

TEST RESULT SUMMARY

FCC Part 90

MANUFACTURER'S NAME

PRODUCT NAME

MODEL NUMBER(S) TESTED

SERIAL NUMBER(S) TESTED

PRODUCT DESCRIPTION

TEST REPORT NUMBER

TEST DATE(S)

4140 NW 114th Street Urbandale IA 50322

450 MHz RTK amplifier

PCSR60A003030

WC909605 Rev D

450-470 MHz amplifier

PF81443

15 December 2009 - 19 June 2010

Deere and Company d.b.a. Intellegent Solutions Group

TÜV SÜD America Inc, as an independent testing laboratory, declares that the equipment tested as specified above conforms to the applicable EMC requirements of FCC Part 90.

It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics. Any modifications necessary for compliance made during testing on the above mentioned date(s) must be implemented in all production units for compliance to be maintained.

Date: 25 June 2010

& Japubaushi

Location: Taylors Falls MN USA Greg S Jakubowski Senior EMC Technician

Joel T. Sohneiler

Joel T Schneider Senior EMC Engineer

Not Transferable

EMC TEST REPORT

Test Report No.	WC909605 Rev D Date of issue	ue: <u>25 June 2010</u>							
Product Name	450 MHz RTK amplifier								
Model(s) Tested	PF81443								
Serial No(s) Tested	PCSR60A003030								
Product Description	450-470 MHz amplifier								
Manufacturer	Deere and Company d.b.a. Intellegent Solutio	ns Group							
	4140 NW 114th Street								
	Urbandale IA 50322								
Test Result	■ Positive □ Negative								
that additional production units of this	nly to the specific samples tested under stated test conditions. It is model are manufactured with identical electrical and mechanical c erences or generalizations drawn by the client or others from TÜV S	omponents. TÜV SÜD America Inc shall							
	of the client. As a mutual protection to our clients, the public ar without our written approval. This report shall not be used by th S government.								
	TÜV SÜD America Inc and its professional staff hold government a professional organization certifications and are members of AAMI, ACIL, AEA, ANSI, IEEE, NARTE, and VCCI.	nd							

REVISION RECORD

REVISION	TOTAL NUMBER OF PAGES	DATE	DESCRIPTION					
	30	26 April 2010	Initial Release					
A	32	25 May 2010	 Revisions include: Adding new output power readings with the newest amp. 					
В	40	15 June 2010	 Adding 14 June 2010 test data. 					
С	39	21 June 2010	 Adding 19 June 2010 test data. 					
D	39	25 June 2010	Updated pages 15 and 21 to more clearly reflect the substitution method.					

DIRECTORY

Contents		
Revision Record		2
Directory		3
Test Regulations		4
Environmental Conditions		4
Power Supply		4
Test Equipment Traceability		4
Test Information		
Power	Section 90.205	5 - 13
Emission Bandwidth	Section 90.209	14
Emission Mask/Spurious Emissions	Section 90.210	15 - 21
Frequency Stability	Section 90.213	22
Transient Frequency Behavior	Section 90.214	23
Test area diagram		24
Test-setup Photos		25 - 26
Equipment Under Test Information		27
General Remarks, Deviations, Summary		28
Appendix A		
EMC Test Plan		29 - 36
Appendix B		
Measurement Protocol		37 - 39

America

EMC TEST REGULATIONS:

The tests were performed according to the following regulations: FCC Part 90

ENVIRONMENTAL CONDITIONS IN THE LAB

	Actual
Temperature:	: 21-24° C
Atmospheric pressure	: 98-99 kPa
Relative Humidity	: 19-52%

POWER SUPPLY UTILIZED

Power supply system

: 12 VDC

TEST EQUIPMENT

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated according to internal procedure.

SIGN EXPLANATIONS

- □ not applicable
- applicable

Output Power FCC Section 90.205

Test summary

The requirements are: \blacksquare - MET \square - NOT MET Testing was performed in accordance with the test procedure of ANSI TIA-603-C, clause 2.2.1 Maximum peak conducted output power of the fundamental is 46.88 dBm, 48.8 W Maximum peak ERP of the fundamental is 46.88 dBm + 7 dBi (max antenna gain) = 53.88 dBm, 245 W. Maximum peak conducted output power into the amplifier is 33 dBm, 2 W. The gain of the amplifier is 16 dB.

Test location

Aero Antenna Technology
 Wild River Lab Small Test Site (Open Area Test Site)

Test distance

□ - 3 meters

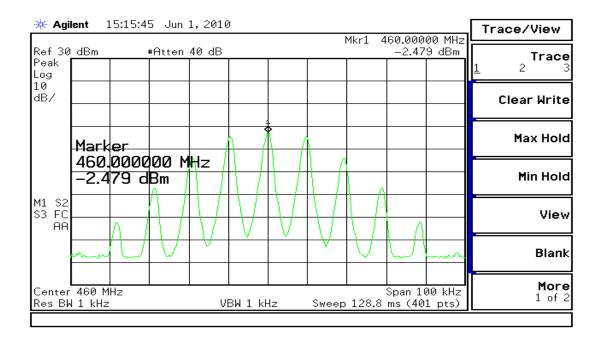
Test limit

The maximum allowable station effective radiated power (ERP) is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 2.

Test Data

See AeroAntenna Technology Inc document AMP460-1 SN:3120 on following pages

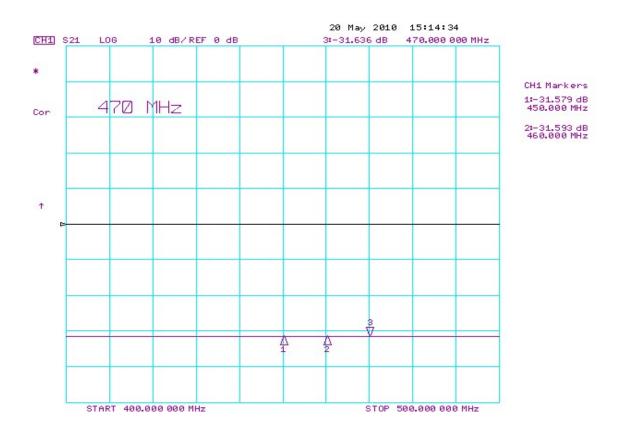
20732 Lassen Street, Chatsworth, CA 91311 Phone: (818) 993-3842 Fax: (818) 993-4525


