	314.2	
7.323	3.0	24.2	35.3	7.3	-36.2	0.0	0.0	30.5	54.0	-23.5	v	F A	100.6	314.2	
11000		A			-30.5	0.0	0.0				*		100.0		
Lowch	3.0	38.0	33.0	5.8	-36.5	0.0	0.0	40.3	74.0	-33.7	v	Р	102.1	230.5	
	3.0	26.1	33.0	5.8	-36.5	0.0	0.0	28.4	54.0	-25.6	v	Å	102.1	230.5	
4.804		38.9	33.0	5.8	-36.5	0.0	0.0	41.2	74.0	-32.8	H	P	181.0	307.8	
4.804 4.804	3.0									\$	¢		¢		
Low ch, 3 4.804 4.804 4.804 4.804 4.804	3.0 3.0	25.8	33.0	5.8	-36.5	0.0	0.0	28.2	54.0	-25.8	н	A	181.0	307.8	


COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 31

7.3. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

PLOTS

Page 21 of 31

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 22 of 31

<u>DATA</u>

	-	ency Meas ication Ser			t 5m Cha	amber							
est Engr: ate:		Oliver Su 01/07/11											
roject #:		10U13593	6										
'ompany est Targe		Kyocrea FCC 15.2	47										
iode Ope		BT, TX, G		⊳h ch.	X Positio	n (worst d	(ase)						
		,, .											
	f	Measurem	-		Amp	Preamp (Margin	Margin vs.	Limit	
	Dist	Distance t		a				to 3 meters					
	Read	Analyzer I	-		Filter	Filter Ins							
	AF CL	Antenna F Cable Loss			Corr. Limit	Calculate Field Stre		-					
f	Dist	Read	AF	CL	Amp	D Согг	Pad	Согт.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz 2.007	(m) 3.0	dBuV 43.7	dB/m 11.5	dB 1.2	dB 28.2	dB 0.0	dB 0.0	dBuV/m 28.2	dBuV/m 43.5	dB -15.3	V/H H	P/A/QP P	
8.011	3.0	41.0	13.0	1.5	28.1	0.0	0.0	27.4	46.0	- 18.6	H	P	
4.015 6.023	3.0	41.7	14.7	1.8	28.1	0.0	0.0	30.1	46.0	-15.9	H H	P	
3.023 3.03	3.0 3.0	33.9 30.7	18.0 20.5	2.2 2.6	27.6 27.4	0.0 0.0	0.0	26.5 26.5	46.0 46.0	-19.5 -19.5	H H	P P	
.88	3.0	30.1	22.4	3.0	27.9	0.0	0.0	27.6	54.0	-26.4	H	Р	
141	3.0	43.0	8.0	0.7	28.4	0.0	0.0	23.3	40.0	-16.7	V	P	
22 .007	3.0 3.0	42.6 44.5	7.5 11.5	0.8 1.2	28.3 28.2	0.0 0.0	0.0	22.6 29.0	40.0 43.5	-17.4 -14.5	v v	P P	
007 D15	3.0	44.5 35.6	11.5	1.2	28.2	0.0	0.0	29.0 23.9	43.5 46.0	-14.5	v	P P	
634	3.0	29.3	21.5	2.7	27.6	0.0	0.0	25.8	46.0	-20.2	V	P	
39	3.0	29.2	22.3	3.0	27.9	0.0	0.0	26.6	54.0	- 27.4	V	P	

Page 23 of 31

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

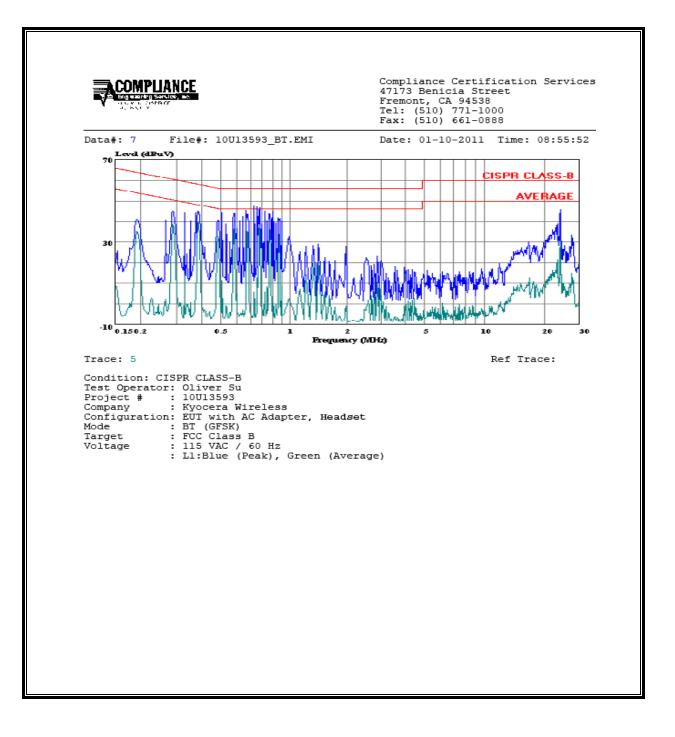
The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 24 of 31

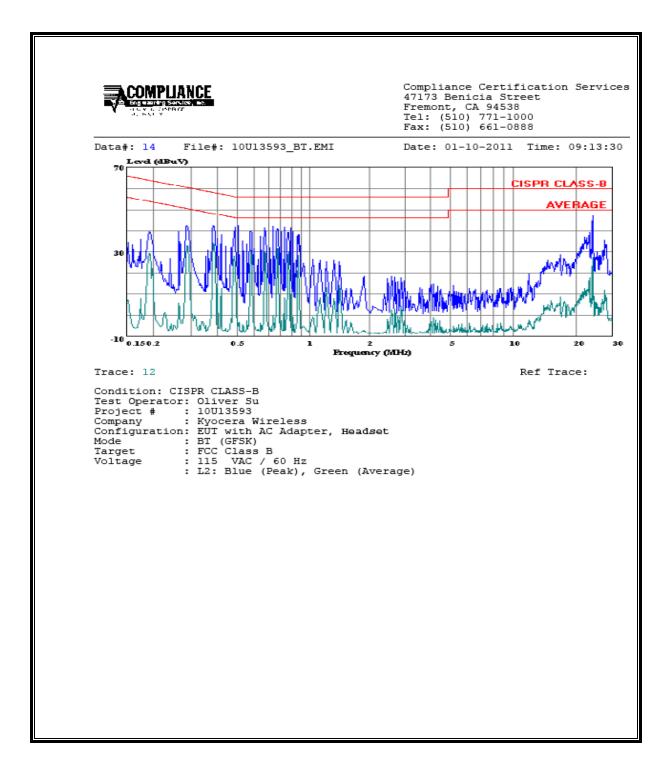
Т


<u>6 WORST EMISSIONS (EUT WITH AC ADAPTER)</u>

CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.	Reading			Closs	Limit	FCC_B	Margin		Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.29	45.04		38.33	0.00	60.55	50.55	-15.51	-12.22	L1	
0.39	44.92		39.39	0.00	58.17	48.17	-13.25	-8.78	L1	
0.78	46.87		37.55	0.00	56.00	46.00	-9.13	-8.45	L1	
0.29	42.60		33.11	0.00	60.55	50.55	-17.95	-17.44	L2	
0.39	42.51		34.19	0.00	58.17	48.17	-15.66	-13.98	L2	
24.01	47.31		27.49	0.00	60.00	50.00	-12.69	-22.51	L2	
6 Worst I	Data									

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 25 of 31


LINE 1 RESULTS

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.COMPLIANCE CERTIFICATION SERVICES (UL CCS)

Page 26 of 31

LINE 2 RESULTS

FORM NO: CCSUP4031B COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 27 of 31