

: 12266561H-A-R1 Test report No. Page : 1 of 25 **Issued date** : July 31, 2018

FCC ID : OUCS79M0

RADIO TEST REPORT

Test Report No.: 12266561H-A-R1

Applicant OMRON Automotive Electronics Co. Ltd.

Type of Equipment Body Control Module

Model No. S79M0

OUCS79M0 FCC ID

Test regulation FCC Part 15 Subpart C: 2018

Test Result Complied

This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

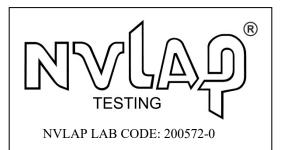
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This report is a revised version of 12266561H-A. 12266561H-A is replaced with this report.

Date of test:

May 14 and 16, 2018

Representative test engineer:

Hiroyuki Furutaka Engineer


Consumer Technology Division

Approved by:

Shinichi Miyazono

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.

*As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 2 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

REVISION HISTORY

Original Test Report No.: 12266561H-A

Revision	Test report No.	Date	Page revised	Contents
-	Test report No. 12266561H-A	July 5, 2018	-	-
(Original)				
1	12266561H-A-R1	July 31, 2018	P.8	Correction of spelling in Clause 4.1; From LFantenas to LF antennas
				From LFantenas to LF antennas

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1 : 3 of 25 Page : July 31, 2018 : OUCS79M0 Issued date

FCC ID

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	10
SECTION 6: -26dB Bandwidth	12
SECTION 7: 99% Occupied Bandwidth	12
APPENDIX 1: Test data	13
Radiated Emission below 30 MHz (Fundamental and Spurious Emission)	13
Radiated Emission above 30MHz (Spurious Emission)	17
-26dB Bandwidth and 99% Occupied Bandwidth	19
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	22
Radiated Emission	22
Worst Case Position	2.4

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 4 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

SECTION 1: Customer information

Company Name : OMRON Automotive Electronics Co. Ltd.

Address : 6368 NENJOZAKA OKUSA KOMAKI AICHI, 485-0802 JAPAN

Telephone Number : +81-568-78-6159 Facsimile Number : +81-568-78-7659 Contact Person : Takashi Betsui

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Body Control Module

Model No. : S79M0

Serial No. : Refer to Clause 4.2

Rating : DC 12.0 V
Receipt Date of Sample : May 9, 2018
Country of Mass-production : China and India
Condition of EUT : Production model

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: S79M0 (referred to as the EUT in this report) is the Body Control Module.

Radio Specification

<Transmitter>

Radio Type : Transceiver
Frequency of Operation : 125 kHz
Modulation : ASK

Antenna type : External Antenna

Clock Frequency (maximum) : 16 MHz

<Receiver> *1)

Radio Type : Receiver Frequency of Operation : 433.92 MHz

Operating temperature range : -40 deg. C to +80 deg. C

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test of receiver part was performed separately from this test report, and the conformability is confirmed.

Test report No. : 12266561H-A-R1
Page : 5 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 8.8</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 8.8</ic></fcc>	-	N/A	N/A	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 6.4, 6.12</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 4.4 RSS-Gen 8.9</ic></fcc>	Radiated	N/A	8.1 dB 0.12500 MHz 0 deg., PK with Duty factor (F Antenna)	Complied
3	Electric Field Strength of Spurious Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 6.4, 6.13</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 4.4 RSS-Gen 8.9</ic></fcc>	Radiated	N/A	8.6 dB 154.000 MHz, Vertical, QP (DR Antenna)	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.10:2013 6 Standard test methods <ic></ic></fcc>	<fcc> Reference data <ic></ic></fcc>	Radiated	N/A	N/A	N/A

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage.

