

Test report No.

Page

Issued date Revised date FCC ID

: 10116173H-C-R1 : 1 of 15

: December 24, 2013

: January 6, 2014 : OUCGGM-M007

EMI TEST REPORT

Test Report No.: 10116173H-C-R1

Applicant

OMRON Automotive Electronics Co. Ltd.

Type of Equipment

ECU

Model No.

GGM-M007

FCC ID

OUCGGM-M007

Test regulation

FCC Part 15 Subpart B: 2013

RSS-Gen Issue 3: 2010 +A1: January 2012

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This report is a revised version of 10116173H-C. 10116173H-C is replaced with this report.

Date of test:

December 17, 2013

Representative test engineer:

> Masatoshi Nishiguchi Engineer of WiSE Japan, **UL Verification Service**

Approved by:

Masanori Nishiyama Manager of WiSE Japan, **UL Verification Service**

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/ma rk1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8999

Facsimile

: +81 596 24 8124

13-EM-F0429

: 2 of 15 Page

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

REVISION HISTORY

Original Test Report No.: 10116173H-C

Revision	Test report No.	Date	Page revised	Contents
- (Original)	10116173H-C	December 24, 2013	-	-
1	10116173H-C-R1	January 6, 2014	P. 9	Addition of following sentence; *The test signal level was confirmed to be sufficient to stabilize the local oscillator of the EUT.
1	10116173H-C-R1	January 6, 2014	P. 9, 10	Correction of Configuration and peripherals.
1	10116173H-C-R1	January 6, 2014	P. 11	Correction of sentence in Section 5.4.

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999 : +81 596 24 8124 Facsimile

Test report No. Page

: 10116173H-C-R1 : 3 of 15

Issued date Revised date FCC ID : December 24, 2013 : January 6, 2014 : OUCGGM-M007

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Radiated Emission	10
APPENDIX 1: Data of EMI test	11
Radiated Emission	11
APPENDIX 2: Test instruments	13
APPENDIX 3: Photographs of test setup	14
Radiated Emission	
Worst Case Position (Horizontal: X-axis/ Vertical: Y-axis)	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

SECTION 1: Customer information

Company Name : OMRON Automotive Electronics Co. Ltd.

Address : 6368 NENJOZAKA OKUSA KOMAKI AICHI, 485-0802 JAPAN

Telephone Number : +81-568-78-6159 Facsimile Number : +81-568-78-7659 Contact Person : Masashi Matsuda

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : ECU Model No. : GGM-M007

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC12.0V

Receipt Date of Sample : November 28, 2013

Country of Mass-production : China

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product description

Model No: GGM-M007 (referred to as the EUT in this report) is the ECU.

KOS consists of LF antenna for transmission, UHF receiver, Base station (transmitting and receiving device for communication with a transponder), and FOB slot with coil antenna for transmission and reception.

KOS is a system to lock/unlock a door/trunk by pressing Lock/Unlock switch on each door (door entry function), and start up the engine without using an existing mechanical key (engine starter function), while holding the registered keyless operation key (hereafter referred to as FOB) in a pocket or bag.

The keyless entry function to lock/unlock doors by pressing a button on FOB, immobilizer function for antitheft, and remote engine starter function to start up/ stop the engine by pressing a button of a separate transmitter (remote control engine starter), TPMS function which monitors the air pressure of a tire are also installed.

General Specification

Clock frequency : 16.00MHz (CPU)
Battery : Car Battery (DC 12V)

Operating Voltage : DC 12V

Operating Temperature : -40 deg. C to +85 deg. C

KOS has the following radio functions: Immobilizer system and Smart System (LF Transmitting/RF Receiving).

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 : OUCGGM-M007 FCC ID

Immobilizer system function *

Equipment Type Transceiver Frequency of Operation 125kHz Type of Modulation **BPLM** Mode of Operation Simplex Antenna Type Coil Antenna Method of Frequency Generation : Ceramic

Smart System: LF Transmitting function *

Equipment Type Transmitter Frequency of Operation 125kHz Mode of Operation Simplex Antenna Type Ferrite Antenna Method of Frequency Generation **CPU Timer**

Smart System: RF Receiving function

Type of Receiver Super Heterodyne

Receiving Frequency 315MHz Oscillator Frequency 21.948717MHz Local Oscillator Frequency 314.726MHz Intermediate Frequency 274kHz Antenna Type S type antenna Method of Frequency Generation Crystal

Receiving Bandwidth 200kHz

FCC15.111(b)

The receiving antenna (of this EUT) is installed inside the EUT and cannot be removed (permanently attached). Therefore, Radiated emission test was performed.

