Declaration on radiation safety standard conformance

To whom it may concern:

Intersil Corporation Rembrandtlaan 1a 3723 BG Bilthoven The Netherlands

declares that the following product

Description: 2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card

FCC ID: OSZ39200C1 Manufacturer: Intersil Corporation

Brand: Intersil Model: ISL39200C

(1) has a maximum e.i.r.p. of 18.2 dBm (66 mW, maximum conducted output power of \pm 20 dbm minus antenna gain of \pm 1.8 dBi) in the frequency range of 2412 \pm 2462 MHz, which means that the worst case prediction of power density (100% reflection) at 20 cm distance (worst case) can be calculated as follows:

$$S = \frac{EIRP}{4*\pi * R^2}$$
 (power density without reflection)
$$S = \frac{2^2*EIRP}{4*\pi * R^2}$$
 (power density with 100% reflection)
$$S = \frac{2^2*EIRP}{4*\pi * R^2} = \frac{66.1 \text{ mW}}{\pi * (20\text{cm})^2} = 0.053 \text{ mW/cm}^2 \text{ (limit = 1.0 mW/cm}^2)$$

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.247 (b)(5).

(2) has a maximum e.i.r.p. of 18.0 dBm (63.1 mW, maximum conducted output power of +19.8 dbm minus antenna gain of -1.8 dBi) in the frequency range of 5150 - 5350 MHz, which means that the worst case prediction of power density (100% reflection) at 20 cm distance (worst case) can be calculated as follows:

$$S = \frac{EIRP}{4*\pi * R^2}$$
 (power density without reflection)
$$S = \frac{2^2*EIRP}{4*\pi * R^2}$$
 (power density with 100% reflection)
$$S = \frac{2^2*EIRP}{4*\pi * R^2} = \frac{63.1 \text{ mW}}{\pi * (20\text{cm})^2} = 0.050 \text{ mW/cm}^2 \text{ (limit} = 1.0 mW/cm}^2)$$

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.407 (f).

(3) has a maximum e.i.r.p. of 17.6 dBm (57.5 mW, maximum conducted output power of +19.4 dbm minus antenna gain of -1.8 dBi) in the frequency range of 5725 - 5850 MHz, which means that the worst case prediction of power density (100% reflection) at 20 cm distance (worst case) can be calculated as follows:

$$S = \frac{EIRP}{4*\pi * R^2}$$
 (power density without reflection)
$$S = \frac{2^2*EIRP}{4*\pi * R^2}$$
 (power density with 100% reflection)
$$S = \frac{2^2*EIRP}{4*\pi * R^2} = \frac{57.5 \text{ mW}}{\pi * (20\text{cm})^2} = 0.045 \text{ mW/cm}^2 \text{ (limit = 1.0 mW/cm}^2)$$

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.247 (b)(5).