

: 1

16

FCC TEST REPORT

Reference No.

: G-44-2012-01088

Applicant

: Omron Automotive Electronics Korea Co., Ltd.

Equipment Under Test (EUT):

Product Name: RF Keyless Entry System (Receiver)

Model Name: OKA-870R

Applied Standards: FCC Part 15: 2010, Subpart B, Class B

ANSI C63.4: 2003

CISPR 22: 2006

Date of Receipt

: April 17, 2012

Date of Test

: April 18, 2012

Date of Issue

: May 04, 2012

Test Results

: Complied

Tested by

Jerry Jeong

Reviewed by

Forest Lee

Remarks:

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Test Report No. : F690501/RF-EMG004399 Page : 2 of 16

Contents

1. General Information	3
1.1 Client Information	3
1.2 Test Laboratory	3
1.3 General Information of E.U.T.	3
1.4 Operating Modes and Conditions	3
1.5 Auxiliary Equipments	4
1.6 Cable List	4
1.7 System Configurations	4
1.8 Test System Layout	4
1.9 Modifications	4
1.10 Applicable Standards for Testing	5
1.11 Summary of Test Results	5
2. Emission Test	6
2.1 Test Results	6
2.2 Test Method and Limits	6
2.2.1 Test Method	6
2.2.2 Test Limits	6
2.3 Radiated Emission	8
2.3.1 Test Equipments	8
2.3.2 Test Site	8
2.3.3 Environment Conditions	9
2.4 Photographs of Radiated Emission (3m method below 1 대)	11
2.5 Photographs of Radiated Emission (3m method above 1 대)	12
3. Photographs of EUT	13
Appendix A : Radiated Emission	

Page : 3 of 16

1. General Information

1.1 Client Information

Applicant : Omron Automotive Electronics Korea Co., Ltd. Address of Applicant : 492, Gayul-Ri, Bogye-Myeon, Anseong-City,

Kyonggi-Do, Korea

Manufacturer : Omron Automotive Electronics Korea Co., Ltd. Address of Manufacturer : 492, Gayul-Ri, Bogye-Myeon, Anseong-City,

Kyonggi-Do, Korea

1.2 Test Laboratory

Name and Address : SGS Korea Co., Ltd.

18-34, Sanbon-dong, Gunpo, Gyeonggi-do, Korea

435-040

Phone : + 82 31 428 5700

Fax : + 82 31 427 2370

e-mail : forest.lee@sgs.com

1.3 General Information of E.U.T.

Product Name	RF Keyless Entry System (Receiver)
Model Name	OKA-870R
Serial No.	-
EMI Classification	Class B
Operating	313.89 MHz
Frequency	
Test Voltage	12 Vd.c.

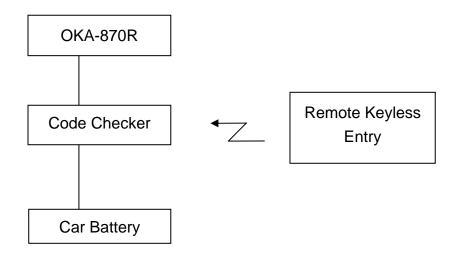
1.4 Operating Modes and Conditions

Operating mode	Operating condition
RX Mode	RX Mode

Page : 4 of 16

1.5 Auxiliary Equipments

Description	Model	Serial No.	Manufacturer
Remote Keyless Entry	OKA-870T	-	Omron Automative Electronics Korea Co.,LTD
Code Checker	-	-	-


1.6 Cable List

Sta	art	ENI)	Cable	Spec.
Name	I/O Port	Name	I/O Port	Length	Shield
RF Keyless Entry System (Receiver	Ю	Code Checker	-	0.1	Unshield
Code Checker	DC IN	Car Battery	-	0.5	Unshield

1.7 System Configurations

Description	Model	Serial No.	Manufacturer
Main Board	YD-BCM	95400A76305H CU9862002	-

1.8 Test System Layout

1.9 Modifications

There was no modified item during the test.

Page : 5 of 16

1.10 Applicable Standards for Testing

Standards	Status	Deviation
FCC Part 15 : 2010, Subpart B	Applicable	No Deviation

1.11 **Summary of Test Results**

Test Item	Basic Standards	Results
Conducted Emission	ANSI C63.4 : 2003	Complied
Radiated Emission	ANSI C63.4 : 2003	Complied

Note: Test methods of all test items are performed according to the basic standards in this table.