Instead of a new battery, DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test report No. : 12266561H-A-R1 : 6 of 25 Page **Issued date** : July 31, 2018 FCC ID : OUCS79M0

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99 % Occupied	RSS-Gen 6.6	-	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test distance	Radiated emission (+/-)
	9 kHz to 30 MHz
3 m	3.8 dB
10 m	3.6 dB

^{*}Measurement distance

	Radiated emission (Below 1 GHz)					
Polarity	(3 m	<u>(*)(+/-)</u>	(10 m*)(+/-)			
	30 MHz to 200 MHz	200 MHz to 1000 MHz	30 MHz to 200 MHz	200 MHz to 1000 MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	5.0 dB	6.3 dB	4.9 dB	5.0 dB		

 $\frac{Radiated\ emission\ test(3\ m)}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 7 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 8 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

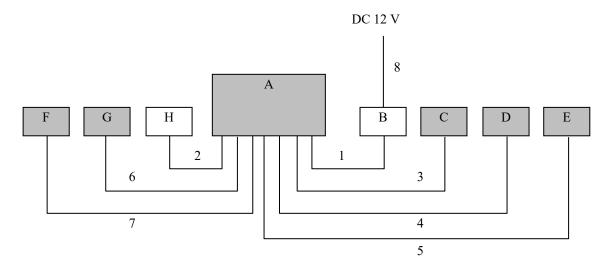
Test mode	Remarks
Transmitting mode (Tx) 125 kHz	-

Justification : The system was configured in typical fashion (as a user would normally use it) for testing.

The EUT has 5 types of LF antennas and 2 Systems.

[System 1] [System 2]

- LF Antenna-1 (DR) - LF Antenna-1 (DR)


- LF Antenna-2 (InF) - LF Antenna-2 (InF)

- LF Antenna-3 (InR) - LF Antenna-3 (InR)

- LF Antenna-4 (T/G) - LF Antenna-1 (T/G)

- * LF Antenna-1 (DR, AS, T/G) has variation of connector shape difference (LF Antenna-4 (T/G)).
- * It was confirmed that there was no difference in RF characteristics between LF Antenna-1 (DR, AS, T/G) and LF Antenna-4 (T/G).
- * It was confirmed that there was no difference in RF characteristics between LF Antenna-2 (InF) and LF Antenna-3 (InR), and the difference was only connector shape.
- * The test was performed with System 1 as representative.

4.2 Configuration and peripherals

- * Cabling and setup were taken into consideration and test data was taken under worse case conditions.
- * The EUT does not transmit simultaneously from multiple antennas.
- * Antenna was evaluated with the worst duty respectively.
- * The EUT was set to transmit the data continuously from one antenna as a worst case, not to transmit it randomly from each antenna.
- * According to the result of pre-check to LF Antenna-1 (DR, AS) and LF Antenna-4 (T/G), it was confirmed that there was no difference in RF characteristics among antennas. So the test was performed with one antenna C (LF Antenna-1 (DR)) as a representative.
- * According to the result of pre-check to LF Antenna-2 (InF) and LF Antenna-3 (InR), it was confirmed that there was no difference in RF characteristics among antennas. So the test was performed with one antenna F (LF Antenna-2 (InF)) as a representative.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 9 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remark
A	Body Control Module	S79M0	S79YL1-180510-	OMRON Automotive	EUT
	•		001	Electronics Co. Ltd.	
В	Switch and Load Board	-	-	-	-
С	LF Antenna (DR)	CGF-S001-0010	CGF-S001-0010-	OMRON Automotive	EUT
			001	Electronics Co. Ltd.	
D	LF Antenna (AS)	CGF-S001-0010	CGF-S001-0010-	OMRON Automotive	EUT
			002	Electronics Co. Ltd.	
Е	LF Antenna (T/G)	CGF-S001-0040	CGF-S001-0040-	OMRON Automotive	EUT
			001	Electronics Co. Ltd.	
F	LF Antenna (InF)	CGF-S001-0020	CGF-S001-0020-	OMRON Automotive	EUT
	, ,		001	Electronics Co. Ltd.	
G	LF Antenna (InR)	CGF-S001-0030	CGF-S001-0030-	OMRON Automotive	EUT
			001	Electronics Co. Ltd.	
Н	Push Start Switch	37290-79M0	P79-180510-001	OMRON Automotive	-
				Electronics Co. Ltd.	

List of cables used

LIST O	i cables useu					
No.	Name	Length (m)	Shi	Shield		
			Cable	Connector		
1	DC & Signal Cable	2.4	Unshielded	Unshielded	-	
2	DC & Signal Cable	2.4	Unshielded	Unshielded	-	
3	LF Antenna Cable	2.7	Unshielded	Unshielded	-	
4	LF Antenna Cable	2.7	Unshielded	Unshielded	-	
5	LF Antenna Cable	2.7	Unshielded	Unshielded	-	
6	LF Antenna Cable	2.7	Unshielded	Unshielded	-	
7	LF Antenna Cable	2.7	Unshielded	Unshielded	-	
8	DC Cable	2.0	Unshielded	Unshielded	-	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 10 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW / VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used			Test Receiver		
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane.

However test results were confirmed to pass against standard limit.

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 1 GHz Test data : APPENDIX 1

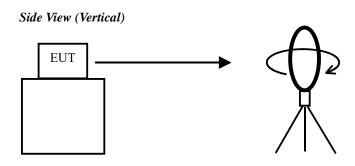
Test result : Pass

Date: May 14, 2018 Test engineer: Hiroyuki Furutaka

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$


 Test report No.
 : 12266561H-A-R1

 Page
 : 11 of 25

 Issued date
 : July 31, 2018

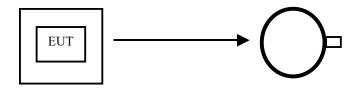
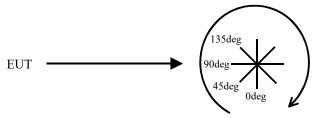

 FCC ID
 : OUCS79M0

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 12 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

SECTION 6: -26dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26 dB Bandwidth	150 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX 1

Test result : Pass

SECTION 7: 99% Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used					
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer					
Peak hold was ap	Peak hold was applied as Worst-case measurement.											

Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 13 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

APPENDIX 1: Test data

Radiated Emission below 30 MHz (Fundamental and Spurious Emission)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266561H
Date 05/14/2018
Temperature/ Humidity 23 deg. C / 51 % RH
Engineer Hiroyuki Furutaka
Mode Tx 125 kHz DR Antenna

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	102.4	19.8	-73.9	32.2	-	16.1	45.6	29.5	Fundamental
0	0.25000	PK	60.4	19.7	-73.9	32.2	-	-26.0	39.6	65.6	
0	0.37500	PK	54.5	19.7	-73.9	32.2	-	-31.9	36.1	68.0	
0	0.50000	QP	32.3	19.7	-33.9	32.1	-	-14.0	33.6	47.6	
0	0.62500	QP	44.3	19.7	-33.9	32.2	-	-2.1	31.7	33.8	
0	0.75000	QP	31.3	19.7	-33.8	32.2	-	-15.0	30.1	45.1	
0	0.87500	QP	38.9	19.7	-33.8	32.2	-	-7.4	28.7	36.1	
0	1.00000	QP	30.8	19.7	-33.8	32.2	-	-15.5	27.6	43.1	
0	1.12500	QP	36.4	19.7	-33.8	32.2	-	-9.9	26.5	36.4	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	102.4	19.8	-73.9	32.2	0.0	16.1	25.6	9.5	
0	0.25000	PK	60.4	19.7	-73.9	32.2	0.0	-26.0	19.6	45.6	
0	0.37500	PK	54.5	19.7	-73.9	32.2	0.0	-31.9	16.1	48.0	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3m without Distance factor

PK

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	102.4	19.8	6.1	32.2	-	96.1	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.

Test report No. : 12266561H-A-R1
Page : 14 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

Radiated Emission below 30 MHz (Fundamental and Spurious Emission)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266561H
Date 05/14/2018
Temperature/ Humidity 23 deg. C / 51 % RH
Engineer Hiroyuki Furutaka
Mode Tx 125 kHz InF Antenna

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	103.8	19.8	-73.9	32.2	-	17.5	45.6	28.1	Fundamental
0	0.25000	PK	63.4	19.7	-73.9	32.2	-	-23.0	39.6	62.6	
0	0.37500	PK	56.6	19.7	-73.9	32.2	-	-29.8	36.1	65.9	
0	0.50000	QP	32.9	19.7	-33.9	32.1	-	-13.4	33.6	47.0	
0	0.62500	QP	46.6	19.7	-33.9	32.2	-	0.2	31.7	31.5	
0	0.75000	QP	31.6	19.7	-33.8	32.2	-	-14.7	30.1	44.8	
0	0.87500	QP	40.5	19.7	-33.8	32.2	-	-5.8	28.7	34.5	
0	1.00000	QP	31.0	19.7	-33.8	32.2	-	-15.3	27.6	42.9	
0	1.12500	QP	37.5	19.7	-33.8	32.2	-	-8.8	26.5	35.3	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + D.Factor) - Gain(Amprifier)$

PK with Duty factor

	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	0	0.12500	PK	103.8	19.8	-73.9	32.2	0.0	17.5	25.6	8.1	
	0	0.25000	PK	63.4	19.7	-73.9	32.2	0.0	-23.0	19.6	42.6	
ĺ	0	0.37500	PK	56.6	19.7	-73.9	32.2	0.0	-29.8	16.1	45.9	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3m without Distance factor

PK

_												
	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
١					Factor			Factor				
ı		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0	0.12500	PK	103.8	19.8	6.1	32.2	-	97.5	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

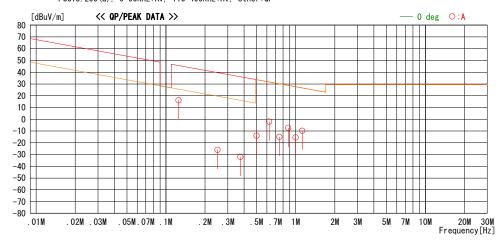
*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.


Test report No. : 12266561H-A-R1
Page : 15 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

Radiated Emission below 30 MHz (Fundamental and Spurious Emission) (Plot data, Worst case)

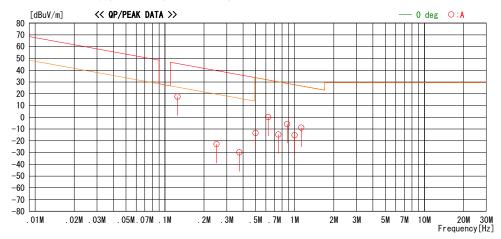
Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266561H
Date 05/14/2018
Temperature/ Humidity 23 deg. C / 51 % RH
Engineer Hiroyuki Furutaka
Mode Tx 125 kHz DR Antenna

LIMIT : FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.209(a), 9-90kHz:AV, 110-490kHz:AV, other:QP

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 12266561H-A-R1
Page : 16 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

Radiated Emission below 30 MHz (Fundamental and Spurious Emission) (Plot data, Worst case)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266561H
Date 05/14/2018
Temperature/ Humidity 23 deg. C / 51 % RH
Engineer Hiroyuki Furutaka
Mode Tx 125 kHz InF Antenna

LIMIT : FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.209(a), 9-90kHz:AV, 110-490kHz:AV, other:QP

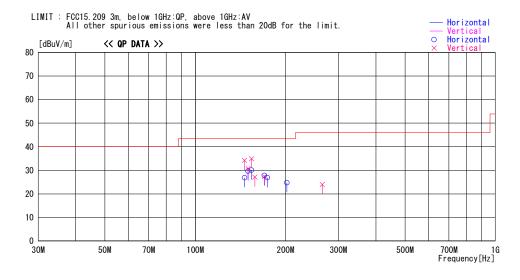
^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 17 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

Radiated Emission above 30MHz (Spurious Emission)

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber


Order No. 12266561H

Date 05/16/2018

Temperature/ Humidity 23 deg. C / 45 % RH

Engineer Hiroyuki Furutaka

Mode Tx 125 kHz DR Antenna

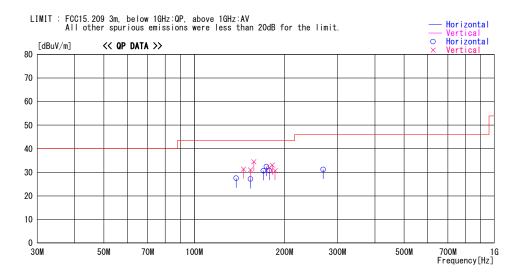
Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	DET	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	TOTAL.	[dBuV/m]	[dB]	Oommorre
145. 997	42. 7	QP	14. 9	-23. 4	34. 2	273		Vert.	43. 5		
146. 010	35. 3	QP	14. 9	-23. 4	26. 8	345	229	Hori.	43. 5	16.7	
150.000	37. 9	QP	15. 1	-23.3	29. 7	175	300	Hori.	43. 5	13.8	
150.000	38. 9	QP	15. 1	-23.3	30. 7	253	100	Vert.	43. 5	12.8	
154.000	38. 1	QP	15. 3	-23.3	30. 1	359	236	Hori.	43. 5	13.4	
154.000	42. 9	QP	15. 3	-23.3	34. 9	289	100	Vert.	43. 5	8. 6	
158.002	34. 8	QP	15. 5	-23. 2	27. 1	256	100	Vert.	43. 5	16.4	
170.000	34. 9	QP	16.0	-23. 1	27. 8	205	276	Hori.	43. 5	15.7	
170.000	34. 5	QP	16.0	-23. 1	27. 4	267	100	Vert.	43. 5	16.1	
174.000	33. 8	QP	16.1	-23. 1	26.8	213	278	Hori.	43. 5	16.7	
201.989	36. 1	QP	11.4	-22. 8	24. 7	134	168	Hori.	43. 5	18.8	
265.000	34. 0	QP	12.3	-22. 3	24. 0	234	100	Vert.	46. 0	22.0	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT – GAIN (AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12266561H-A-R1
Page : 18 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

Radiated Emission above 30MHz (Spurious Emission)

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Order No. 12266561H
Date 05/16/2018
Temperature/ Humidity 23 deg. C / 45 % RH
Engineer Hiroyuki Furutaka
Mode Tx 125 kHz InF Antenna

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	D 1	Limit	Margin	
[MHz]	[dBuV]	DET	Factor	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]	Comment
138, 000	36. 6	QP	[dB/m]	-23. 5	27. 5		348	Hori.	43.5	16. 0	
			14. 4			245 359	100		43. 5 43. 5		
145. 997 154. 000	39. 8 35. 2	QP QP	14. 9 15. 3	-23. 4 -23. 3	31.3 27.2	145	354	Vert.	43. 5 43. 5	12. 2 16. 3	
153. 999		QP	15. 3	-23. 3 -23. 3		304		Hori.	43. 5	12. 5	
		QP QP		-23. 3 -23. 2	31.0	232	100	Vert.	43. 5 43. 5	9.0	
157. 991	42. 2	QP QP	15. 5					Vert.			
170.000	37. 7 39. 4	QP QP	16.0	-23. 1	30. 6 32. 4	352 355	287 289	Hori.	43. 5 43. 5	12. 9 11. 1	
173. 992			16.1	-23. 1				Hori.			
178. 004		QP QP	16. 2	-23. 1	30.7	352	291	Hori.	43. 5	12.8	
181. 996	39. 7		16.3	-23. 0	33.0	248		Vert.	43. 5		
178. 000	38. 8	QP	16. 2	-23. 1	31.9	359	100	Vert.	43. 5	11.6	
185. 992		QP	16.3	-23. 0	30. 7	359	100	Vert.	43. 5		
268. 938	41. 0	QP	12. 5	-22. 3	31.2	123	200	Hori.	46. 0	14. 8	
					l						

CHART: WITH FACTOR

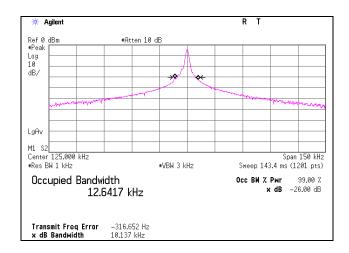
ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT – GAIN (AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12266561H-A-R1
Page : 19 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0


-26dB Bandwidth and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266561H Date 05/14/2018

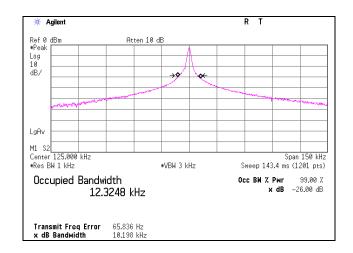
Temperature/ Humidity
Engineer
Hiroyuki Furutaka
Mode
Tx 125kHz DR Antenna

Frequency	-26dB	99% Occupied
	Bandwidth	Bandwidth
[kHz]	[kHz]	[kHz]
125	10.137	12.6417

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 20 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

-26dB Bandwidth and 99% Occupied Bandwidth


Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266561H Date 05/14/2018

Temperature/ Humidity
Engineer
Hiroyuki Furutaka
Mode

23 deg. C / 51 % RH
Hiroyuki Furutaka
Tx 125kHz InF Antenna

Frequency	-26dB	99% Occupied
	Bandwidth	Bandwidth
[kHz]	[kHz]	[kHz]
125	10.198	12.3248

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266561H-A-R1
Page : 21 of 25
Issued date : July 31, 2018
FCC ID : OUCS79M0

APPENDIX 2: Test instruments

Test Instruments

Test item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE	142182	Measure	KOMELON	KMC-36	-	-	-	-
RE	141942	Test Receiver	ROHDE & SCHWARZ	ESCI	100300	8/21/2017	8/31/2018	12
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	8/31/2017	8/31/2018	12
RE	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/14/2017	11/30/2018	12
RE	141222	Coaxial Cable	FUJIKURA	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/5	-	2/23/2018	2/28/2019	12
RE	141885	Spectrum Analyzer	AGILENT	E4448A	US44300523	11/14/2017	11/30/2018	12
RE	141413	Coaxial Cable	UL Japan	-	-	6/12/2017	6/30/2018	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	8/7/2017	8/31/2018	12
RE	141152	EMI measurement program	TSJ	TEPTO-DV	-	-	-	-
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	11/5/1900	260833	2/27/2018	2/28/2019	12
RE	141556	Thermo- Hygrometer	CUSTOM	CTH-201	0003	12/21/2017	12/31/2018	12
RE	141254	Loop Antenna	ROHDE & SCHWARZ	HFH2-Z2	100017	10/11/2017	10/31/2018	12
RE	141545	DIGITAL HiTESTER	HIOKI	3805	51201148	1/9/2018	1/31/2019	12
RE	141562	Thermo- Hygrometer	CUSTOM	CTH-180	1501	1/24/2018	1/31/2019	12
RE	148898	Attenuator	KEYSIGHT	8491A	MY52462282	10/12/2017	10/31/2018	12
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/30/2017	10/31/2018	12
RE	141425	Biconical Antenna	Schwarzbeck	BBA9106	1302	11/23/2017	11/30/2018	12
RE	141397	Coaxial Cable	UL Japan	-	-	6/22/2017	6/30/2018	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	1/30/2018	1/31/2019	12
RE	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck	VUSLP9111B	911B-192	12/10/2017	12/31/2018	12
RE	142227	Measure	KOMELON	KMC-36	-	-	-	-

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item:

RE: Spurious emission

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN