Appendix D: **Dipole Calibration Parameters** ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S C S Client Kyocera USA | CALIBRATION CERTIFICATE | | | | |--|-----------------------------------|---|------------------------------| | Object | D1900V2 - SN | 5d016 | | | Calibration procedure(s) | QA CAL-05.v7
Calibration proce | edure for dipole validation kits | | | Calibration date: | September 15, 2 | 008 | | | Condition of the calibrated item | In Tolerance | | | | The measurements and the unce | rtainties with confidence p | onal standards, which realize the physical units robability are given on the following pages and a y facility: environment temperature $(22 \pm 3)^{\circ}$ C a | are part of the certificate. | | Primary Standards | ID# | Cal Data (Calibrated by Cadiffrate Na N | Calculate to the st | | Primary Standards Power meter EPM-442A | GB37480704 | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Power sensor HP 8481A | US37292783 | 04-Oct-07 (No. 217-00736)
04-Oct-07 (No. 217-00736) | Oct-08
Oct-08 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 01-Jul-08 (No. 217-00864) | Jul-09 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Jul-08 (No. 217-00867) | Jul-09 | | Reference Probe ES3DV2 | SN: 3025 | 28-Apr-08 (No. ES3-3025_Apr08) | Apr-09 | | DAE4 | SN: 601 | 14-Mar-08 (No. DAE4-601_Mar08) | Маг-0 9 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-07) | In house check: Oct-09 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-07) | In house check: Oct-08 | | Calibrated by: | Name
Jeton Kastrati | Function Laboratory Technician ### ### ### ####################### | Signature | | | | 1 | | | Approved by: | Katja Pokovic | Technical Manager | | | This calibration certificate shall not | be reproduced except in | full without written approval of the laboratory. | Issued: September 17, 2008 | #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofreguency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.47 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR normalized | normalized to 1W | 41.2 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 40.6 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.37 mW / g | | SAR normalized | normalized to 1W | 21.5 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 21.4 mW / g ± 16.5 % (k=2) | ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.6 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | | | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.2 mW / g | | SAR normalized | normalized to 1W | 40.8 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 39.1 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.31 mW/g | | SAR normalized | normalized to 1W | 21.2 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 20.8 mW / g ± 16.5 % (k=2) | 100 -4x ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.9 Ω + 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.4 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.0 Ω + 4.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 04, 2002 | #### **DASY5 Validation Report for Head TSL** Date/Time: 11.09.2008 14:48:18 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d016 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### **DASY5** Configuration: Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008 • Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87 # Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.2 V/m; Power Drift = 0.00747 dB Peak SAR (extrapolated) = 19 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.37 mW/g Maximum value of SAR (measured) = 12.2 mW/g 0 dB = 12.2 mW/g ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date/Time: 15.09.2008 14:13:19 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d016 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 1900 MHz; σ = 1.6 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### **DASY5** Configuration: Probe: ES3DV2 - SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 28.04.2008 • Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87 # Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.3 V/m; Power Drift = 0.00376 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.31 mW/g Maximum value of SAR (measured) = 12.5 mW/g 0 dB = 12.5 mW/g # Impedance Measurement Plot for Body TSL