Page : 6 of 16

EMISSION

2.1 Test Results

Test Items	Basic Standards	Test Results
Conducted Emission	ANSI C63.4 : 2003	N/A
Radiated Emission	ANSI C63.4 : 2003	Complied

2.2 Test Method and Limits

2.2.1 Test Method

Test Items	Measuring Frequency Range	RBW	Measuring Distance
Conducted Emission	$0.15 \text{ MHz} \sim 30 \text{ MHz}$	9 kHz	N/A
Dedicted Engineers	30 MHz ~ 1 GHz	120 kHz	10 m & 3 m
Radiated Emission	Above 1 Hz	1 MHz	3 m

Note: 10 m method of radiated emission measurement is only applied to Class A equipment over the frequency range of 30 MHz ~ 1 GHz. Except this, 3 m method is applied to Class B equipment over the frequency range of 30 MHz ~ 1 GHz and Class A and Class B equipment above 1 GHz.

2.2.2 Test Limits

-Conducted Emission Limits

Fragueray Dange	Limits(dB(μV))		Class
Frequency Range	Quasi-peak	Average	Class
$0.15 \text{ MHz} \sim 0.5 \text{ MHz}$	79	66	Class A
0.5 MHz ~ 30 MHz	73	60	Class A
$0.15 \text{ MHz} \sim 0.5 \text{ MHz}$	66 to 56	56 to 46	
$0.5 \text{ MHz} \sim 5 \text{ MHz}$	56	46	Class B
5 MHz ~ 30 MHz	60	50	

Note: The lower limit shall apply at the transition frequencies. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Page : 7 of 16

-Radiated Emission Limits below 1 6hz

Fraguency Bongo	Limits(dB(μV/m))	Class
Frequency Range	Quasi-peak	Class
30 MHz ~ 88 MHz	39.1	
88 MHz ~ 216 MHz	43.5	Class A
216 MHz ~ 960 MHz	46.4	Class A
960 MHz ~ 1 GHz	49.5	
30 MHz ~ 88 MHz	40	
88 MHz ~ 216 MHz	43.5	Class B
216 MHz ~ 960 MHz	46	Class B
960 MHz ~ 1 GHz	54	

-Radiated Emission Limits above 1 @hz

Francisco Danas	Limits(o	Closs		
Frequency Range	Average	Peak	Class	
Above 1 GHz	59.5	79.5	Class A	
Above 1 GHz	54	74	Class B	

Note: The limits of class A equipment is extrapolated using an extrapolation factor of 20 dB/decade because it was measured at 3m distance not 10m distance.

Page : 8 of 16

2.3 Radiated Emission

The initial preliminary exploratory scans were performed over the measuring frequency range(30 MHz to 2 GHz) using a max hold mode incorporating a Peak detector and using the software of EP5RE(Version Ver3.10.20 from TOYO). The final test data was measured using a Quasi-Peak detector below 1 GHz and a Peak and Average detector above 1 GHz. Measurements were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna height was varied from 1 m to 4 m and the EUT was rotated 360° to find the maximum emitting point for each frequency.

2.3.1 Test Equipments

Description	Model No.	Manufacturer	S/N	Last Cal. Date	
Horn Antenna	HF906	R&S	100229	2011.05.04	
Signal Conditioning Unit	SCU 18	R&S	10117	2012.01.12	
Bilog Antenna	VULB9163	SCHWARZBEC K MESS- ELEKTRONIK	396	2011.05.12	
Test Receiver	ESU26	R&S	100109	2011.05.04	
Amplifier	8447F	HP	2944A03909	2011.07.04	

Note: Only the calibration period of Antennas is 2 years but the period of every equipment is 1 year.

2.3.2 Test Site

3 m Semi-Anechoic Chamber in Gunpo Laboratory

Page : 9 of 16

2.3.3 Environment Conditions

Below 1 GHz (3 m method)

Temperature: 23.4 Humidity: 25.0 %R.H.

