FCC - TEST REPORT

Report Number	:	64.790.17.04903.01	Date of Issue:	2017-10-20
Model	:	TMB-995-BT		
Product Type	:	Blood Pressure Monitor		
Applicant	:	Guangdong Transtek Medic	cal Electronics Co	o.,Ltd
Address	:	Zone A, No.105, Dongli Road, Torch Development District, 528437,		
	:	Zhongshan, Guangdong, C	hina	
Production Facility	:	Guangdong Transtek Medic	cal Electronics Co	o.,Ltd
Address	:	Zone B, No.105, Dongli Ro	ad, Torch Develo	pment District, 528437,
	:	Zhongshan, Guangdong, C	hina	

Test Result :	CONFICTION OF	Positive TUV SUD	☐ Negative
Total pages including Appendices :		33	_

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Report Number: 64.790.17.04903.01

Page 1 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

SUD

1 Table of Contents

1	Т	able of Contents	2
2	D	etails about the Test Laboratory	3
3	D	escription of the Equipment Under Test	4
4	S	ummary of Test Standards	5
5	S	ummary of Test Results	6
6	G	eneral Remarks	7
7	Т	est Setups	8
8	S	ystems test configuration	9
9	Т	echnical Requirement	. 10
ę	9.1	Conducted Emission	. 10
ę	9.2	Conducted peak output power	. 13
ę	9.3	Power spectral density	. 16
ę	9.4	6 dB Bandwidth and 99% Occupied Bandwidth	. 19
ę	9.5	Spurious RF conducted emissions	. 22
ę	9.6	Band edge	. 26
ę	9.7	Spurious radiated emissions for transmitter	. 28
10		Test Equipment List	.32
11		System Measurement Uncertainty	.33

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
	Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District
	Shenzhen 518052
	P.R. China
Telephone:	86 755 8828 6998
Fax:	86 755 828 5299
FCC Registration No.:	514049

Report Number: 64.790.17.04903.01

Page 3 of 33

3 Description of the Equipment Under Test

Product:	Blood Pressure Monitor
Model no.:	TMB-995-BT
FCC ID: Options and accessories:	OU9TMB995-BT N/A
Rating:	Battery:1.5Vx4 AA Power adapter:KH0601000UW Power adapter input:100-240V~ 50/60Hz,0.4A Max Power adapter output:6VDC,1000mA
RF Transmission	2402MHz-2480MHz
Frequency: No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	Internal Antenna
Antenna Gain:	0.0dBi
Description of the EUT:	The Equipment Under Test (EUT) is TMB-995-BT operated at 2.402 2.48GHz

Report Number: 64.790.17.04903.01

4 Summary of Test Standards

Test Standards						
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES					
10-1-2016 Edition Subpart C - Intentional Radiators						

All the test methods were according to KDB558074 D01 v01 DTS Measurement Guidance and ANSI C63.10 (2013).

Report Number: 64.790.17.04903.01

Page 5 of 33

5 Summary of Test Results

Tech	nnical Requirements				
FCC Part 15 Subpart	C		1		
Test Condition		Test		st Resi	
	1	Site	Pass	Fail	<u>N/A</u>
§15.207	Conducted emission AC power port	Site 1			
§15.247 (b) (1)	Conducted peak output power	Site 1	\boxtimes		
§15.247(a)(1)	20dB bandwidth				\boxtimes
§15.247(a)(1)	Carrier frequency separation				\square
§15.247(a)(1)(iii)	Number of hopping frequencies				\square
§15.247(a)(1)(iii)	Dwell Time				\boxtimes
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	Site 1			
§15.247(e)	Power spectral density	Site 1			
§15.247(d)	Spurious RF conducted emissions	Site 1			
§15.247(d)	Band edge	Site 1			
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	Site 1			
§15.203	Antenna requirement	See note 1			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a Integrated antenna, which gain is 0.0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

Report Number: 64.790.17.04903.01

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

6 General Remarks

This submittal(s) (test report) is intended for FCC ID: OU9TMB995-BT complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

TMB-995-BT is a Blood Pressure Monitor with Bluetooth 4.0. The TX and RX range is 2402MHz-2480MHz for 4.0.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- Not Performed
- The Equipment under Test
- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Testing Start Date:

September 7, 2017

Testing End Date:

September 11, 2017

- TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch -

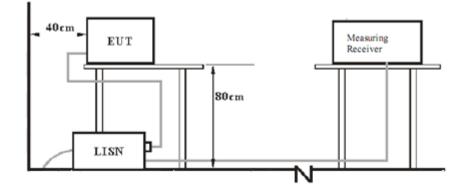
Reviewed by:

Celia Xiang

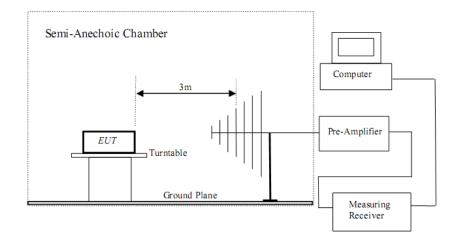
Prepared by:

lary

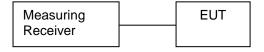
Kevin Ouyang


Report Number: 64.790.17.04903.01

Page 7 of 33


TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

Report Number: 64.790.17.04903.01

Page 8 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	X220	
Mobile phone	Huawei	P10	
Non-Invasive Blood		FLUKE BP Pump 2	
Pressure Simulator			

Test software: nRFgo Studio, which used to control the EUT in continues transmitting mode.

The system was configured to channel 0, 19, and 39 for the test.

Report Number: 64.790.17.04903.01

Page 9 of 33

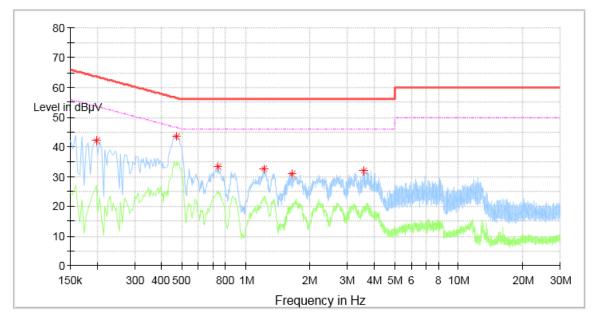
9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit


According to §15.207, conducted emissions limit as below:

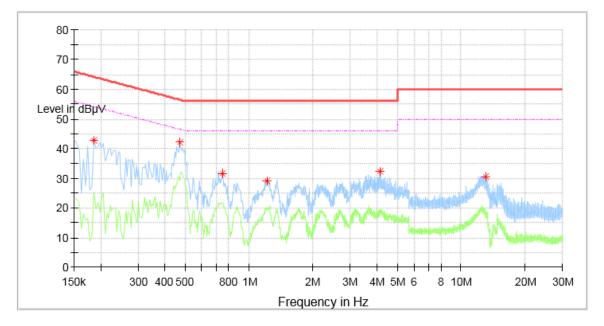
Fr	equency	QP Limit	AV Limit	
	MHz	dBµV	dBµV	
0.1	150-0.500	66-56*	56-46*	
	0.500-5	56	46	
	5-30	60	50	
"*": Decreasing linearly with logarithm of the frequency				

Report Number: 64.790.17.04903.01

Conducted Emission

Product Type:Blood pressure monitorM/N:TMB-995-BTOperating Condition:EUT on with bluetooth function on.Test Specification:LineComment:AC 120V/60Hz

No significant emission was detected within 10 dB to limit


Report Number: 64.790.17.04903.01

Page 11 of 33

Conducted Emission

Product Type	:	Blood pressure monitor
M/N	:	TMB-995-BT
Operating Condition	:	EUT on with bluetooth function on.
Test Specification	:	Neutral
Comment	:	AC 120V/60Hz

No significant emission was detected within 10 dB to limit

Report Number: 64.790.17.04903.01

Page 12 of 33

9.2 Conducted peak output power

Test Method

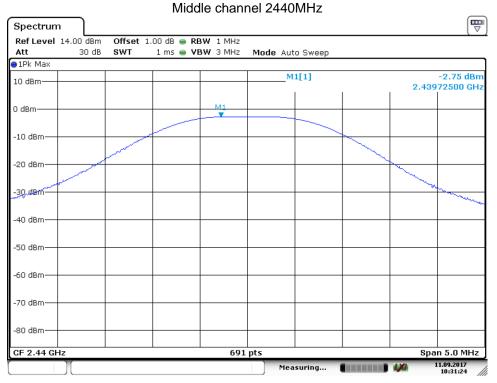
- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table


Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 2402MHz	-1.93	Pass
Middle channel 2440MHz	-2.75	Pass
Top channel 2480MHz	-4.28	Pass

Report Number: 64.790.17.04903.01

Low channel 2402MHz Spectrum Offset 1.00 dB 👄 RBW 1 MHz Ref Level 14.00 dBm 30 dB swt 1 ms 🔵 VBW 3 MHz Att Mode Auto Sweep ●1Pk Max -1.93 dBm 2.40174670 GHa M1[1] 10 dBm <u>M1</u> 0 dBm--10 dBm--20 dBm -30 dBm -40 dBm -50 dBm--60 dBm -70 dBm -80 dBm-691 pts Span 5.0 MHz CF 2.402 GHz 11.09.2017 10:30:12 Measuring...

Date: 11.SEP.2017 10:30:13

Date: 11.SEP.2017 10:31:24

Report Number: 64.790.17.04903.01

Page 14 of 33

High channel 2480MHz

SWT	1 ms 👄 🛛 E	3W 3 MHz	Mode Aut	o Sweep			
			M	1[1]	I		-4.28 dBn 75400 GH
		MI					
						- Ward	- www. welles
		691	pts	<u> </u>		Spar	n 5.0 MHz
				691 pts	691 pts	691 pts	691 pts Spa

Date: 11.SEP.2017 10:35:43

Report Number: 64.790.17.04903.01

Page 15 of 33

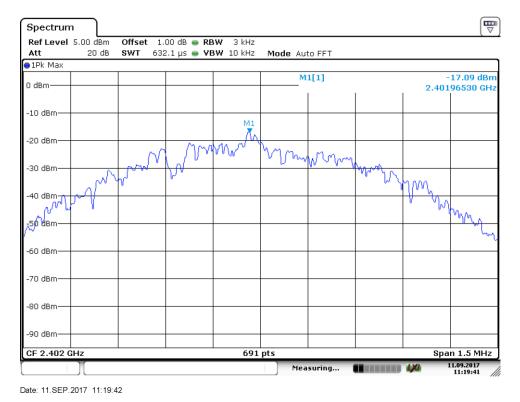
9.3 Power spectral density

Test Method

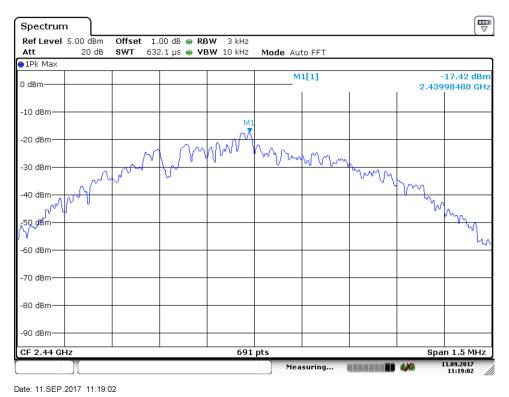
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit


		Limit [dBm]	
		≤8	
Test result			
		Power spectral	
	Frequency	density	Result
	MHz	dBm	
	Top channel 2402MHz	-17.09	Pass
	Middle channel 2440MHz	-17.42	Pass

-17.33


Pass

Bottom channel 2480MHz

Low channel 2402MHz

Middle channel 2440MHz

Report Number: 64.790.17.04903.01

Page 17 of 33

High channel 2480MHz

Date: 11.SEP.2017 10:50:47

Report Number: 64.790.17.04903.01

Page 18 of 33

9.4 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

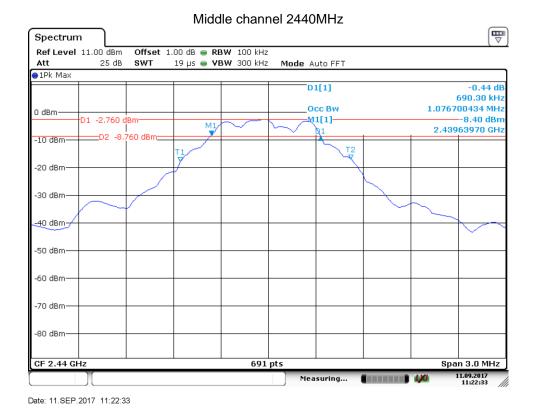
RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500


Test result

Frequency MHz	6dB bandwidth kHz	99% bandwidth kHz	Result
Bottom channel 2402MHz	690.3	1133.1	Pass
Middle channel 2440MHz	690.3	1076.7	Pass
Top channel 2480MHz	690.3	1050.7	Pass

6 dB Bandwidth

₽ Spectrum Ref Level 11.00 dBm Offset 1.00 dB 🖷 RBW 100 kHz Att 25 dB S₩T 19 µs 👄 **VBW** 300 kHz Mode Auto FFT ∋1Pk Max D1[1] -0.19 dE 690.30 kHz Occ Bw 1.133140376 MHz 0 dBm-D1 -2.030 dBm v1[1] -8.09 dBn M1 2.40163530 GHz -8.030 dBm -D2 -10 dBm-Ţ2 -20 dBm -30 dBm 40 dBm -50 dBm--60 dBm -70 dBm -80 dBm-CF 2.402 GHz 691 pts Span 3.0 MHz 11.09.2017 11:20:34 Measuring...

Date: 11.SEP.2017 11:20:34

Report Number: 64.790.17.04903.01

Page 20 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

5F, Communication Building,163 Pingyun Rd, Huangpu Ave. West Guangzhou, P.R.China TEL: +86 20 3832 0668 FAX: +86 20 3832 0478

Low channel 2402MHz

High channel 2480MHz

Spectrum			
Ref Level 11.00 dBm Att 25 dB	Offset 1.00 dB ● RB SWT 19 µs ● VB) FFT
1Pk Max			
		D1[1	.] -0.09 d 690.30 kH
0 dBm		Occ 01[1	
D1 -4.270 d	M1/		2.47963970 GH
10 dBmD2 -10	.270 dBm	×.	T2
-20 dBm	7		
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
CF 2.48 GHz		691 pts	Span 3.0 MHz
		Measu	ring 11.09.2017 11:24:48

Date: 11.SEP.2017 11:24:49

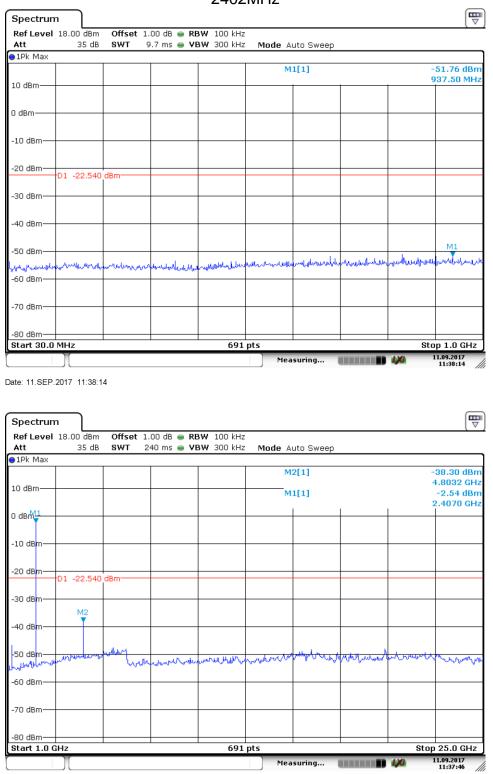
Report Number: 64.790.17.04903.01

Page 21 of 33

9.5 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.


Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

2402MHz

Date: 11.SEP.2017 11:37:47

Report Number: 64.790.17.04903.01

Page 23 of 33

2440MHz

Spectrun	'n									
Ref Level			1.00 dB 🧉							
Att	30 dB	SWT	9.7 ms 🧉	VBW	300 kHz	Mode /	Auto Sweep			
⊖1Pk Max							44543			56 00 d0
10 dBm						יי 	41[1]	I		56.20 dBm 927.70 MHz
0 dBm				_						
-10 dBm				_						
-20 dBm	D1 -22.930) dBm								
-30 dBm				_						
-40 dBm				_						
-50 dBm				_						M1
17692.981000	n-labeltMitraid	www	marrodat-he	mu	whennes		u warang wala	مهدما والمعرفين والمعرفين	. water and the second second	un and an and a second
-70 dBm				_						
-80 dBm				_						
Start 30.0	MHz				691	pts		·	Sto	p 1.0 GHz
						Me	asuring		490	11.09.2017 11:39:39 //

Date: 11.SEP.2017 11:39:39

Spectrun	n										
Ref Level Att		lBm dB	Offset SWT			3W 100 kHz 3W 300 kHz		Auto Sweep			
●1Pk Max		<u></u>	0	210 110			nouc	Adto Sweep			
10 dBm								M2[1]			-40.21 dBm 4.8730 GHz
0 dBr#4				_			r I	M1[1]	I	I	-2.89 dBm 2.4410 GHz
-10 dBm											
-20 dBm	D1 -22.	930 d	IBm	_							
-30 dBm		_		+							
-40 dBm	Ma	?		+							
-50 dBm			ن احمال			والمسترجة والمسارية	a sudat	mmun	Muy router	mangalanted	West & marry A
uto orde nt ^{rude}	www.	and the second s	more www	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	luque.	water and the					
-70 dBm—											
-80 dBm											
Start 1.0 G	GHZ					691	pts				o 25.0 GHz
							Me	asuring		4,00	11.09.2017 11:39:04

Date: 11.SEP.2017 11:39:04

Report Number: 64.790.17.04903.01

Page 24 of 33

2480MHz

Ref Level 11.00 da	3m Offset 1.0	0 dB 👄 RBW 10	0 kHz			
Att 30	dB SWT 9	.7 ms 👄 VBW 30	0 kHz Mode A	uto Sweep		
1Pk Max						
			M	1[1]		-57.66 dBi 863.10 MH
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm	360 dBm					
-40 dBm						
-50 dBm						
299.4800	Homen -	anglater and a second	-	بالار معاده المعادية	M1	al year duri veleter
-70 dBm						
-80 dBm						
Start 30.0 MHz			691 pts		St	top 1.0 GHz
			Mea	isuring 🚺	4,70	11.09.2017 11:25:46

Spectrum Ref Level 11.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 30 dB SWT 240 ms 👄 **VBW** 300 kHz Mode Auto Sweep ⊖1Pk Max M2[1] -41.50 dBm 4.9768 GH M1[1] -4.36 dBm 0 dBm 2.4760 GHz -10 dB -20 dB D1 -24.360_dBm--30 dBm M2 -40 dB 50 dBn AL IN Auron 60 dBm -70 dBm--80 dBm-Start 1.0 GHz 691 pts Stop 25.0 GHz 11.09.2017 11:25:27 Measuring...

Date: 11.SEP.2017 11:25:27

Report Number: 64.790.17.04903.01

Page 25 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

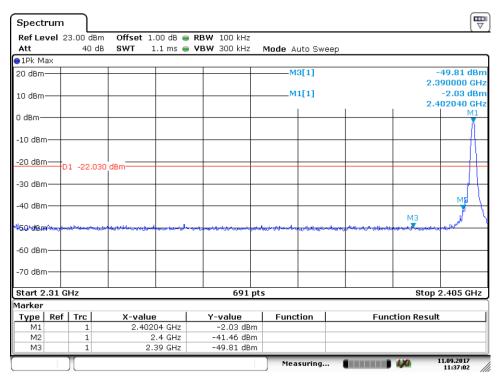
9.6 Band edge

Test Method

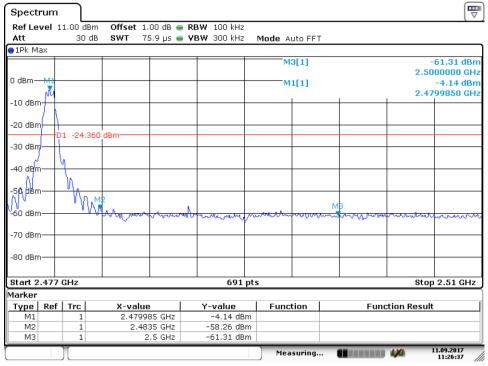
- 1 Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW \ge RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20


Report Number: 64.790.17.04903.01

Page 26 of 33


Band edge testing

2402MHz

Date: 11.SEP.2017 11:37:02

2480MHz

Date: 11.SEP.2017 11:26:37

Report Number: 64.790.17.04903.01

Page 27 of 33

9.7 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Report Number: 64.790.17.04903.01

Page 28 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
 30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Report Number: 64.790.17.04903.01

Page 29 of 33

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Below 1GHz

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dana	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	36.197222	16.48	Н	40	QP	23.52	-26.0	Pass
30-	49.292222	16.23	Н	40	QP	23.77	-25.6	Pass
1000MHz	37.490556	16.60	V	40	QP	23.40	-25.7	Pass
	46.543889	16.53	V	40	QP	23.47	-24.8	Pass

Above 1GHZ

Low channel 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	1536.0000	47.49	Н	74	PK	26.51	-13.1	Pass
	2399.2500	43.71	Н	74	PK	30.29	-10.1	Pass
1000-	2425.0000	31.47	Н	74	PK	42.53	-10.1	Pass
25000MHz	1536.0625	48.78	V	74	PK	25.22	-13.1	Pass
	2248.1250	31.60	V	74	PK	42.40	-8.8	Pass
	2488.8125	30.60	V	74	PK	43.40	-8.1	Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Band	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	1536.0625	48.03	Н	74	PK	25.97	-13.1	Pass
	2395.0000	29.13	Н	74	PK	44.87	-10.1	Pass
1000-	2496.3750	28.28	Н	74	PK	45.72	-9.7	Pass
25000MHz	1536.0625	48.84	V	74	PK	25.16	-13.1	Pass
	2388.2500	29.71	V	74	PK	44.29	-8.6	Pass
	2487.8125	30.32	V	74	PK	43.68	-8.1	Pass

Report Number: 64.790.17.04903.01

Page 30 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	1240.0000	33.26	Н	74	PK	40.74	-14.3	Pass
	1536.0000	47.98	Н	74	PK	26.02	-13.1	Pass
1000-	2486.3125	30.53	Н	74	PK	43.47	-9.8	Pass
25000MHz	1536.0000	49.00	V	74	PK	25.00	-13.1	Pass
	2248.3750	29.70	V	74	PK	44.30	-8.8	Pass
	2488.1250	29.75	V	74	PK	44.25	-8.1	Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

Report Number: 64.790.17.04903.01

10 Test Equipment List

List of Test Instruments

adiated Emission Test					
Description	Manufacturer	Model no.	Serial no.	cal. due date	
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14	
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-14	
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14	
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14	
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2018-7-7	
Attenuator	Agilent	8491A	MY39264334	2018-7-7	
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7	
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A	

Conducted Emission Test

Description	Description Manufacturer		Serial no.	cal. due date	
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14	
LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14	
LISN	Rohde & Schwarz	ENV432	101318	2018-7-14	
LISN	Rohde & Schwarz	ENV216	100326	2018-7-14	
ISN	Rohde & Schwarz	ENY81	100177	2018-7-14	
ISN	Rohde & Schwarz	ENY81-CA6	101664	2018-7-14	
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-584	2018-7-14	
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2018-7-14	
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2018-7-7	
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A	

TS8997 Test System

Description	Manufacturer	Model no.	Serial no.	cal. due date
Signal Generator	Rohde & Schwarz	SMB100A	108272	2018-7-7
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2018-7-7
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2018-7-7
Power Splitter	Weinschel	1580	SC319	2018-7-7
10dB Attenuator	Weinschel	56-10	58764	2018-7-14
10dB Attenuator	R&S	DNF	DNF-001	2018-7-14
10dB Attenuator	R&S	DNF	DNF-002	2018-7-14
10dB Attenuator	R&S	DNF	DNF-003	2018-7-14
10dB Attenuator	R&S	DNF	DNF-004	2018-7-14
Test software	Rohde & Schwarz	EMC32	Version 9.26.01	N/A

Report Number: 64.790.17.04903.01

Page 32 of 33

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Uncertainty for Conducted Emission 150kHz-30MHz (for test using High Voltage Probe TK9420(VT9420))	2.92 dB				
Uncertainty for Radiated Spurious Emission 25MHz- 3000MHz	Horizontal: 4.98dB; Vertical: 5.06dB;				
Uncertainty for Radiated Spurious Emission 3000MHz- 18000MHz	Horizontal: 4.95dB; Vertical: 4.94dB;				
Uncertainty for Radiated Spurious Emission 18000MHz- 40000MHz	Horizontal: 5.14dB; Vertical: 5.12dB;				
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 2.06dB Frequency test involved: 1.16×10-7				

Report Number: 64.790.17.04903.01

Page 33 of 33