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Immobilizer system function was tested according to FCC Part 15 Subpart C standard. Please see UL Japan, Inc. Test Report No. 10116173H-A-R1 and 10116173H-B-R1.

^{*} LF Transmitting function was tested according to FCC Part 15 Subpart C standard. Please see UL Japan, Inc. Test Report No. 10116173H-A-R1 and 10116173H-B-R1.

: 10116173H-C-R1 Test report No.

Page : 6 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

SECTION 3: Test specification, procedures & results

3.1 **Test specification**

: FCC Part 15 Subpart B: 2013, final revised on September 30, 2013 and effective October 30, Test specification

2013

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart B Unintentional Radiators

Test specification / Title : RSS-Gen Issue 3: 2010 +A1: January 2012

General Requirements and Information for the Certification of Radio Apparatus

3.2 Procedures and results

Item	Test Procedure	Limits	Deviation	Worst margin	Result	
Conducted emission	7. AC powerline conducted emission measurements	FCC:Part 15 Subpart B 15.107(a)	N/A *1)	N/A	N/A	
	IC: RSS-Gen 7.2.4 IC: RSS-Gen 7.2.4					
Radiated emission	FCC: ANSI C63.4: 2003 8. Radiated emission measurements	FCC: Part 15 Subpart B 15.109(a)	N/A	18.6dB 944.178MHz, QP	Complied	
	IC: RSS-Gen 4.10			Horizontal/Vertical		

*Note: UL Japan, Inc's EMI Work Procedure 13-EM-W0420.

3.3 Addition to standard

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Radiated emission								
(semi-		(3m*)((<u>+</u> dB)		(1m*)	$(0.5m*)(\underline{+}dB)$			
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz		
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz		
No.1	4.0dB	5.1dB	5.0dB	5.1dB	6.0dB	4.9dB	4.3dB		
No.2	3.9dB	5.2dB	5.0dB	4.9dB	5.9dB	4.7dB	4.2dB		
No.3	4.3dB	5.1dB	5.2dB	5.2dB	6.0dB	4.8dB	4.2dB		
No.4	4.6dB	5.2dB	5.0dB	5.2dB	6.0dB	5.7dB	4.2dB		

^{*3}m/1m/0.5m = Measurement distance

Radiated emission test(3m)

The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Page : 7 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

	FCC Registration Number	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.8 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	-	6.2 x 4.7 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

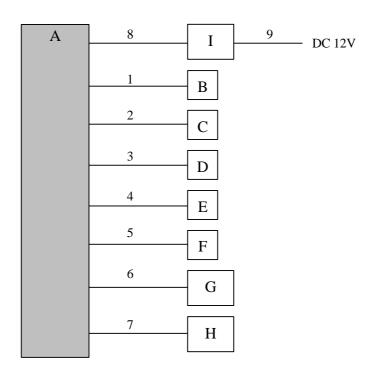
3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007


SECTION 4: Operation of E.U.T. during testing

4.1 Operating modes

Test Mode	Remarks
Receiving mode	315MHz.

^{*}The test signal level was confirmed to be sufficient to stabilize the local oscillator of the EUT.

