Report Number: 68.930.14.004.01

FCC - TEST REPORT

Report Number	: 68.930.14.004.01 Date of Issue: December 25, 2014			
Model	: LS208-B6			
Product Type	: Body Fat Analyzer			
Applicant	: Guangdong Transtek Medical Electronics Co., Ltd			
Address	: Zone A, 5/F., Investment Building, No. 12 Huizhan East Rd.,			
	Torch Development District, Zhongshan, Guangdong, China			
	528437			
Production Facility	: Guangdong Transtek Medical Electronics Co., Ltd			
Address	: Zone A, 5/F., Investment Building, No. 12 Huizhan East Rd.,			
	Torch Development District, Zhongshan, Guangdong, China			
	528437			
Test Result	: Positive D Negative			
Total pages including Appendices	: 23			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

1 Table of Contents

1		ble of Contents			
2	De	tails about the Test Laboratory	3		
3		scription of the Equipment Under Test			
4	Su	mmary of Test Standards	5		
5		mmary of Test Results			
6	Ge	neral Remarks	7		
7		st Setups			
8	Systems test configuration				
9	Те	chnical Requirement	10		
Ģ	9.1	Conducted peak output power	10		
Ģ	9.2	Power spectral density	11		
Ģ	9.3	6 dB Bandwidth			
Ģ	9.4 Spurious RF conducted emissions				
Ģ	9.5 Band edge testing				
Ģ	9.6 Spurious radiated emissions for transmitter				
10	Te	st Equipment List			
11	System Measurement Uncertainty				

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, 518052, Shenzhen,P.R.C.
Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299
Test Site 2 Company name:	Audix Technology (shenzhen) Co.,Ltd Block Shenzhen, Science & Industry Park, Nantou, Shenzhen, Guangdong, China
Telephone: Fax:	86 755 2663 9496 86 755 2663 2877

3 Description of the Equipment Under Test

Product:	Body Fat Analyzer
Model no.:	LS208-B6
FCC ID:	OU9LS208-B06
Options and accessories:	NIL
Rating:	DC6.0V (Supplied by 4X1.5V AAA battery)
RF Transmission	2402-2480MHz
Frequency: No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	PIFA
Antenna Gain:	0dBi
Description of the EUT:	The Equipment Under Test (EUT) is a Bluetooth body fat analyzer

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2014 Edition	Subpart C - Intentional Radiators

All the test methods were according to KDB558074 D01 DTS Meas Guidance v03r02 issued by FCC on July 05, 2014 and ANSI C63.10 (2009).

5 Summary of Test Results

	Technical Require	ements		
FCC Part 15 Subpart C				
Test Condition		Pages	Test Site	Test Result
§15.207	Conducted emission AC power port			N/A
§15.247(b)(1)	Conducted peak output power	10	Site 2	Pass
§15.247(e)	Power spectral density	11	Site 2	Pass
§15.247(a)(2)	6dB bandwidth	12	Site 2	Pass
§15.247(a)(1) 20dB bandwidth and 99% Occupied Bandwidth				N/A
§15.247(a)(1)	Carrier frequency separation			N/A
§15.247(a)(1)(iii)	Number of hopping frequencies			N/A
§15.247(a)(1)(iii)	Dwell Time			N/A
§15.247(d)	Spurious RF conducted emissions	14	Site 2	Pass
§15.247(d)	Band edge	18	Site 2	Pass
§15.247(d) & §15.209 &15.205	Spurious radiated emissions for transmitter	20	Site 2	Pass
§15.203	Antenna requirement	See note 2 Pass		Pass

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a permanently PIFA antenna, which gain is 0dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: OU9LS208-B06 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

November 27, 2014

November 28, 2014

Testing Start Date:

Testing End Date:

December 15, 2014

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by:

Prepared by:

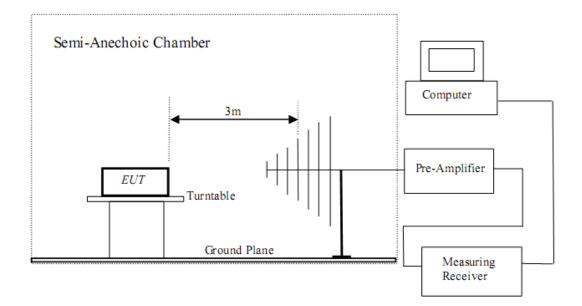
Pour

Phoebe Hu EMC Project Manager

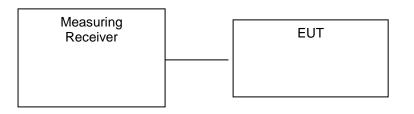
Felio. h

Felix Li EMC Project Engineer

Tested by:


loo Li

Leo Li EMC Test Engineer



7.1 Radiated test setups

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
NoteBook	Lenovo	X220	

Test software: BLE-CC254x-1.2.1 - Btool, which used to control the EUT in continues transmitting mode

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

9.1 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test Result

Frequency MHz	Conducted Peak Output Power dBm	Result
Low channel 2402MHz	-2.54	Pass
Middle channel 2440MHz	-2.31	Pass
High channel 2480MHz	-2.77	Pass

9.2 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

1. Set analyzer center frequency to DTS channel center frequency.

RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold

2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.

3. Repeat above procedures until other frequencies measured were completed

Limit

Limit [dBm]

≤8

Test Result

	Frequency	Power spectral	Limit	Result
_	MHz	density	dBm	
	2402	-14.07	8	Pass
	2440	-13.69	8	Pass
	2480	-14.34	8	Pass

9.3 6 dB Bandwidth

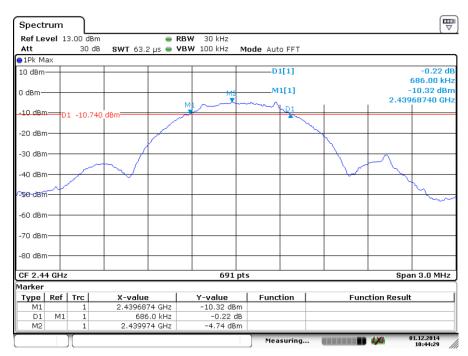
Test Method

- 1. Use the following spectrum analyzer settings: RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

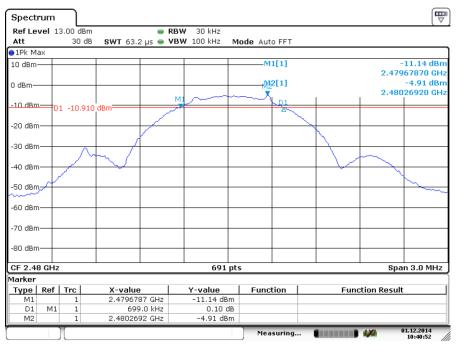
Limit

Limit [kHz]

≥500


Test result

Frequ MF	-		Indwidth Hz	Limit kHz	t	Result
240)2	66	4.3	≥500		Pass
244	10	68	6.0	≥500		Pass
248	80		1.0	≥500		Pass
Spectrum	<u> </u>					
Ref Level Att	13.00 dB 30 (RBW 30 kHz VBW 100 kHz N	1ode Auto FFT		
∋1Pk Max						
10 dBm				D1[1]		0.35 d
0 dBm				-M21[1]		664.30 kH -10.70 dBr 2.40169610 GH
-10 dBm	D1 -10.5	80 dBm	MI			
-20 dBm—					\sim	
-30 dBm					\rightarrow	
-40 dBm		γ				
-50'dBm						
-60 dBm						
-70 dBm—						
-80 dBm						
CF 2.402 G	Hz		691 pt	s	-	Span 3.0 MHz
Marker						
Type Rei M1	f Trc	2.4016961 GHz	<u>Y-value</u> -10.70 dBm	Function	Fun	ction Result
D1 M		2.4016961 GHZ 664.3 kHz	-10.70 dBm 0.35 dB			
M2	1 1	2.4022692 GHz	-4.58 dBm			


Date: 1.DEC.2014 10:47:17

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 12 of 23

Date: 1.DEC.2014 10:44:29

Date: 1.DEC.2014 10:40:52

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 13 of 23

9.4 Spurious RF conducted emissions

Test Method

- 1. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

2402MHz

Ref Level Att	14.00 dBi 30 d		RBW 100 kHz	ada tuta Cuasa		(
1Pk Max	30 U	io Swi 9.7ms 🖷 '		ode Auto Sweep)	
10 dBm				M2[1]		-44.42 dBn
						256.70 MH
0 dBm				M1[1]		-37.94 dBn
				1	1 1	64.40 MH
-10 dBm						
-20 dBm-	D1 -22.4	70 dBm				
	DI -22.4	/ U UBIII				
-30 dBm	_					
V 11	3					
-40 dBm-		- M2 				
-	United to a second					
MULLIUM		and the second of the second o		1.		
-60 dBm			war war and the war the press of the	mound	man have been been and the second	مر المراجع الم
-00 0011						
-70 dBm						
-80 dBm-						
Start 30.0	MHz		691 pt	5		Stop 1.0 GHz
Marker						
	Trc	X-value	Y-value	Function	Funct	ion Result
M1	1	64.4 MHz 256.7 MHz	-37.94 dBm -44.42 dBm			
M2						

Date: 1.DEC.2014 11:14:23

Ret Level	14.00 dBn	n 🖷 RB	W 1 MHz			
Att	30 de			e Auto Sweep		
1Pk Max						
10 dBm				M3[1]		-2.47 dBn 2.4070 GH
. M3				M1[1]		-51.33 dBn
0 dBm						1.0000 GH
-10 dBm						
00 d0m						
-20 dBm	D1 -22.47	0 dBm				
-30 dBm						
10 10						
-40 dBm		ummennen werden		munter	when wer	manuful when the second
50 dehau	Launder	when we we we we we we	and the second of the	0.00.00		
						1 1
-60 dBm						
-60 dBm						
-60 dBm						
-60 dBm	Hz		691 pt:	5		Stop 25.0 GHz
-60 dBm	Hz		691 pt:	5		Stop 25.0 GHz
-60 dBm -70 dBm -80 dBm Start 1.0 G Marker Type Ref	f Trc	X-value	Y-value	s Function	Fun	Stop 25.0 GHz
-60 dBm -70 dBm -80 dBm Start 1.0 G 1arker		X-value 1.0 GHz 1.0 GHz			Fun	

Date: 1.DEC.2014 11:12:59

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 15 of 23

Spurious RF conducted emissions

2440MHz

Ref Level	14.00 dB	m 🖷 R	BW 100 kHz			
Att	30 d	iB SWT 9.7 ms 👄 V	BW 300 kHz Ma	de Auto Sweep)	
1Pk Max						
10 dBm				M3[1]		-45.28 dBn
				M1[1]		255.30 MH: -37.66 dBn
0 dBm				MI[1]		64.40 MH
10 40						
-10 dBm						
-20 dBm						
	01 -22.3	40 dBm				
-30 dBm						
M1 M2	2					
-40 dBm		M3				
ISO dam-	เหม	uuluu. Italaa				
#88LdBm.nut		Hill Hill Hill Hills and the	and the section of the section of the	han a		
-60 dBm				a marchadenance	warmanahandon	and a state and the second
-70 dBm						
-80 dBm						
Start 30.0	MHz		691 pts	;		Stop 1.0 GHz
Marker						
	Trc	X-value	Y-value	Function	Funct	ion Result
M1	1	64.4 MHz	-37.66 dBm			
M2 M3	1	127.6 MHz 255.3 MHz	-38.60 dBm -45.28 dBm			
		20010 11112	ierze abin			01.12.2014

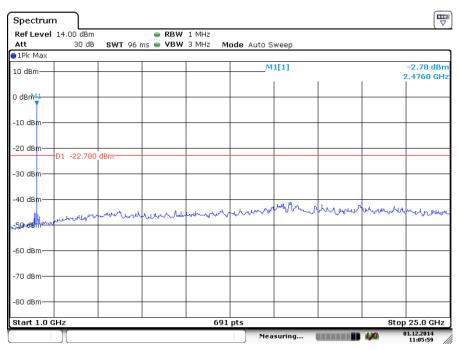
Date: 1.DEC.2014 11:11:33

Ref Level	14.00 dBn	n 👄 RE	SW 1 MHz			
Att	30 di	3 SWT 96 ms 🖷 VB	3W 3 MHz Mode	e Auto Sweep		
1Pk Max						
10 dBm				M3[1]		-2.47 dBn 2.4070 GH
0 dBM3				M1[1]		-51.33 dBn
						1.0000 GH
-10 dBm						
00 d0m						
-20 dBm	D1 -22.47	0 dBm				
-30 dB <mark>m</mark>						
-40 dBm				- in why they	u Andre prove	Manual and a second
-40 dBm	Juhrundund	warmen all all and a second and	muteur	wwwww	mmmm	and a stand and astand and a stand and astand and a stand and astand and a stand and astand and a stand and a stand and astand and
1.	human	warmen and the second	mertennether	www.www.	www.	alle have a share and
1.	han her warden her	www.weiter	mutunt	www.ruwww.	unhurun	a the alasta and a dar the second
50 d B m	han	warnen and a second and	murtunenther	www.www.	un warm	a lone, the contraction of the state of the
50 del	b-Murhuber		murtur Mary	www.	un hanna	
50 d B m	Jan Maria Mariana Maria Mariana Mariana M		murtur Mary	www.www.		
-60 dBm			691 pt:			Stop 25.0 GHz
-60 dBm						
-50 dBm	Hz f Trc	X-value	691 pt: Y-value			
-50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -81 dB	Hz		691 pt	5		Stop 25.0 GHz

Date: 1.DEC.2014 11:12:51

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 16 of 23



Spurious RF conducted emissions

2480MHz

	rum											
	vel	14.00 d			BW 100 kHz							
Att		30	dB SWT	9.7 ms 👄 \	'BW 300 kHz	Moc	de Auto) Sweep				
∋1Pk M	ax											
10 dBm						—	M	3[1]				44.07 dBn
												256.70 MHz
0 dBm–						+	M	1[1]			-	37.68 dBm
									1			64.40 MHz
-10 dBn	n—					+						
-20 dBn	n—					+						
		D1 -22.	780 dBm			+						
-30 dBn	n—					—						
M1	- M	2										
-40 dBn	n —		M3			+						
			1 T									
ting den	n-111	1.http://				<u> </u>						
տասեղո	utalima	na n	(nanating)	Mellenelauni	unaughershin	al alunh	der Maria Maria					
-60 dBn	n—				unantherne			- and a start	malana	mynes	manuall	muchushas
-70 dBn	n—					<u> </u>						
-80 dBn	n—					—						
Start 3	80.0	MHz			69	1 pts					Sto	p 1.0 GHz
1arker												
Туре	Ref	Trc	X-v	value 🛛	Y-value		Func	tion		Fund	tion Result	:
M1		1		64.4 MHz	-37.68 c	lBm						
M2		1		127.6 MHz	-38.25 c							
M3		1		256.7 MHz	-44.07 c	1Bm						

Date: 1.DEC.2014 11:08:06

Date: 1.DEC.2014 11:05:59

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

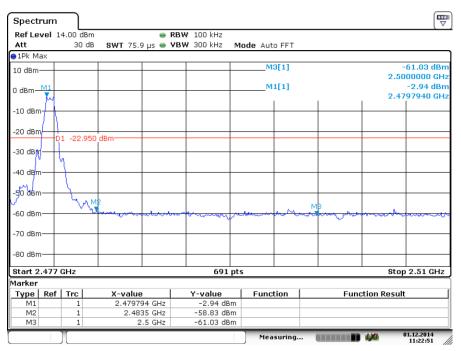
Page 17 of 23

9.5 Band edge testing

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

Band edge testing

Ref Le	vel 1	4.00 dBr	m	e R	BW 100 kHz						
Att		30 d			BW 300 kHz	Mo	de Auto	Sweep			
1Pk M	ах										
10 dBm	-+					-	M	3[1]			-49.85 dBn
											2.400000 GH
0 dBm—						-	M	1[1]			-2.92 d <u>A</u> n 2.402320 d A H
								1	1	^	2.402320 01
-10 dBn	+-י					+					
											- I - II
-20 dBn		1 -22.92	20 dBm			-					
-30 dBn											
-30 ubii	'										1
-40 dBn	<u> </u>					-					
											Mal
-50 dBn	∩		- ,			_					- 1
										M2	
-60-Å8h	}-Book	والمستحص	www.www.	Logio Hardina	And the second sec	- phone	ە سى بېرىيەن ىلى				andoro
-70 dBn						-					
-80 dBn											
-ou ubii	-										
CF 2.3	575 G	Hz	•		69	1 pts				Sp	an 95.0 MHz
1arker											
Туре	Ref		X-value		Y-value		Fund	tion		Function Res	ult
M1		1		32 GHz	-2.92						
M2 M3		1		39 GHz 2.4 GHz	-60.57						

Date: 1.DEC.2014 11:18:43

Date: 1.DEC.2014 11:22:51

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 19 of 23

9.6 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

According to part 15.247(d), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to ANSI C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

2402MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Result
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
30-1000						Horizontal		QP	Pass
30-1000						Vertical		QP	Pass
*4804	32.85	8.56	35.70	45.34	51.05	Horizontal	74	PK	Pass
*4804	32.85	8.56	35.70			Horizontal	54	AV	Pass
*4804	32.85	8.56	35.70	44.36	50.07	Vertical	74	PK	Pass
*4804	32.85	8.56	35.70			Vertical	54	AV	Pass

2440MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Result
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
*4880	32.99	8.64	35.70	46.52	52.45	Horizontal	74	PK	Pass
*4880	32.99	8.64	35.70			Horizontal	54	AV	Pass
*4880	32.99	8.64	35.70	43.83	49.76	Vertical	74	PK	Pass
*4880	32.99	8.64	35.70			Vertical	74	AV	Pass

2480MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Result
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
*4960	33.13	8.72	35.70	45.67	51.82	Horizontal	74	PK	Pass
*4960	33.13	8.72	35.70			Horizontal	54	AV	Pass
*4960	33.13	8.72	35.70	44.90	51.05	Vertical	74	PK	Pass
*4960	33.13	8.72	35.70			Vertical	54	AV	Pass

Remark:

- (1) QP Emission Level= Antenna Factor +Cable Loss + Reading
 - PK Emission Level= Antenna Factor +Cable Loss Amp. factor + Reading AV Emission Level= PK Emission Level+20log(dutycycle)
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE	
	Test Receiver	Rohde & Schwarz	ESHS10	838693/001	Nov.04, 15	\square
	L.I.S.N.#1	Rohde & Schwarz	ESH2-Z5	834066/011	Nov.04, 15	\square
	L.I.S.N.#3	Kyoritsu	KNW-242C	8-1920-1	May.07, 15	
CE	RF Cable	3D-2W	Fujikura	LISN Cable 1#	May.07, 15	\square
	Coaxial Switch	MP59B	Anritsu	M55367	May.07, 15	\square
	Passive Probe	ESH2-Z3	Rohde & Schwarz	299.7810.52	May.07, 15	
	Pulse Limiter	ESH3-Z2	Rohde & Schwarz	100341	May.07, 15	
С	Spectrum	Agilent	E4446A	US44300459	May.08, 15	\bowtie
RE < 1	Test Receiver <1GHz	Rohde & Schwarz	ESVS10	834468/011	May.07, 15	\square
GHz	Amplifier < 1 GHz	HP	8447D	2648A04738	May.07, 15	\square
	HF Cable	Hubersuhne	Sucoflex104	Room 2	May.08, 15	\square
	Bilog Antenna	Schaffner	CBL6111C	2598	Oct.25, 15	\square
RE	Spectrum > 1GHz	Agilent	E4446A	US44300459	May.08, 15	\square
> 1 GHz	Horn Antenna	EMCO	3115	9607-4877	Jun. 24, 15	\square
	Amp > 1 Ghz	HP	8449B	3008A08495	May.08, 15	\square
	HF Cable	Hubersuhne	Sucoflex104	Room1	May.08, 15	\square

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- 20dB bandwidth and 99% Occupied Bandwidth
- Carrier frequency separation
- Number of hopping frequencies
- Dwell Time
- Power spectral density
- Spurious RF conducted emissions
- Band edge

China

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Oncertainty	
Items	Extended Uncertainty
Radiated spurious emission	4.32dB (30MHz-1GHz)
	2.27dB (1GHz -25GHz)
Conducted spurious emission	2.10dB(30MHz-25GHz)
Bandwidth test	1*10 ⁻⁹
Conducted emission	2.4dB

System Measurement Uncertainty