AMP460-1 SN:3120

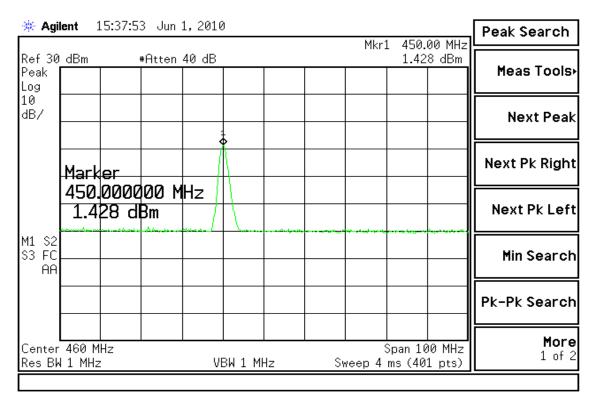
SIMULATED FSK STIMULUS TEST RESULTS

FSK Source

Source:	Agilent N5181A
Conditioning:	Variable Gain Amplifier (VGA)/2W
Baseband Bit Rate:	9600 bps
Passband modulation:	GFSK, 12kHz spacing


Agilent N5181A analog signal generator was used as a source. The signal generator output was connected into the input of a variable gain amplifier (VGA) in order to provide required power. The VGA gain was adjusted while monitored with an Agilent E4407B spectrum analyzer. The modulated stimulus signal spectral components are presented on the figure below:

Attenuation Characterization


The attenuator/cable/connector assembly is characterized by the AeroAntenna Technology, Inc. Radio Frequency laboratory using an RF Network Analyzer yielding the following attenuation factors:

- 31.58 dB @ 450 MHz
- 31.59 dB @ 460 MHz
- 31.64 dB @ 470 MHz

450 MHz Results

The input stimulus was adjusted using the VGA. The spectrum is presented on the figure below:

Using the attenuation factor at 450 MHz frequency:

$$P_{STIM} = 1.43$$
dBm $+ 31.58$ dBm $= 33.01$ dBm $= 2$ W

With this stimulus signal, the spectrum analyzer was placed into a Max Hold mode. The spectrum is presented on the figure below:

🔆 Agi	lent (15:41:5	i0 Jun	1,2010	0			Mkr1	150	00 MHz	Trace/View
Ref 30 Peak Log	dBm		#Atten	40 dB						2 dBm	Trace <u>1</u> 2 3
10 dB/					*						Clear Write
	Mark		200 1	AL 1							Max Hold
	14.	82 d	100 h Bm				-				Min Hold
M1 S2 S3 FC AA											View
											Blank
	· 460 M V 1 MHz			v	 BW 1 M	 Hz	S	S Weep 4 i		00 MHz 1 pts)	More 1 of 2

Using the attenuation factor at 450 MHz frequency:

 $P_{OUT} = 14.82 \text{dBm} + 31.58 \text{dBm} = 46.40 \text{dBm} = 43.7 \text{W}$

460 MHz Results

The input stimulus was adjusted using the VGA. The spectrum is presented on the figure below:

★ Agilent 15:45:13 Jun 1, 2010 Mkr1 460.00 Mkr1											Trace/View
Ref 30 Peak Log	dBm		#Attei	n 40 dB				Mkr1		00 MHZ 8 dBm	Trace <u>1</u> 2 3
10 dB/						<u> </u>					Clear Write
	Mark	1									Max Hold
		0000 68 d		MHz							Min Hold
M1 S2 S3 FC AA											View
											Blank
Center Res BW				v	 BW 1 M	 Hz	s	weep 4		00 MHz 1 pts)	More 1 of 2

Using the attenuation factor at 460 MHz frequency:

 $P_{STIM} = 1.47 \text{dBm} + 31.59 \text{dBm} = 33.06 \text{dBm} = 2W$

With this stimulus signal, the spectrum analyzer was placed into a Max Hold mode. The spectrum is presented on the figure below:

🔆 Agil	ent 1	15:48:2	3 Jun	1,2010	0			Mkr1	460.	00 MHz	Trace/View
Ref 30 Peak Log	dBm		#Atten	40 dB						9 dBm	Trace <u>1</u> 2 3
10 dB/						∳ 					Clear Write
	Mark										Max Hold
		0000 29 d	Bm	1Hz		1	-				Min Hold
M1 S2 S3 FC AA											View
											Blank
Center Res BW				 VI	 BW 1 M		S	weep 4 i		00 MHz 1 pts)	More 1 of 2

Using the attenuation factor at 460 MHz frequency:

 $P_{OUT} = 15.29$ dBm+ 31.59dBm= 46.88dBm= 48.8W

470 MHz Results

The input stimulus was adjusted using the VGA. The spectrum is presented on the figure below:

🔆 Agi	ilent 1	15:52:5	1 Ju	n 1,201	L0						Trace/View
Ref 30	1 dBm		#O++^	n 40 dE	,			Mkr1		00 MHz 1 dBm	
Peak Log					,				1.57		Trace <u>1</u> 23
10 dB/											Clear Write
	Mark	1					₽ 				Max Hold
		0000 71 d		MHz	<u>ann m</u>						Min Hold
M1 S2 S3 FC AA											View
											Blank
	· 460 M V 1 MHz				VBW 1 M	 Hz	SI	S Neep 4 r		00 MHz 1 pts)	More 1 of 2

Using the attenuation factor at 470 MHz frequency:

$$P_{STIM} = 1.37 dBm + 31.64 dBm = 33.01 dBm = 2W$$

With this stimulus signal, the spectrum analyzer was placed into a Max Hold mode. The spectrum is presented on the figure below:

🔆 Agi	lent 1	15:54:5	5 Jun	1,2010)			Mkr1	470.	00 MHz	Trace/View
Ref 30 Peak Log	dBm		#Atten	40 dB						4 dBm	Trace <u>1</u> 2 3
10 dB/							•				Clear Write
	Mark										Max Hold
		0000 04 d	100 M Bm							handward	Min Hold
M1 S2 S3 FC AA											View
											Blank
	• 460 M • 1 MHz			<u> </u> v	 BW 1 M	 Hz	S ⁱ	S weep 4 r		00 MHz 1 pts)	More 1 of 2

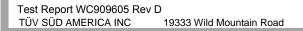
Using the attenuation factor at 470 MHz frequency:

 $P_{OUT} = 15.04$ dBm+ 31.64dBm= 46.68dBm= 46.6W

Emission Bandwidth Section 90.209

Test summary

The requirements are: ■ - NOT APPLICABLE □ - NOT MET Testing was performed in accordance with the test procedure of ANSI TIA-603-C.


The amplifier does not generate any carriers.

Test location

- □ Wild River Lab Large Test Site (Open Area Test Site)
- □ Wild River Lab Small Test Site (Open Area Test Site)

Test distance

- □ 3 meters
- □ 10 meters

Emission Mask/Spurious Emissions FCC Section 90.210

Test summary

The requirements are: ■ - MET □ - NOT MET

Testing was performed in accordance with the test procedure of ANSI TIA-603-C, clause 2.2.13 and 2.2.17

The radiated case spurious emissions were measured using a substitution method. A sample calculation is given below:

49.8 dBuV/m @ 3 m @ 2.25 GHz= -47 dBm erp (signal generator+ cable loss = -56.7 dBm + antenna gain of 9.7 dBi)

Test location

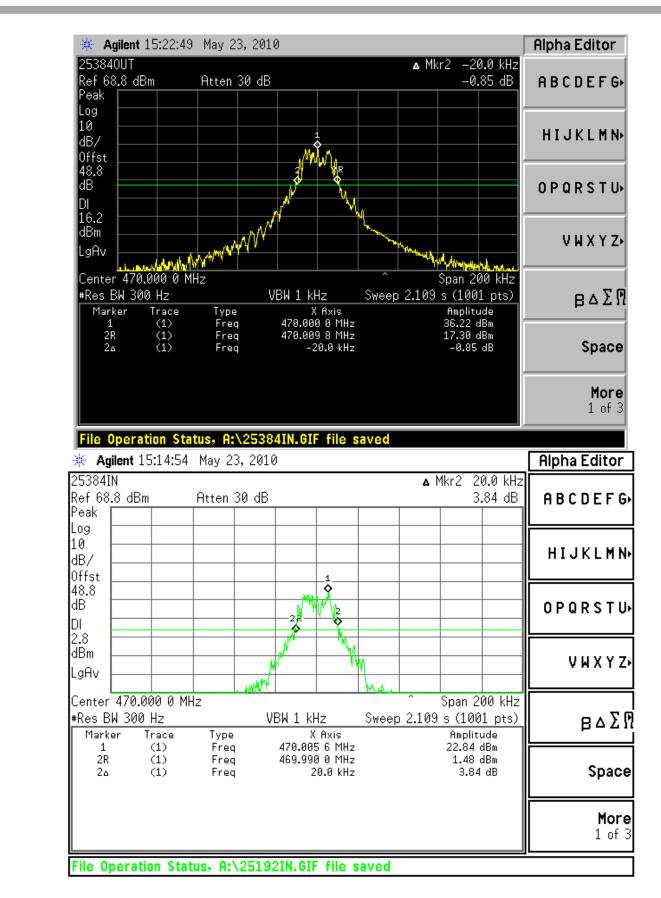
- Wild River Lab Large Test Site (Open Area Test Site)

□ - Wild River Lab Small Test Site (Open Area Test Site)

Test Equipment

root Equipin	one					
TUV ID	Model	Manufacturer	Description	Serial	Cal Due	
WRLE03058	2	Inmet	20 dB Attenuator	18N20W-20dB	Code B 11-Dec-10	
WRLE03333	SME03	Rohde & Schwarz	Signal Generator	100003	01-Oct-10	
WRLE03229	3115	Electro-Mechanics (EMCO)	Ridge Guide Antenna	2483	15-Jul-10	
NBLE02683	85650A	Hewlett-Packard	Quasi-peak Adapter	2430A00495	04-Mar-11	
WRLE02673	85662A	Hewlett-Packard	Analyzer Display	2152A03687	25-Mar-11	
WRLE03294	8566B	Hewlett-Packard	Spectrum Analyzer	2349A03098	25-Mar-11	
WRLE10527	SL18B4020	Phase One Microwave	Preamplifier 1 – 18 GHz	0001	Code B 28-Sep-10	
WRLE10616	ZHL-1042J	Mini-Circuits	Preamplifier 10 - 3000 MHz	QA0746005	Code B 23-Oct-10	
WRLE02075	3115	EMCO	Ridge Guide Ant. 1-18 GHz	9001-3275	18-Jan-11	
WRLE03203	EM-6917B	Electro-Metrics	Biconicalog Periodic	106	04-Jun-10	
WRLE02003	F550B1	Acronetics	4 – 8 GHz Bandpass Filter	010	Code B 02-Nov-10	
WRLE03934	F549B-1	Acronetics	2 – 4 GHz Bandpass Filter	010	Code B 30-Sep-10	
WRLE03935	F548B-1	Acronetics	1 – 2 GHz Bandpass Filter	010	Code B 25-Sep-10	
WRLE03894	NHP-600	Mini-Circuits	30-600 MHz Stopband Filter	2	Code B 11-Dec-10	
NBLE10436	10436	Inmet	20dB Attenuator 50W	18N20W-50dB	Code B 04-May-10	
WRLE03371	E4440A	Agilent	Spectrum Analyzer	MY43362222	11-Aug-10	
WRLE03333	SME03	Rohde & Schwarz	Signal Generator	100003	01-Oct-10	
WRLE03981	SMX100	IFI	Wideband Amplifier	B018-0298	Code Y	
WRLE10454	C6021-10	Werlatone	Coupler 40 dB .01-1000	18437	Code B 22-Jun-10	
NBLE10447	8482A	HP	Power Sensor	3318A26753	18-Mar-11	
WRLE02693	436A	HP	Power Meter	1918A05203	18-Mar-11	

Test data


See following pages

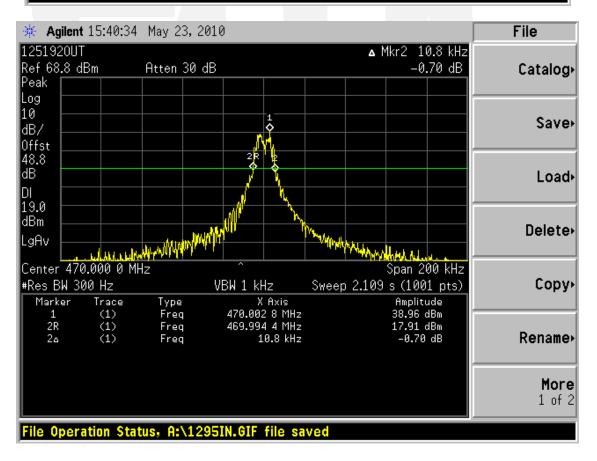
Test Report WC909605 Rev D TÜV SÜD AMERICA INC 19333 Wild Mountain Road

Taylors Falls MN 55084

America

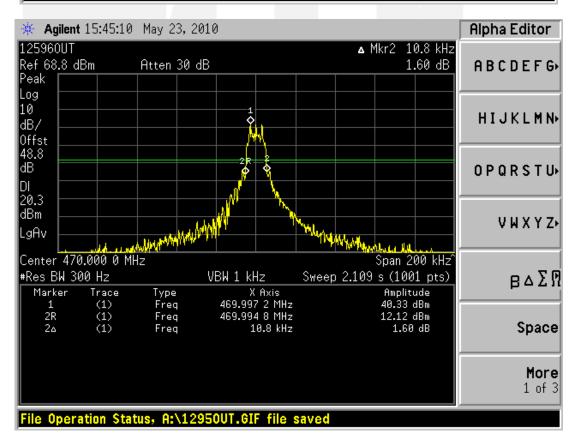
Test Report WC909605 Rev D 19333 Wild Mountain Road

TÜV SÜD AMERICA INC


🔆 Ag	j ilent 15:09:3	31 May 23, 20	10				Marker
25192 Ref 68 Peak		Atten 30 dl	B	Δ	Mkr2 20 2.9	.0 kHz 01 dB	Select Marker 1 <u>2</u> 3 4
Log 10 dB/ Offst							Normal
48.8 dB DI 6.5	Marker	Δ					Delta
dBm LgAv	20.000 2.91			1			Delta Pair (Tracking Ref) Ref <u>▲</u>
#Res B Mark		MHz Type	VBW 1 kHz X Axis	Sweep 2.10	Amplitu	pts) de	Span Pair Span <u>Center</u>
1 2R 2۵		Freq Freq Freq	469.994 6 MHz 469.990 4 MHz 20.0 kHz		26.47 dł 0.96 dł 2.91 (Bm	Off
							More 1 of 2
File 0	peration S	tatus, A:\251	920.GIF file sa	ived			

🔆 Agilent 15:02:44 May 23, 2010 251920UT ▲ Mkr2 20.0 kHz Ref 68.8 dBm Atten 30 dB -1.21 dB Peak Log 10 dB/ Offst 48.8 dB DL 19.0 M1 S2 Martine dBm MM Martin Martin Protections Span 200 kHz VBW 1 kHz Sweep 2.109 s (1001 pts) Marker X Axis Amplitude Trace Type Freq 39.02 dBm 17.76 dBm 1 (1)469.994 6 MHz 2R Freq (1)469.990 4 MHz 2۵ (1)20.0 kHz -1.21 dB Freq

Test Report WC909605 Rev D TÜV SÜD AMERICA INC 19333 Wild Mountain Road


🔆 Agilent 1	15:33:06	May 23, 2	2010			Alpha Editor
125192IN Ref 68.8 dB Peak	m	Atten 30	dB	Δ	Mkr2 10.8 kHz _5.68 dB	
Log 10 dB/ 0ffst			1			HIJKLMN
48.8 dB DI						OPQRSTU
6.4 dBm LgAv						VWXYZ
Center 470. #Res BW 300 Marker) Hz Trace	Туре	VBW 1 kHz X Axis	Sweep 2.10	Span 200 kHz 9 s (1001 pts) Amplitude	В∇Σ
1 2R 2۵	(1) (1) (1)	Freq Freq Freq	470.002 8 MHz 469.994 8 MHz 10.8 kHz		26.42 dBm 6.24 dBm -5.68 dB	Space
						More 1 of 3

File		:010	May 23, 2	15:49:54	🔆 Agilent
Catalog•	▲ Mkr2 10.8 kHz -2.59 dB	dB	Atten 30	Bm	12596IN Ref 68.8 d Peak
Save		1			Log 10
Load⊦		2/R			48.8 dB DI
Delete⊦		- AND MAA			7.8 dBm LgAv
Сору	Span 200 kHz Sweep 2.109 s (1001 pts) Amplitude	VBW 1 kHz X Axis	Hz Type	00 Hz Trace	Center 470 #Res BW 30 Marker
Rename,	27.81 dBm 3.02 dBm -2.59 dB	469.997 2 MHz 469.995 0 MHz 10.8 kHz	Freq Freq Freq	(1) (1) (1)	1 2R 2۵
More 1 of 2					

File Operation Status, A:\125960UT.GIF file saved

Conducted Spurio	us Emissions			
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
900	-29.9 dBm (-20)	-28.6 dBm (-20)	-28.6 dBm (-13)	-29.5 dBm (-13)
920	-30.8 dBm (-20)	-30.2 dBm (-20)	-29.8 dBm (-13)	-29.8 dBm (-13)
940	-34.8 dBm (-20)	-34.0 dBm (-20)	-33.7 dBm (-13)	-33.7 dBm (-13)
			· · · ·	· · · · ·
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
1350	-40 dBm (-20)	-40 dBm (-20)	-38.1 dBm (-13)	-38.1 dBm (-13)
1380	-37.9 dBm (-20)	-38.1 dBm (-20)	-37.2 dBm (-13)	-37.2 dBm (-13)
1410	-36.3 dBm (-20)	-35.3 dBm (-20)	-35.3 dBm (-13)	-35.7 dBm (-13)
				· · · ·
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
1800	-36.3 dBm (-20)	-36.6 dBm (-20)	-34.9 dBm (-13)	-34.9 dBm (-13)
1840	-33.0 dBm (-20)	-33.5 dBm (-20)	-33.0 dBm (-13)	-33.1 dBm (-13)
1880	-34.5 dBm (-20)	-33.8 dBm (-20)	-33.8 dBm (-13)	-34.7 dBm (-13)
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
2250	-27.1 dBm (-20)	-26.6 dBm (-20)	-26.4 dBm (-13)	-26.4 dBm (-13)
2300	-33.9 dBm (-20)	-34.1 dBm (-20)	-33.0 dBm (-13)	-33.0 dBm (-13)
2350	-27.3 dBm (-20)	-26.7 dBm (-20)	-26.7 dBm (-13)	-27.2 dBm (-13)
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
2700	-25.9 dBm (-20)	-26.1 dBm (-20)	-25.8 dBm (-13)	-25.8 dBm (-13)
2760	-29.4 dBm (-20)	-29.1 dBm (-20)	-28.9 dBm (-13)	-28.9 dBm (-13)
2820	-22.4 dBm (-20)	-22.7 dBm (-20)	-22.4 dBm (-13)	-22.4 dBm (-13)
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
3150	-36.0 dBm (-20)	-36.5 dBm (-20)	-35.8 dBm (-13)	-35.8 dBm (-13)
3220	-35.0 dBm (-20)	-35.3 dBm (-20)	-34.2 dBm (-13)	-34.2 dBm (-13)
3290	-35.4 dBm (-20)	-35.6 dBm (-20)	-35.4 dBm (-13)	-35.6 dBm (-13)
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
3600	-26.1 dBm (-20)	-26.6 dBm (-20)	-25.7 dBm (-13)	-25.7 dBm (-13)
3680	-25.8 dBm (-20)	-25.7 dBm (-20)	-25.5 dBm (-13)	-25.5 dBm (-13)
3760	-27.4 dBm (-20)	-27.1 dBm (-20)	-27.1 dBm (-13)	-27.4 dBm (-13)
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
4050	-28.3 dBm (-20)	-28.1 dBm (-20)	-27.8 dBm (-13)	-27.8 dBm (-13)
4140	-27.0 dBm (-20)	-27.0 dBm (-20)	-27.0 dBm (-13)	-27.0 dBm (-13)
4230	-20.6 dBm (-20)	-20.5 dBm (-20)	-20.8 dBm (-13)	-20.5 dBm (-13)
—				
Freq – MHz	12.5kHz/9.6kbps	12.5kHz/19.2kbps	25kHz/19.2kbps	25kHz/38.4kbps
4500	-21.6 dBm (-20)	-21.1 dBm (-20)	-21.1 dBm (-13)	-21.1 dBm (-13)
4600	-40.0 dBm (-20)	-40.0 dBm (-20)	-40.0 dBm (-13)	-40.0 dBm (-13)
4700	-29.2 dBm (-20)	-29.2 dBm (-20)	-29.2 dBm (-13)	-29.2 dBm (-13)

Case Radiation

RADIATED EMISSIONS

Test Report	#: WC90960	05 Run 6	Test Area:	LTS		
EUT Model	#: <u>AMP460-</u>	1	Date:	6/19/2010		
EUT Serial	#: 3021		EUT Power:	12VDC	Tempera	ture: <u>24.0</u> °C
Test Metho	d: FCC				Air Press	sure: <u>98.0</u> kPa
Custome	er: AeroAnte	nna Technology Inc			Rel. Hum	idity: 52.0 %
EUT Descriptio	n: Amplifier					
Note	s:					
Data File Nam						Page: 13 of 25
List of mea	asureme	nts for run #: 6				
FREQ	LEVEL (dBuV)	CABLE / ANT / PREAMP ATTEN (dB)	P / FINAL (dBuV /			DELTA2
470 MHz - 2W - 1	12.5 kHz - 9.6					
1.41 GHz	53.0 Pk	3.47 / 25.66 / 41.64 / 0.4	40.97	V / 1.00	/ 0 -56	n/a
1.88 GHz	51.5 Pk	3.81 / 27.52 / 43.0 / 0.64		H / 1.00 /		n/a
no higher levels a	at other 3 mod	ulations				
no higher levels a						
460 MHz - 2W - 1	12.5 kHz - 9.6	kb/s - 2-4 GHz				
3.22 GHz	51.1 Pk	4.95 / 30.48 / 43.7 / 0.34	4 43.17	V / 1.00	/ 0 -53	n/a
3.22 GHz	52.4 Pk	4.95 / 30.48 / 43.7 / 0.34	4 44.47	V / 1.00 /	270 -52	n/a
2.76 GHz	52.8 Pk	4.5 / 29.18 / 43.6 / 0.32		V / 1.00 /		n/a
2.3 GHz	48.4 Pk	4.11 / 27.88 / 43.42 / 0.1		V / 1.00 /		n/a
2.3 GHz	53.0 Pk	4.11 / 27.88 / 43.42 / 0.1		V / 1.00 /		n/a
3.22 GHz	53.8 Pk	4.95 / 30.48 / 43.7 / 0.34				n/a
2.3 GHz	54.7 Pk	4.11 / 27.88 / 43.42 / 0.1		H / 1.00 /		n/a
2.3 GHz	57.4 Pk	4.11 / 27.88 / 43.42 / 0.1	8 46.15	H / 1.00 /	200 -50	n/a
450 MHz - 2W - 2						
2.25 GHz	61.2 Pk	4.08 / 27.74 / 43.4 / 0.19		H / 1.00 /		n/a
2.7 GHz	53.1 Pk	4.44 / 29.01 / 43.58 / 0.2	43.25	V / 1.00 /	300 -53	n/a
460 MHz - 2W - 2				V//1.00/	200	
2.76 GHz	53.1 Pk	4.5 / 29.18 / 43.6 / 0.32				
scanned 1-5 GHz		Hz= -47 dBm erp (signal g	enerator+ cap	ie loss = -56.7 dB	im + antenna gain oi	9.7 dBl)
470 MHz - 2W - 2	25 kHz - 38.4 k	kb/s				
940.0 MHz	41.5 Pk	2.73 / 23.0 / 29.2 / 0.0				n/a
940.0 MHz	43.6 Pk	2.73 / 23.0 / 29.2 / 0.0				n/a
940.0 MHz	45.7 Pk	2.73 / 23.0 / 29.2 / 0.0	42.23	V / 1.00 /	310 -54	n/a
no higher levels a						
no higher levels a		id channels				
scanned 30-1000) MHz					

America

Frequency Stability FCC 90.213

Test summary

The requirements are: ■ - MET □ - NOT MET Testing was performed in accordance with the test procedure of ANSI TIA-603-C, clause 2.2.2

Test location

- In the second second
- □ Wild River Lab Small Test Site (Open Area Test Site)

Test Equipment

TUV ID	Model	Manufacturer	Description	Serial	Cal Due
NBLE02241	SM-8C	ТН	8CuF temperature/Humidity	/ 11754-S	06 Aug 10
WRLE03371	E4440A	Agilent	Spectrum Analyzer	MY43362222	11-Aug-10

Test limits

±1.5 ppm (worst case)

Test data

Test data			
-30 degrees	449.99985 MHz		
-20	449.99990 MHz		
-10	449.99990 MHz		
0	449.99980 MHz	-0.2 ppm	
10	449.99985 MHz		
20	449.99990 MHz		
30	449.99995 MHz		
40	449.99990 MHz		
50	449.99990 MHz		
85% voltage	449.99990 MHz		
115% voltage	449.99995 MHz	+0.1 ppm	
-			

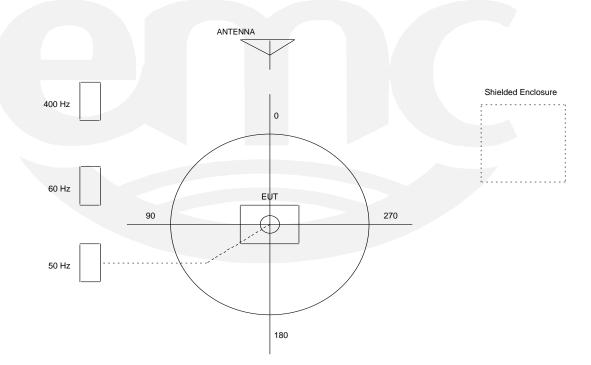
Transient Frequency Behavior FCC 90.214

Test summary

The requirements are: ■ - NOT APPLICABLE □ - NOT MET Testing was performed in accordance with the test procedure of ANSI TIA-603-C, clause 2.2.19.3

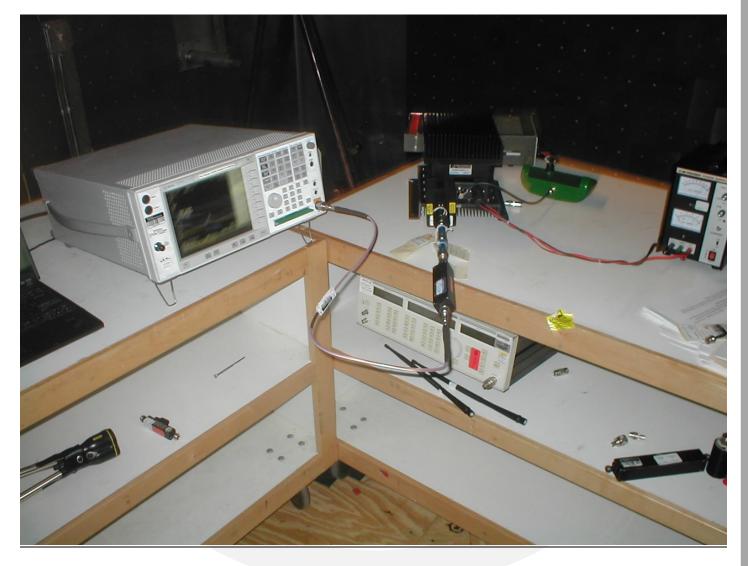
Test location

- Image: Provision of the second state of the second st



TEST SETUP FOR EMISSIONS TESTING

WILD RIVER LAB Large Test Site


Notes:

- 1. Items shown in dotted lines are located on the floor below the test area. It is 5 meters vertically from the ground floor to the test area.
- 2. 50 Hz, 60 Hz, and 400 Hz are power panels for alternating current.
- 3. The antenna may be positioned horizontally 3, 10 or 30 meters from the center of the turntable.
- 4. The circle is a 6.7 meter diameter turntable.
- 5. A ground plane is in the plane of this sheet.
- 6. The test sample is shown in the azimuthal position representing zero degrees.

Test-setup photo(s):

Test-setup photo(s):

Equipment Under Test (EUT) Test Operation Mode:

The device under test was operated under the following conditions during immunity testing :

- □ Standby
- □ Test program (H Pattern)
- □ Test program (color bar)
- □ Test program (customer specific)
- □ Practice operation
- In the second second

Configuration of the device under test:

- See Appendix A and test setup photos
- □ See Product Information Form(s) in Appendix B

DEVIATIONS FROM STANDARD:

None

GENERAL REMARKS:

At the time of test, the EUT was identified as Model Number AMP460-1, Serial Number 3120. Notification of a change in equipment identification to Model Number PF81443, Serial Number PCSR60A003030 was received from John Deere and is on file with TÜV SÜD America.

Modifications required to pass:

- None
- □ As indicated on the data sheet(s)

Test Specification Deviations: Additions to or Exclusions from:

- None
- As indicated in the Test Plan

SUMMARY:

The requirements according to the technical regulations are

- met and the device under test does fulfill the general approval requirements.
- not met and the device under test does not fulfill the general approval requirements...

EUT Received Date:	18 December 2009
Condition of EUT:	Normal
Testing Start Date:	15 April 2010
Testing End Date:	19 June 2010

TÜV SÜD AMERICA INC

Tested by:

Joel T. Sohneiler

Joel T Schneider Senior EMC Engineer Approved by:

I Cafubourte

Greg S Jakubowski Senior EMC Technician

Appendix A

Constructional Data Form

Test Report WC909605 Rev D TÜV SÜD AMERICA INC 19333 Wild Mountain Road

Appendix A Taylors Falls MN 55084

EMC Test Plan and Constructional Data Form

MODIFICATIONS TO THE	EQUIPMENT, will be input in	PLEASE SUBMIT A REVISED	D TP/CDF INDIC	T APPLICABLE. IF TESTING RESULTS IN ATING THOSE MODIFICATIONS. Is the F1 key at any time to get HELP for			
Company:	Deere and	Company d.b.a. Intelleg	ent Solutions	Group			
Address:	4140 NW 1	14th St.					
	Urbandale,	IA 50322					
Contact:	Michael Sc	hlax	Position:	Sr. Systems Engineer			
Phone:	515-331-97	746	Fax:	515-331-4705			
E-mail Address:	SchlaxMich	aelP@JohnDeere.co					
	m		_1				
General Equipment	Description	NOTE: This information	will be input in	nto your test report as shown below.			
EUT Description	RF Power			6 a			
EUT Name		HZ AMPLIFIER		· · · · · · · · · · · · · · · · · · ·			
Model No.:	PF81443		Serial No.:	PCSR60A003030			
Product Options:		Marketed for use at fix	– ced base stati	on with base station transmitter			
Configurations to be	tested:	EUT tested with Base					
Equipment Modification during this testing, sub	ation (If applied mit revised TP)	cable, indicate modification /CDF after testing is comple	s since EUT wa ete.)	is last tested. If modifications are made			
Modifications since la	ast test:	No Modifications since PCSR60A003030.					
Modifications made	during test:	None					
				olicable standard(s) where noted. ass 🛛 A 🗌 B Part 90			
EMC Directive 20 Std:	104/100/EC (I						
Machinery Direct	ive 89/392/El			ass A B (Separate Report)			
Std:				ass ⊠ A 🗌 B ass □ A □ B			
Medical Device D Std:	prective 93/4			ting appropriate for Industry			
old.				nadian Type Approval submission.			
Vehicle Directive		EC (EMC) 2004/10	4/EC (EMC)				
Other Vehicle S FDA Reviewers (Premarket					
Notification Sul							

FILE: EMCU_F09.02E, REVISION 10, Effective: 20 Feb 2008

EMC Test Plan and Constructional Data Form

Third Party Certification, if applicable (*Signature on Page 6 Required)
Attestation of Conformity (AoC)* EMC Certification (used with Octagon Mark)* Statement of Compliance (previously CoC)* Compliance Document* Protection Class (N/A for vehicles) Class I Class II Class II Class III (Press F1 when field is selected to show additional information on Protection Class.) FCC / TCB Certification Industry Canada / FCB Certification E-Mark Certification Taiwan Certification
Attendance
Test will be: Attended by the customer I Unattended by the customer
Failure - Complete this section if testing will not be attended by the customer.
If a failure occurs, TÜV SÜD America should: Image: Call contact listed above, if not available then stop testing. Image: Continue testing to complete test series. Image: Continue testing to define corrective action. Image: Stop testing.
EUT Specifications and Requirements
Length: 21 cm Width: 24 cm Height: 25.4 cm Weight: 6.8 KG
Power Requirements
Regulations require testing to be performed at typical power ratings in the countries of intended use. (i.e., European power is typically 230 VAC 50 Hz or 400 VAC 50 Hz, single and three phase, respectively) Voltage: DC 12-15 (If battery powered, make sure battery life is sufficient to complete testing.) # of Phases: NA Current Current (Amps/phase(max)): 10A Other Other
Other Special Requirements
EUT tested with 450 MHz RTK radio. This is the radio marketed with the EUT. Typical Installation and/or Operating Environment (ie. Hospital, Small Business, Industrial/Factory, etc.) Industrial/Farming
EUT Power Cable
□ Permanent OR ⊠ Removable Length (in meters): Nominal 1 m □ Shielded OR ⊠ Unshielded □ Not Applicable Verticable Not Applicable

EUT Interfac	e Pe	orts			able	s								_
			Dur Te		Qty		s	shielding				tested ters)	/able	thomas
Гуре	Analog	Digital	Active	Passive	ð	Yes	No	Туре	Termination	Connector Type	Port Termination	Length tested (in meters)	Removable	Domonoh
EXAMPLE: RS232		×	×		2	X		Foil over braid	Coaxial	Metallized 9- pin D-Sub	Characteristic Impedance	6	×	
DC Power					1				Coaxial	AMPHENOL PART# C016 20D003 110 12	Characteristic Impedance	1		
RF IN									Coaxial	TNC-TNC	50 Ohm Impedance	0.3		C
RF OUT									Coaxial	NType- NType	50 Ohm Impedance	2		[
														[
														T
														T
														Г

FILE: EMCU_F09.02E, REVISION 10, Effective: 20 Feb 2008

EMC	Test	Plan	and	Constructional	Data	Form	
-----	------	------	-----	----------------	------	------	--

EUT Software.

Revision Level: Aero Amp Firmware Rev B

Description: Initial production release firmware. Unit can not be reprogrammed without disassembly.

Equipment Under Test (EUT) Operating Modes to be Tested -- list the operating modes to be used during test. It is recommended the equipment be tested while operating in a typical operation mode. FCC testing of personal computers and/or peripherals requires that a simple program generate a complete line of upper case H's. Provide a general description of all software, firmware, and PLD algorithms used in the equipment. List all code modules as described above, with the revision level used during testing. Consult with your TÜV Product Service Representative if additional assistance is required.

1. Transmission - EUT amplifying and transmitting RF input from the base station transmitter.

RF Input comes from the 450 MHz RTK radio (FreeWave LRS-455 board). The firmware in the radio is 1.67i. An RS232 terminal program (for example: HyperTerminal) is used to configure the radio parameters (Frequency, bandwidth and power) via a menu provided by the radio firmware with a Control+Break command. The EUT has AeroAmp Rev B firmware.

- 2. Idle Mode EUT tested without an RF input while powered.
- 3.

 Equipment Under Test (EUT) System Components -- List and describe all components which are part of the EUT.

 For FCC & Taiwan testing a minimum configuration is required. (ie. Mouse, Printer, Monitor, External Disk Drive, Motherboard, etc)

 Description
 Model #
 Serial #
 FCC ID #

 RF Power Amplifier
 PF81443
 PCSR60A003030
 OV5PCSRAMP450A

 DC power cable providing power to
 PFP10065
 NA
 NA

EMC Test Plan and Constructional Data Form

Description	Model #	Serial #	FCC ID #
INC-TNC RF cable for RF IN Connecting Radio RF OUT to AMP RF IN	NA	NA	NA
N-Type RF cable for RF OUT Connecting RF OUT to measurement device	NA	NA	NA
RTK Radio Harness - RS232 and DC power into RF source adio	NA	NA	NA
12 Power supply	NA	NA	NA
John Deere: 450 MHz RTK Radio FreeWave Board: LRS-455	PF81428 LRS455-C-MS	PCSR45A550369 455-0369	KNY821191151819

Oscillator Frequencies

Manufacturer	Frequency	Derived Frequency	Component # / Location	Description of Use
Provided by Aero Technologie s				

Power Supply			
Manufacturer	Model #	Serial #	Туре
Generic 12-15 V DC power supply			Switched-mode: (Frequency)
to be used.			Linear Other:
			Switched-mode: (Frequency)

America

EMC Test Plan and Constructional Data Form

Power Line Filters				
Manufacturer	Model #	Location in E	EUT	
Provide by Aero Technologies				
Critical EMI Compon	ients (Capacitors, fer	rites, etc.)		
Description	Manufacturer	Part # or Value	Qty	Component # / Location
Provided by Aero Technologies				

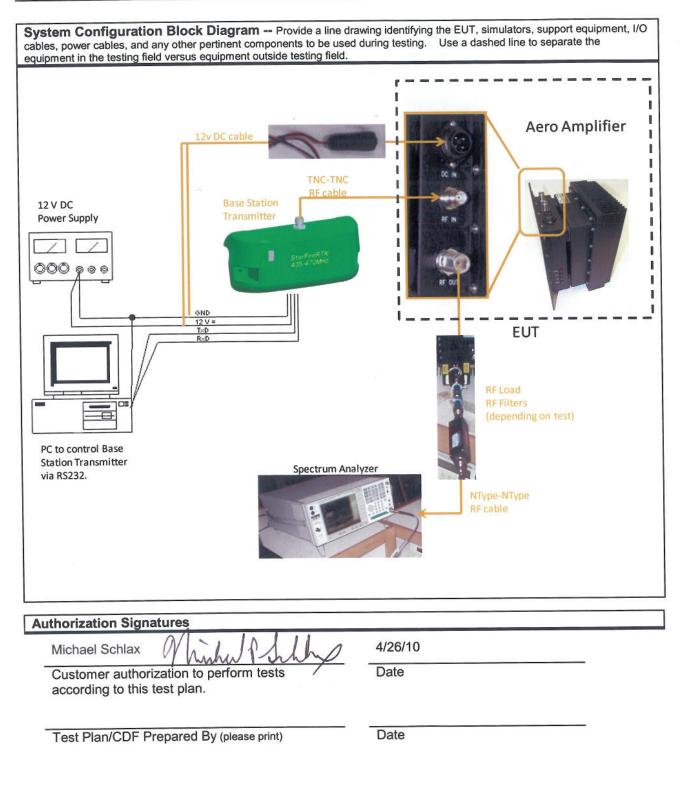
EMC Critical Detail -- Describe other EMC Design details used to reduce high frequency noise.

Provided by Aero Technologies

PLEASE ENTER NAMES BELOW (INSERT ELECTRONIC SIGNATURE IF POSSIBLE) Authorization (Signature Required if a Third Party Certification is checked on pg 1)

Michael Schlax – Senior SysEng IVS Customer authorization to perform tests according to this test plan.

Date


4/26/10

Test Plan/CDF Prepared By (please print)

Date

EMC Block Diagram Form

Appendix B

Measurement Protocol

MEASUREMENT PROTOCOL GENERAL INFORMATION

Test Methodology

Emission testing is performed according to the procedures in ANSI TIA-603-C.

Measurement Uncertainty

The test system for conducted emissions is defined as the LISN, tuned receiver or spectrum analyzer, and coaxial cable. The test system has a measurement uncertainty of ± 1.8 dB. The test system for radiated emissions is defined as the antenna, the pre-amplifier, the spectrum analyzer and the coaxial cable. The test system has a measurement uncertainty of ± 4.8 dB. The equipment comprising the test systems is calibrated on an annual basis.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into its characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

Conducted Emissions

The final level, in dBµV, equals the EMI receiver level plus the cable loss and LISN factor.

Radiated Emissions

The final level, in $dB\mu V/m$, equals the reading from the spectrum analyzer (Level $dB\mu V$), adding the antenna correction factor and cable loss factor (Factor dB) to it, and subtracting the preamp gain (and duty cycle correction factor, if applicable). This result then has the limit subtracted from it to provide the Delta, which gives the tabular data as shown in the data sheets in Attachment A.

Example: FREQ (MHz)	LEVEL (dBuV)	CABLE/ANT/PREAMP (dB) (dB/m) (dB)	FINAL (dBuV/m)	POL/HGT/AZ (m) (deg)	DELTA1
60.80	42.5Qp +	1.2 + 10.9 - 25.5 =	29.1	V 1.0 0.0	-10.9

Test Equipment

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated according to internal procedure.

DETAILS OF TEST PROCEDURES

Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with 50 Ω /50 μ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions.

Radiated Emissions

Radiated emissions in the frequency range of 10 kHz to 30 MHz, including the fundamental transmit signal, are measured using a receiver capable of quasi-peak and average measurements and a magnetic loop antenna. The transmitter is rotated through 3 orthogonal axes in order to determine the maximum emission levels. If the signal cannot be measured at the specified limit distance, measurements are recorded at multiple distances nearer to the device and the final level mathematically extrapolated. Radiated emissions from the EUT are measured in the frequency range of 30 to 1000 MHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters from the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are routed 360 degrees.