

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

FOB ASSY BIDIRECTIONAL R/C

MODEL NUMBER: GHW-H001

FCC ID: OUCGHW-H001

REPORT NUMBER: 32AE0249-SH-B-R1

ISSUE DATE: September 28, 2011

Prepared for OMRON CORPORATION 6368 NENJOZAKA, OKUSA KOMAKI, AICHI, 485-0802, JAPAN

Prepared by UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401 JAB Accreditation No. : RTL02610

13-EM-F0429

REPORT NO: 32AE0249-SH-B-R1 FCC ID: OUCGHW-H001

Revision History

Rev.	lssue Date	Revisions	Revised By
-	09/26/11	Initial Issue	M. Hosaka
1	09/28/11	Correct the description on the table in Section 5 * This report is a revised version of 32AE0249-SH-B. 32AE0249-SH-B is replaced with this report.	M. Hosaka

Page 2 of 21

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS4
2. TEST METHODOLOGY
3. FACILITIES AND ACCREDITATION
4. CALIBRATION AND UNCERTAINTY
MEASURING INSTRUMENT CALIBRATION5
SAMPLE CALCULATION
MEASUREMENT UNCERTAINTY5
5. EQUIPMENT UNDER TEST
DESCRIPTION OF EUT6
DESCRIPTION OF AVAILABLE ANTENNAS6
SOFTWARE AND FIRMWARE6
WORST-CASE CONFIGURATION AND MODE6
DESCRIPTION OF TEST SETUP7
6. TEST AND MEASUREMENT EQUIPMENT
7. ANTENNA PORT TEST RESULTS10
20 dB AND 99% BANDWIDTH10
8. RADIATED TEST RESULTS13
8.1 LIMITS AND PROCEDURE
8.2 TRANSMITTER BELOW 1 GHz (carrier)14
TRANSMITTER BELOW 1 GHz (Spurious)15
8.3 TRANSMITTER ABOVE 1 GHz16
8.4 RECEIVER BELOW 1 GHz17
8.5 RECEIVER ABOVE 1 GHz18
9. SETUP PHOTOS

Page 3 of 21

1. ATTESTATION OF TEST RESULTS

FUT DESCRIPTION.	KOMAKI, AICHI, 485-0802, JAPAN	
MODEL:	GHW-H001	
SERIAL NUMBER:	2	
DATE TESTED:	September 12 to 21, 2011	
	APPLICABLE STANDARDS	
5	STANDARD	TEST RESULTS
CFR 47	Part 15 Subpart C	Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 2.9 Pass INDUSTRY CANADA RSS-GEN Issue 3 Pass UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the

UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By:

Tested By:

Go Ishiwata Manager of WiSE Japan, UL Verification Service

M. Hazala

Makoto Hosaka Engineer of WiSE Japan, UL Verification Service

Page 4 of 21

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at http://www.jab.or.jp/cgi-bin/jab exam proof j.cgi?page=2&authorization number=RTL02610

4. CALIBRATION AND UNCERTAINTY

MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER		UNCERTAINTY		
	30MHz-300MHz(3m)	+/- 4.9 dB		
Radiated Emission	300MHz-1000MHz(3m)	+/- 5.0 dB		
	1000MHz-13GHz(3m)	+/- 4.9 dB		

Uncertainty figures are valid to a confidence level of 95% using a coverage factor k=2..

Page 5 of 21

5. EQUIPMENT UNDER TEST

DESCRIPTION OF EUT

The EUT is a FOB ASSY BIDIRECTIONAL R/C operating at 926.85MHz.

DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an Internal loading antenna with maximum peak gains of -10.44dBi gain.

SOFTWARE AND FIRMWARE

The test utility software used during testing was EVRemote-Stick_H Ver. 1.0

WORST-CASE CONFIGURATION AND MODE

The carrier and spurious was measured in three different orientations X, Y and Z to find worstcase orientation, and final testing for radiated emissions was performed with EUT in following orientation.

	Horizontal	Vertical
Carrier	Z	Х
Spurious (below 1GHz)	Z	Х
Spurious (above 1GHz)	Y	Х

DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

none

I/O CABLES

none

Page 7 of 21

SETUP DIAGRAM FOR RADIATED TESTS

EUT

Page 8 of 21

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *
						Interval(month)
SAF-01	Pre Amplifier	SONOMA	310N	290211	RE	2011/02/17 * 12
SAT6-01	Attenuator	JFW	50HF-006N	-	RE	2011/02/17 * 12
SAT3-04	Attenuator	JFW	50HF-003N	-	RE	2011/02/17 * 12
SBA-01	Biconical Antenna	Schwarzbeck	BBA9106	91032664	RE	2011/08/17 * 12
SCC-	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhner/Suhn	8D2W/12DSFA/141PE/1	-/0901-269(RF	RE	2011/04/28 * 12
A1/A3/A5/A//A8/A13/ SRSE-01		er/Suhner/Suhner/TOYO	41PE/141PE/141PE/NS 4906	Selector)		
SCC-	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhner/Suhn	8D2W/12DSFA/141PE/1	-/0901-269(RF	RE	2011/04/28 * 12
A2/A4/A6/A7/A8/A13/		er/Suhner/Suhner/TOYO	41PE/141PE/141PE/NS	Selector)		
SRSE-01			4906			
SLA-01	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0888	RE	2011/08/17 * 12
SOS-01	Humidity Indicator	A&D	AD-5681	4062555	RE	2011/02/23 * 12
STR-01	Test Receiver	Rohde & Schwarz	ESU40	100093	RE	2010/10/29 * 12
SJM-12	Measure	PROMART	SEN1935	-	RE	-
SAEC-01(NSA)	Semi-Anechoic Chamber	TDK	SAEC-01(NSA)	1	RE	2010/09/11 * 12
COTS-SEMI-1	EMI Software	TSJ	TEPTO- DV(RE,CE,RFI,MF)	-	RE	-
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2011/02/17 * 12
SAT6-03	Attenuator	JFW	50HF-006N	-	RE	2011/02/17 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2010/10/15 * 12
SCC-	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhner/Suhn	8D2W/12DSFA/141PE/1	-/0901-271(RF	RE	2011/04/28 * 12
C1/C2/C3/C4/C5/C10		er/Suhner/Suhner/TOYO	41PE/141PE/141PE/NS	Selector)		
/SRSE-03			4906			
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0901	RE	2010/10/15 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2011/02/23 * 12
STR-03	Test Receiver	Rohde & Schwarz	ESI40	100054/040	RE	2011/07/28 * 12
SJM-10	Measure	PROMART	SEN1935	-	RE	-
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2010/09/13 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2011/07/19 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2011/04/28 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2011/05/27 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2011/08/28 * 12
SSA-02	Spectrum Analyzer	Agilent	E4448A	MY48250106	RE	2011/03/07 * 12
SFL-01	Highpass Filter	MICRO-TRONICS	HPM50115	001	RE	2010/12/15 * 12
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	051	RE	2010/12/15 * 12
SAT10-04	Attenuator(above1GHz)	Agilent	8493C-010	74863	RE	2010/12/15 * 12

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item:

RE: Radiated emission

Page 9 of 21

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

7. ANTENNA PORT TEST RESULTS

20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode. The RBW is set to $\geq 1\%$ of the 20 dB bandwidth. The VBW is set to 3 times the RBW.

RESULTS

Frequency	20 dB Bandwidth	99% Bandwidth
(MHz)	(kHz)	(kHz)
926.85	125.0000	116.4771

Page 10 of 21

20 dB BANDWIDTH

Page 11 of 21

99% BANDWIDTH

Page 12 of 21

8. RADIATED TEST RESULTS

8.1 LIMITS AND PROCEDURE

LIMITS

The field strengths measured at 3meters shall not exceed the following:

Frequency Range	Field Strength (mV/m)				
(MHz)	Fundamental	Harmonics			
902 - 928	50	0.5			

FCC §15.209

IC RSS-210 Clause 2.6 (Transmitter) & IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 13 of 21

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 *This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.*

8.2 TRANSMITTER BELOW 1 GHz (carrier)

Compan Kind of Model N	y EUT	: OM : FOE	RON C	ORP((BIDI	DRATIOI IRECTIO	N NAL R/	′C		Mod Rep	e ort No).	Date : 2011/09/ : Teansmitting : 32AE0249-SH-B
Serial N Remark	0. 3	: 2 : Hor	Z-axi	s. Ve	r:X-axis	1			Tem	p./Hu	ımi.	23deg.C. / 74%RH
Limit1 :	FCC15	249 (a)	below	1 GH:	z:QP							
<< QP	DATA >>					_			Engi	neer		: Makoto Hosaka
No. Fi	req. Real <q Hz] [dB</q 	ting P> Ant.Fac uV] [dB/m]	Loss [dB]	Gain [dB]	Result <qp> [dBuV/m]</qp>	Limit <qp> [dBuV/m]</qp>	Margin <qp> [dB]</qp>	Pola. [H/V]	Height [cm]	Angle [deg]	Ant. Type	Comment
1 93 2 93 3 93	26.810 6 26.850 5 26.890 6	0.1 22.4 8.2 22.4 0.1 22.4	10.1	0.0	92.6 90.7 92.6	94.0 94.0 94.0	1.4 3.3 1.4	Hori. Hori. Hori.	100 100 100	141 141 141	9 9 9 9 9	
4 93 5 93 6 93	26.810 5 26.850 5 26.890 5	7.8 22.4 5.9 22.4 7.8 22.4	10.1 10.1 10.1	0.0 0.0 0.0	90.3 88.4 90.3	94.0 94.0 94.0	3.7 5.6 3.7	Vert. Vert. Vert.	119 119 119	77 77 77	в В	
		1	1					I				I

Page 14 of 21

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

TRANSMITTER BELOW 1 GHz (Spurious)

Page 15 of 21

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

8.3 TRANSMITTER ABOVE 1 GHz

Page 16 of 21

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

TEL: +81 463 50 6400 FAX: +81 463 50 6401

8.4 RECEIVER BELOW 1 GHz

Page 17 of 21

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

8.5 RECEIVER ABOVE 1 GHz

Page 18 of 21

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401