

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

EV REMOTE STICK

MODEL NUMBER: GHW-M002

FCC ID: OUCGHW-M002 IC: 850G-GHWM002

REPORT NUMBER: 11J13652-2

ISSUE DATE: MARCH 3, 2011

Prepared for OMRON CORPORATION 6368 NENJOZAKA, OKUSA KOMAKI, AICHI, 485-0802, JAPAN

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP Lab code: 100414-0

.

Revision History

Rev.	Date	Revisions	Revised By
	03/03/11	Initial Issue	M. Ferrer

Page 2 of 19

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS 4
2.	TES	ST METHODOLOGY
3.	FA	CILITIES AND ACCREDITATION5
4.	СА	LIBRATION AND UNCERTAINTY
4	1 .1.	MEASURING INSTRUMENT CALIBRATION
4	1.2.	SAMPLE CALCULATION
4	4.3.	MEASUREMENT UNCERTAINTY5
5.	EQ	UIPMENT UNDER TEST
5	5.1.	DESCRIPTION OF EUT
5	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.3.	SOFTWARE AND FIRMWARE
5	5.4.	WORST-CASE CONFIGURATION AND MODE
5	5.5.	DESCRIPTION OF TEST SETUP7
6.	TES	ST AND MEASUREMENT EQUIPMENT9
7.	AN	TENNA PORT TEST RESULTS10
	7.1	.1. 99% BANDWIDTH 10
8.	RA	DIATED TEST RESULTS
8	3.1.	LIMITS AND PROCEDURE
8	3.2.	TRANSMITTER BELOW 1 GHz 12
8	3.3.	TRANSMITTER ABOVE 1 GHz 15
8	3.4.	RECEIVER BELOW 1 GHz 16
8	3.5.	RECEIVER ABOVE 1 GHz 17
9.	SE	TUP PHOTOS

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-GEN Issue 3

COMPANY NAME: OMRON CORPORATION 6368 NENJOZAKA, OKUSA KOMAKI, AICHI, 485-0802, JAPAN						
EUT DESCRIPTION:	EUT DESCRIPTION: EV REMOTE STICK					
MODEL:	GHW-M002					
SERIAL NUMBER: 11						
DATE TESTED:	DATE TESTED:FEBRUARY 25, 2011 – MARCH 2, 2011					
	APPLICABLE STANDARDS					
STA	TEST RESULTS					
CFR 47 Pa	art 15 Subpart C	Pass				
INDUSTRY CANADA	RSS-210 Issue 8 Annex 2.9	Pass				

Underwriters Laboratories tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN ENGINEERING MANAGER UL CCS

Pass

MICHAEL FERRER SENOIR PROJECT ENGINEER UNDERWRITERS LABORATORIES

Page 4 of 19

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, IL 60193, USA.

UL NBK is accredited by NVLAP, Laboratory Code 100414-0

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	+/- 0.3 dB (k=2)
Radiated Disturbance, 30 to 1000 MHz	+/- 3.17 dB (k=2)

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 19

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an EV Remote Stick operating at 927MHz.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a monopole antenna with maximum peak gains of 1.91dBi gain

5.3. SOFTWARE AND FIRMWARE

The test utility software used during testing was EVRemote-Stick Ver. 1.7.

5.4. WORST-CASE CONFIGURATION AND MODE

The worst case was found to be at Z orientation.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

None

I/O CABLES

None

TEST SETUP

The EUT is configured to either transmit or receive continuously. It is battery powered and stand alone.

Page 7 of 19

SETUP DIAGRAM FOR TESTS

The diagram below illustrates the configuration of the equipment above.						
EUT	TX signal					

Page 8 of 19

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Radiated Emissions

Description	Manufacturer	Model	Identifier	Cal Date	Cal Due
EMI Test Receiver	Rohde & Schwarz	ESU	EMC4323	12/30/10	12/31/11
Bicon Antenna	Chase	VBA6106A	EMC4078	12/2/10	12/31/11
Log-P Antenna	Chase	UPA6109	EMC4313	6/1/10	6/30/11
Spectrum Analyzer	Rhode & Schwarz	FSEK	EMC4182	12/28/10	12/31/11
Antenna Array	UL	BOMS	EMC4276	N/A	N/A

Occupied Bandwidth

Description	Manufacturer	Model	Identifier	Cal Date	Cal Due
EMI Test Receiver	Rohde & Schwarz	ESU	EMC4323	12/30/10	12/31/11
Antenna	EMCO	7405-901	-	NA	NA

Page 9 of 19

7. ANTENNA PORT TEST RESULTS

7.1.1. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Date: 3.MAR.2011 14:52:59

Page 10 of 19

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

The field strengths measured at 3 meters shall not exceed the following:

Frequency Range	Field Strength (mV/m)			
	Fundamental	Harmonic		
902 - 928	50	0.5		
216 - 960	50	0.5		
Above 960	50	0.5		

FCC §15.209

IC RSS-210 Clause 2.6 (Transmitter) & IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 900 MHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 11 of 19

8.2. TRANSMITTER BELOW 1 GHz

File: RE 30-1800 MHz 3m no preamp_bicon cable.TST*nat saved*

Page 12 of 19

Omron Keyfob									
SN. 11, Z-Orie	ntation								
Battery									
Red=Horizontal	, Green=Vertical Meter Gain/Loss	Trangducer	Level Limi	+•1	2	3	4	5	6
No Frequency	Reading Factor	Factor dB[1	uVolts/mete	rl rl	2	3	T	5	0
[MHz]	[dB(uV)] [dB]	[dB]		- 1					
Bicon Horizonta	30 - 200MHz								
6 36.4568	9.36 PK .7	15.9	25.96	-	40	-	-	-	-
	Height:300 Horz	Margin [dB]		-	-14.04	-	-	-	-
Bicon Vertical	30 - 200MH7								
7 170.7746	9.51 PK 1.5	15.2	26.21	_	43.5	_	_	_	_
	Height:100 Vert	Margin [dB]		-	-17.29	-	-	-	-
	5	5							
LogP Horizontal	200 - 1000MHz								
1 824.1173	14.44 PK 3.7	22.8	40.94	-	46	-	-	-	-
	Height:100 Horz	Margin [dB]		-	-5.06	-	-	-	-
2 873.1512	11.47 PK 3.8	23 Manualar [d]D]	38.27	-	46	-	-	-	-
5 926 982	Height.200 Horz	Margin [dB]	91	-	-7.73	-	_	_	-
5 920.902	Height:100 Horz	ZJ.J Margin [dB]	91	_	45	_	_	_	_
	neight.iot noiz	Margin (ab)			15				
LogP Vertical 2	00 - 1000MHz								
3 873.1512	12.38 PK 3.8	22.9	39.08	-	46	-	-	-	-
	Height:200 Vert	Margin [dB]		-	-6.92	-	-	-	-
4 926.982	52.01 PK 3.8	23.3	79.11	-	46	-	-	-	-
	Height:100 Vert	Margin [dB]		-	33.11	-	-	-	-
T.TMTT 2. CEP 47	Part 15 Class B 3	m							
DIMIT Z. CFR 4/	rait 15 Class D 5								
PK - Peak detec	tor								
Test Meter	Gain/Loss Tran	sducer Level	Limit:1	2	3	4	5	6	
Frequency Read	ing Factor F	actor dB[uVol	ts/meter]						
[MHz] [dB(uV)] [dB]	[dB]							
#11 V ovia									===
926 8904 64 1	4 OP 3 9	23.3 91	34 94	_	_	_	_	_	
Azimuth: 269 H	eight:113 Vert	Margin [dB	1: -2.66	-	-	-	-	_	
	- J								
#11 Y axis									
926.8904 64.5	QP 3.9	23.3 91.	7 94	-	-	-	-	-	
Azimuth: 0 H	eight:158 Horz	Margin [dB]: -2.3	-	-	-	-	-	
#11 F - '									
#11 2 axis		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	10 01						
Azimuth: 29 H	י עד איז eight:156 Horz	مددے Margin [dR		_	_	_	_	_	
1.52macii - 27 11	019H0.100 H012	nargin (ab	, 1.JI						

LIMIT 1: FCC part 15

QP - Quasi-Peak detector

Page 13 of 19

Bandedge 902-928MHz

File: RE 30-1000 MHz 3m no preamp_bicon cable.TST*nat saved*

Page 14 of 19

8.3. TRANSMITTER ABOVE 1 GHz

No Emissions detected above the noise floor.

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 15 of 19

8.4. RECEIVER BELOW 1 GHz

Page 16 of 19

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701C TEL: (510) 771-1000 FAX: (510) 661-0888

8.5. RECEIVER ABOVE 1 GHz

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 17 of 19