Atmospheric Pressure: 100.9 kPa

Test Date: April 18, 2012

Freq.	Level	Pol.	Α	Н	AF	CL	Amp.	F/S	Limit	Margin
(MHz)	(dBμV)	(H/V)	(°)	(m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
35.25	26.10	Н	121.5	1.01	12.61	0.61	27.17	12.15	40.00	27.85
275.65	40.30	Н	174.5	1.01	12.63	1.72	26.55	28.10	46.00	17.90
292.79	26.50	V	134.8	1.97	12.63	1.78	26.51	14.40	46.00	31.60
301.72	29.40	V	134.8	1.97	12.65	1.81	26.51	17.35	46.00	28.65
551.38	24.00	V	47.7	1.97	16.80	2.49	27.90	15.39	46.00	30.61
941.48	24.50	V	234.9	1.01	22.58	3.13	27.28	22.93	46.00	23.07

Measurement Uncertainty (Horizontal) : \pm 5.00 dB (The confidential level is about 95%, K=2) Measurement Uncertainty (Vertical) : \pm 5.36 dB (The confidential level is about 95%, K=2)

Note: • AF = Antenna Factor

• Pol.(H) = Horizontal

• Margin = Limit - F/S

• A : Angle

• CL = Cable Loss

• Pol.(V) = Vertical

• Ar

• Amp. = Amplifier Gain

• F/S = Field Strength

• F/S = Level + AF + CL - Amp.

• H : Height

Page : 10 of 16

Above 1 GHz (3 m method)

Temperature: 23.2 Humidity: 26.0 %R.H.

Atmospheric Pressure: 100.9 kPa

Test Date: April 18, 2012

Freq.	Level (dBµV)	Pol. (H/V)	A (°)	H (m)	AF (dB)	CL (dB)	Amp. (dB)	F/S (dBμV/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
	Peak Detector									
1425.63	45.20	V	193.3	1.00	25.01	3.91	43.75	30.37	74.00	43.63
1765.21	46.20	Н	74.4	1.00	27.02	4.38	43.88	33.72	74.00	40.28
	Average Detector									
1425.63	31.10	V	193.3	1.00	25.01	3.91	43.75	16.27	54.00	37.73
1765.21	32.30	Н	74.4	1.00	27.02	4.38	43.88	19.82	54.00	34.18

Measurement Uncertainty (Horizontal) : \pm 4.89 dB (The confidential level is about 95%, K=2) Measurement Uncertainty (Vertical) : \pm 4.93 dB (The confidential level is about 95%, K=2)

Note: • AF = Antenna Factor

• CL = Cable Loss

• F/S = Field Strength

• Pol.(H) = Horizontal

• Pol.(V) = Vertical • Amp. = Amplifier Gain

• Margin = Limit – F/S

• F/S = Level + AF + CL - Amp.

• A : Angle • H : Height See Appendix A (Radiated Emission)

Test Report No. : F690501/RF-EMG004399
Page : 11 of 16

2.4 Photographs of Radiated Emission (3m method below 1 础)

Test Report No. : F690501/RF-EMG004399
Page : 12 of 16

2.5 Photographs of Radiated Emission (3m method above 1 础)

Test Report No. : F690501/RF-EMG004399
Page : 13 of 16

3. Photographs of EUT

Rear View

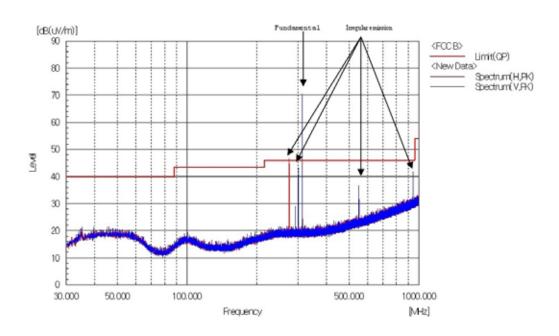
Test Report No. : F690501/RF-EMG004399
Page : 14 of 16

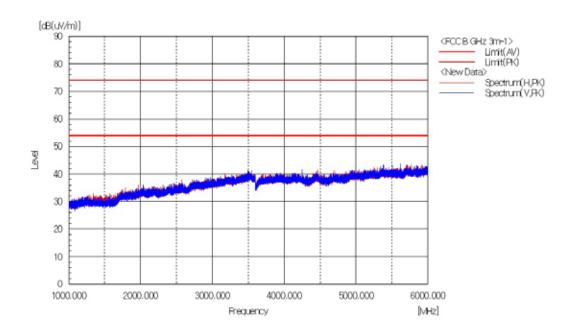
Top View of Main Board

Bottom View of Main Board

Test Report No. : F690501/RF-EMG004399
Page : 15 of 16

Inside




Page : 16 of 16

Appendix A: Radiated Emission

Below 1 GHz

Above 1 GHz