4.2 Configuration and peripherals

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	ECU	GGM-M007	00040	OMRON Automotive	EUT
				Electronics Co. Ltd.	
В	LF antenna as "Dr"	G8D-841M-ANT	K999061	OMRON Automotive	-
				Electronics Co. Ltd.	
С	LF antenna as "As"	G8D-841M-ANT	K999033	OMRON Automotive	-
				Electronics Co. Ltd.	
D	LF antenna as "InF"	G8D-841M-ANT	K999043	OMRON Automotive	-
				Electronics Co. Ltd.	
Е	LF antenna as "InR"	G8D-841M-ANT	K999023	OMRON Automotive	-
				Electronics Co. Ltd.	
F	LF antenna as "T/G"	G8D-841M-ANT	K999013	OMRON Automotive	-
				Electronics Co. Ltd.	
G	KEYLESS	C8Z-F116M	090915	OMRON Automotive	-
	OPERATION KEY			Electronics Co. Ltd.	
	BOX				
Н	ENGINE START	C8N-B100M	186226	OMRON Automotive	-
	SWITCH			Electronics Co. Ltd.	
I	Switch Board	-	-	OMRON Automotive	-
				Electronics Co. Ltd.	

List of cables used

No.	Name	Length (m)	Shi	eld	Remarks
			Cable	Connector	
1	Antenna Cable	1.7	Unshielded	Unshielded	-
2	Signal Cable	1.7	Unshielded	Unshielded	-
3	Signal Cable	1.7	Unshielded	Unshielded	-
4	Signal Cable	1.7	Unshielded	Unshielded	-
5	Signal Cable	1.7	Unshielded	Unshielded	-
6	Signal Cable	1.7	Unshielded	Unshielded	-
7	Signal Cable	1.7	Unshielded	Unshielded	-
8	Signal Cable	1.7	Unshielded	Unshielded	-
9	DC Cable	2.0	Unshielded	Unshielded	-

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10116173H-C-R1 Page : 10 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

SECTION 5: Radiated Emission

5.1 Operating environment

Test place : No.3 semi anechoic chamber

Temperature : See data Humidity : See data

5.2 Test configuration

EUT was placed on a wooden platform of nominal size, 1.0m by 1.5m, raised 0.8m above the conducting ground plane.

The EUT was set on the edge of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in Appendix 3.

5.3 Test conditions

Frequency range : 30MHz-300MHz (Biconical antenna) / 300MHz-1000MHz (Logperiodic antenna)

1000MHz - 2000MHz (Horn antenna)

Test distance : 3m EUT position : Table top EUT operation mode : See Clause 4.1

5.4 Test procedure

The height of the measuring antenna varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The radiated emission measurements were made with the following detector function of the test receiver and the Spectrum analyzer.

Frequency	Below 1GHz	Above 1GHz
Instrument used	Test Receiver	Spectrum Analyzer *1)
IF Bandwidth	QP: BW 120kHz	PK: RBW:1MHz/VBW: 3MHz
		AV *2): RBW:1MHz/VBW:10Hz

^{*1)} The Spectrum Analyzer was used in 3dB resolution bandwidth.

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

6.5 Test result

Summary of the test results: Pass

Date: December 17, 2013 Test engineer: Masatoshi Nishiguchi

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Page : 11 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

APPENDIX 1: Data of EMI test

Radiated Emission

Below 1GHz

DATA OF RADIATED EMISSION TEST

Head Office EMC Lab. No.3 Semi Anechoic Chamber Date: 2013/12/17

: 10116173H Report No.

Temp./Humi. Engineer : 21deg. C / 30% RH : Masatoshi Nishiguchi

 $\label{eq:mode_mode_mode} \mbox{Mode} \ / \ \mbox{Remarks} \ : \ \mbox{Rx} \ \ 315\mbox{MHz} \ \mbox{WorstAxis}(\mbox{Hori}:\mbox{X} \ , \ \mbox{Vert}:\mbox{Y})$

LIMIT : FCC15.109(a) 3m, below 1GHz:QP, above 1GHz:PK Except for the data below : adequate margin data below the limits. - Horizontal 0 Horizontal [dBuV/m]<< QP DATA >> 80 70 60 50 40 30 20 8 10 0 L 700M 1G Frequency[Hz] 50M 70M 100M 200M 300M 500M

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	D-1	Limit	Margin	0
[MHz]	[dBuV]	DET	Factor [dB/m]	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]	Comment
314, 726		QP .	14. 7	-22. 0	14. 9	359		Hori.	46.0	31. 1	NC
314. 726		QP	14. 7	-22. 0		359		Vert.	46.0	31. 5	
629. 452	21. 9	QP	19. 7	-20. 2	21. 4	359		Vert.	46.0	24. 6	
629. 452	21. 8	QP	19. 7	-20. 2	21. 3	348		Hori.	46.0	24. 7	
944. 178		QP	23. 3	-17. 2				Vert.	46.0		NS
944, 178		QP	23. 3	-17. 2				Hori.	46. 0	18. 6	
43, 897		QP	13. 0	-24. 9		359		Hori.	40. 0	29. 3	
43. 897	22. 3	QP	13. 0	-24. 9	10. 4	0		Vert.	40. 0	29. 6	
65. 846	28. 2	QP	7.1	-24. 6	10.7	359	331	Hori.	40.0	29. 3	
65. 846	23. 3	QP	7. 1	-24. 6	5.8	0	100	Vert.	40. 0	34. 2	NS
205. 949	28. 0	QP	16. 7	-23. 0	21.7	43	216	Hori.	43. 5	21.8	
205. 998	30.6	QP	16.7	-23. 0	24. 3	183	100	Vert.	43. 5	19. 2	
			l								

^{*} NS: No signal detected

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

*The limit is rounded down to one decimal place.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

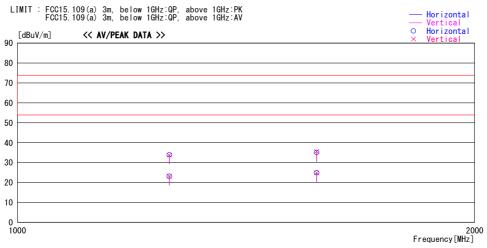
: 10116173H-C-R1 Test report No.

Page : 12 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

Radiated Emission

Above 1GHz


DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2013/12/17

Report No. : 10116173H

Temp./Humi. Engineer : 21deg. C / 30% RH : Masatoshi Nishiguchi

 $\label{eq:mode_mode_mode} \mbox{Mode / Remarks : } \mbox{Rx } \mbox{315MHz WorstAxis(Hori:X , Vert:Y)}$

[MHz] [dBuV]	Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
1258, 904	FMU-7	[4Dn/V]	DET			[dDuV/m]			Polar.	[dDuV/m]		Comment
1258.904			DK						Hori			NS
1258.904 30.7 AV 24.8 -32.3 23.2 0 100 Vert. 53.9 30.7 NS 1573.630 40.5 PK 25.9 -31.3 35.6 0 100 Hori. 53.9 30.7 NS 1573.630 41.0 PK 25.9 -31.3 35.6 0 100 Vert. 53.9 29.0 NS 1573.630 41.0 PK 25.9 -31.3 35.6 0 100 Vert. 73.9 38.3 NS												
1258.904 30.7 AV 24.8 -32.3 23.2 0 100 Hori. 53.9 30.7 NS 1573.630 40.5 PK 25.9 -31.3 35.1 0 100 Hori. 73.9 38.8 NS 1573.630 30.3 AV 25.9 -31.3 24.9 0 100 Vert. 53.9 29.0 NS 1573.630 41.0 PK 25.9 -31.3 35.6 0 100 Vert. 73.9 38.3 NS												
1573.630												
1573.630 30.3 AV 25.9 -31.3 24.9 0 100 Vert. 53.9 29.0 NS 1573.630 41.0 PK 25.9 -31.3 35.6 0 100 Vert. 73.9 38.3 NS							-					
1573.630												
							-					
	-											

^{*} NS: No signal detected

*The limit is rounded down to one decimal place.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

Test report No. : 10116173H-C-R1 Page : 13 of 15

Issued date : December 24, 2013 Revised date : January 6, 2014 FCC ID : OUCGGM-M007

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2013/02/28 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	-	RE	2013/02/26 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-05	Spectrum Analyzer	Advantest	R3273	160400285	RE	2013/11/08 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2013/08/20 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2013/10/13 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	174	RE	2013/10/13 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2013/07/23 * 12
MAT-70	Attenuator(6dB)	Agilent	8491A-006	MY52460153	RE	2013/04/05 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2013/03/12 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2013/05/17 * 12
MCC-133	Microwave Cable	HUBER+SUHNER	SUCOFLEX104	336164/4(1m) / 340640(5m)	RE	2013/09/27 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2013/03/12 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN