Bundesnetzagentur	CTC advanced member of RWTÜV group
TEST R Test report no.: 1 Testing laboratory	Deutsche Aller diverse telle
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03	beyerdynamic GmbH & Co. KG Theresienstraße 8 74072 Heilbronn / GERMANY Phone: +49 7131 617-0 Fax: +49 7131 617-215 Contact: Ulrich Roth e-mail: roth@beyerdynamic.de Phone: +49 7131 617-155 Manufacturer beyerdynamic GmbH & Co. KG Theresienstraße 8 74072 Heilbronn / GERMANY
Test sta	ndard/s
47 CFR Part 15 devices	I Regulations; Chapter I; Part 15 - Radio frequency
RSS - 247 Issue 2 Digital Transmission Systems Licence - Exempt Local Area	(DTSs), Frequency Hopping Systems (FHSs) and Network (LE-LAN) Devices

Spectrum Management and Telecommunications Radio Standards Specifications -RSS - Gen Issue 4 General Requirements and Information for the Certification of Radio Apparatus For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	Unite TP	
Model name:	Wireless bodypack	
FCC ID:	OSDUNITEPBT	
IC:	3628C-UNITEPBT	Power Minne Chained Volume
Frequency:	DTS band 2400 MHz to 2483.5 MHz	
Technologytested:	Bluetooth [®] + EDR	
Antenna:	Integrated chip antenna	
Power supply:	3.70 V DC by Li-lon battery	beyerdynamic))))
Temperature range:	-10°C to +55°C	

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Mihail Dorongovskij Lab Manager Radio Communications & EMC

Test performed:

Andreas Luckenbill Lab Manager Radio Communications & EMC

1 Table of contents

1	Table of	of contents	2
2	Genera	Il information	3
	2.2	Notes and disclaimer Application details Fest laboratories sub-contracted	3
3	Test st	andard/s and references	4
4	Test en	vironment	5
5	Test ite	m	5
		General description Additional information	
6	Seque	nce of testing	6
	6.2 6.3 6.4	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	7 8 9
7	Descrip	otion of the test setup	10
	7.2 5 7.3 1 7.4 0	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Conducted measurements C.BER system AC conducted	12 13 14
8	Measu	rement uncertainty	16
9	Summa	ary of measurement results	17
10	Addi	tional comments	18
11	Meas	surement results	19
	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13	Antenna gain Carrier frequency separation Number of hopping channels Time of occupancy (dwell time) Spectrum bandwidth of a FHSS system Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz Spurious emissions radiated above 1 GHz Spurious emissions conducted below 30 MHz (AC conducted)	20 22 24 25 32 38 45 49 57 60 65 71
12	Obse	ervations	73
Anr	ex A	Glossary	74
Anr	ex B	Document history	75
Anr	ex C	Accreditation Certificate	75

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4846/17-01-04 and dated 2018-05-02.

2.2 Application details

Date of receipt of order:	2017-12-01
Date of receipt of test item:	2017-12-06
Start of test:	2017-12-06
End of test:	2018-04-24
Person(s) present during the test:	Mr. Oliver Spychala

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

CTC I advanced

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	Tnom Tmax Tmin	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		42 %
Barometric pressure	:		1026 hpa
		Vnom	3.70 V DC by Li-lon battery
Power supply	:	Vmax	No tests under extreme conditions required.
		Vmin	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Unite TP
Type identification :	Wireless bodypack
HMN :	-/-
PMN :	Unite TP
HVIN :	Unite TP
FVIN :	-/-
S/N serial number :	Radiated unit:02 FC C0 00 4FConducted unit:02 FC C0 00 3B
HW hardware status :	Rad. V7 Cond. V4
SW software status :	Rad. V0033 Cond. V0019
Frequency band :	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)
Type of radio transmission : Use of frequency spectrum :	FHSS
Type of modulation :	GFSK, Pi/4 QPSK, 8 DPSK
Number of channels :	79
Antenna :	Integrated chip antenna
Power supply :	3.70 V DC by Li-lon battery
Temperature range :	-10°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-4846/17-01-01_AnnexA 1-4846/17-01-01_AnnexB 1-4846/17-01-01_AnnexD

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

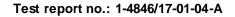
Premeasurement

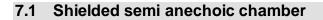
• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

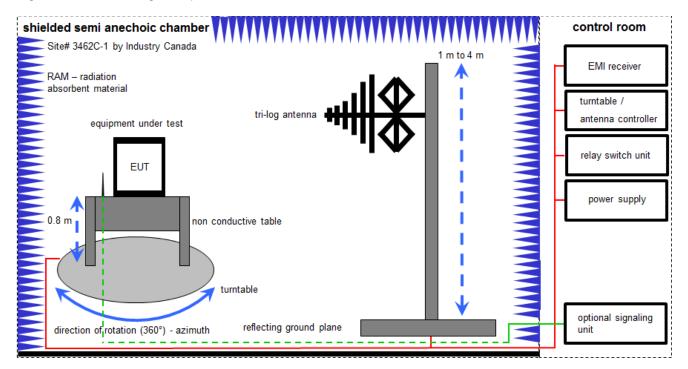
7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

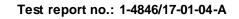
- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

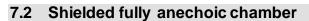

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

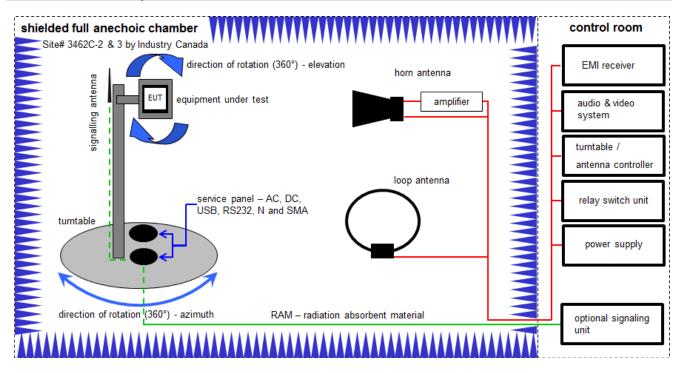
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter


FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	v IKI!	15.01.2018	14.01.2020
5	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	A	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
9	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	v IKI!	10.02.2017	09.02.2019

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

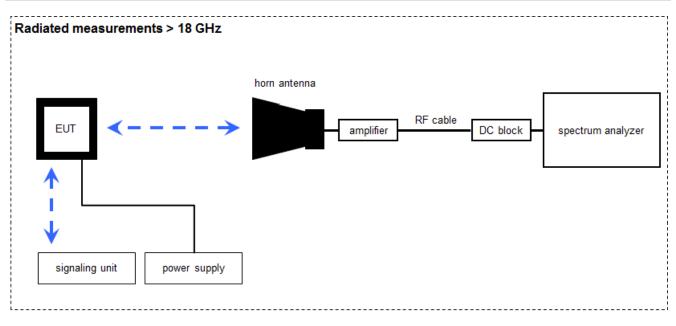
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m)$

Equipment table:


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	B, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	v IKI!	14.02.2017	13.02.2019
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	С	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	20.12.2017	19.12.2018
7	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000037	300004509	ne	-/-	-/-
11	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
13	A, B, C	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	v IKI!	10.02.2017	09.02.2019

CTC | advanced

member of RWTÜV group

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Kind of Lab / Serial No. INV. No. No. Equipment Туре Manufacturer Calibration Item JS32-02004000-57-Amplifier 2-40 GHz MITEQ 1777200 300004541 А ev 5P ST18/SMAm/SMAm/ Batch no. **RF-Cable** Huber & Suhner 400001182 А ev 48 600918 ST18/SMAm/SMAm/ Batch no. RF-Cable Huber & Suhner 400001183 А ev 48 127377 DC-Blocker 0.1-40 А 8141A Inmet -/-400001185 ev GHz Std. Gain Horn -/-Narda 300000486 А Antenna 18.0-26.5 638 k GHz Signal Analyzer 40 А FSV40 R&S 101042 300004517 k GHz CBT (Bluetooth CBT 1153.9000K35 100185 300003416 v IKI! А Tester + EDR R&S Signalling)

Equipment table:

1

2

3

4

5

6

7

Last

Calibration

-/-

-/-

-/-

-/-

13.12.2017

16.01.2018

10.02.2017

Next

Calibration

-/-

-/-

-/-

-/-

12.12.2019

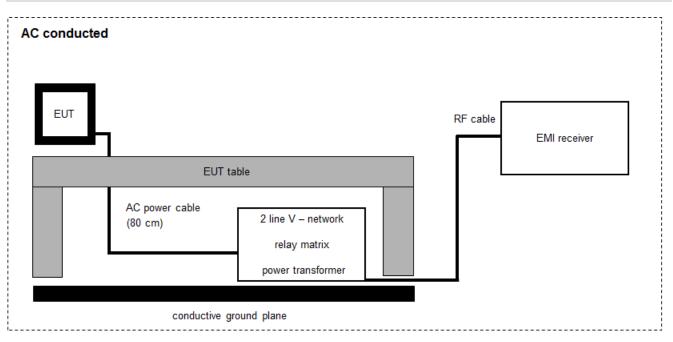
15.01.2019

09.02.2019

7.4 Conducted measurements C.BER system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:


OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch / Control Unit	3488A	HP	-/-	300000929	ne	-/-	-/-
2	A	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
3	A	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
4	A	Powersplitter	6005-3	Inmet Corp.	-/-	300002841	ev	-/-	-/-
5	А	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	30.01.2017	29.01.2019
6	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 699866	400001189	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 14844	400001190	ev	-/-	-/-
8	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	v IKI!	10.02.2017	09.02.2019

CTC I advanced

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

<u>Example calculation</u>: FS [dB μ V/m] = 37.62 [dB μ V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB μ V/m] (244.06 μ V/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	k	13.12.2017	12.12.2019
2	A	RF-Filter-section	85420E	HP	3427A00162	300002214	k	-/-	-/-
3	А	AC- Spannungsquelle v ariabel	MV2616-V	EM-Test	0397-12	300003259	k	26.01.2018	26.01.2020
4	A	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
5	Α	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY 51210197	300004405	k	18.12.2017	17.12.2018
6	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	v IKI!	10.02.2017	09.02.2019

CTC I advanced

8 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Carrier frequency separation	± 21.5 kHz			
Number of hopping channels	-/-			
Time of occupancy	According BT Core specification			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum output power	± 1 dB			
Detailed conducted spurious emissions @ the band edge	± 1 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions conducted	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

Test report no.: 1-4846/17-01-04-A

9 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2018-09-05	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4.(f)(ii)	Antenna gain	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1.(b)	Carrier frequency separation	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (c)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XX				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output pow er	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XXX				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XXX				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	GFSK	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	GFSK RX mode	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	GFSK RX mode	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFSK RX mode	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

The Bluetooth[®] word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	None					
Special test descriptions:	Only U	Only Unite TP was tested.				
Configuration descriptions:	payloa	ts: were performed with x-DH5 packets and static PRBS pattern d. Indby tests: BT test mode enabled, scan enabled, TX Idle				
Test mode:	\boxtimes	Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU/CMW)				
		Special software is used. EUT is transmitting pseudo random data by itself				
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) 				

11 Measurement results

11.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth[®] devices, the GFSK modulation is used.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.4 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC
6 dBi /> 6 dBi output powe	r and power density reduction required

Results:

T _{nom}	V _{nom}	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Conducted p Measured with G		4.0	5.2	5.6
Radiated power [dBm] Measured with GFSK modulation		0.0	2.6	5.6
Gain [dBi] Calculated		-4.0	-2.6	0.0

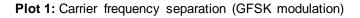
11.2 Carrier frequency separation

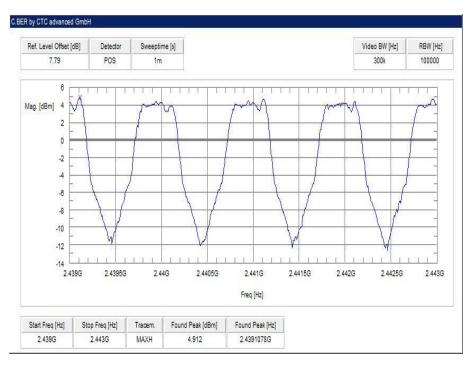
Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz			
Span	4 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 8			

Limits:


FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		


Result:

Carrier frequency separation	~ 1 MHz
------------------------------	---------

Plot:

11.3 Number of hopping channels

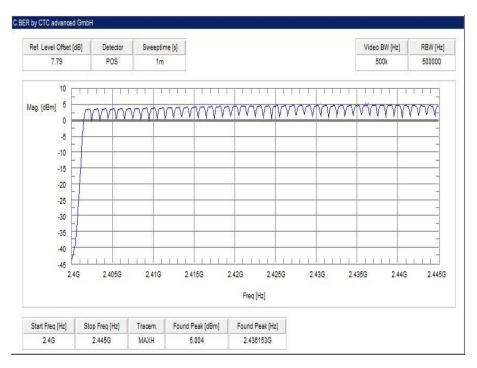
Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

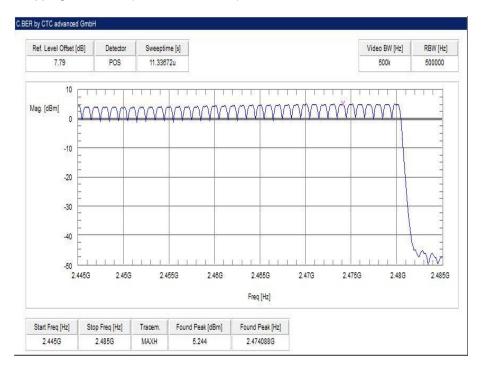
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	500 kHz	
Video bandwidth	500 kHz	
Span	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC
Number of hop	pping channels
At least 15 non overlapping hopping channels	


Result:

Number of hopping channels	79



Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

11.4 Time of occupancy (dwell time)

Measurement:

For Bluetooth[®] devices no measurements mandatory depending on the fixed requirements according to the Bluetooth[®] Core Specifications!

For Bluetooth[®] devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \ \mu s + 1600 + 1/s / 79 + 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 \times 625 \ \mu s \times 1600/3 \times 1/s / 79 \times 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 \times 625 \ \mu s \times 1600/5 \times 1/s / 79 \times 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

This is according the Bluetooth[®] Core Specification V2.0 & V2.1 & V3.0 & V4.0 (+ critical errata) for all Bluetooth[®] devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

* according Bluetooth[®] specification

Results:

Packet Size	Pulse Width [ms]*	Max. number of transmissions in 31.6 sec	Time of occupancy (dwell time) [Pulse width * Number of transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC
Time of occupancy (dwell time)	
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.	

11.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	30 kHz	
Video bandwidth	100 kHz	
Span	3 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

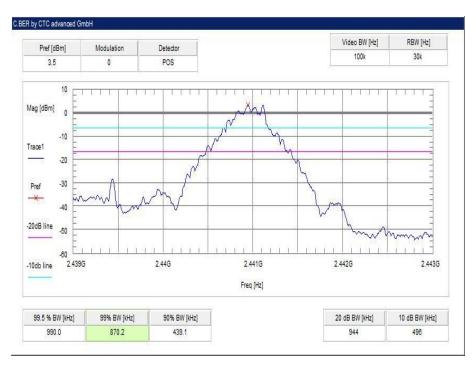
FCC	IC
Spectrum bandwidth of a FHSS system	
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz	

Results:

Modulation	:	20 dB bandwidth [kHz]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	944	944	944
Pi/4 DQPSK	1248	1240	1240
8DPSK	1264	1256	1256

Results:

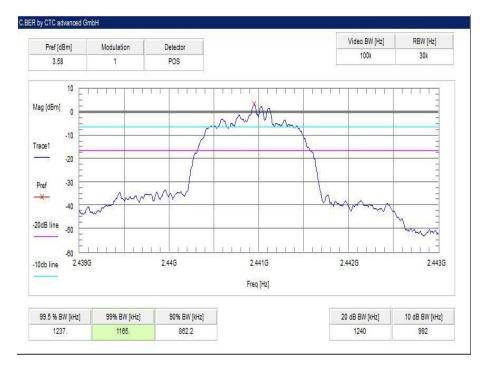
Modulation		99 % bandwidth [kHz]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	870	870	870
Pi/4 DQPSK	1157	1165	1165
8DPSK	1165	1165	1173



Plots:

Plot 1: lowest channel – 2402 MHz, GFSK modulation

Plot 2: middle channel - 2441 MHz, GFSK modulation



Plot 3: highest channel – 2480 MHz, GFSK modulation

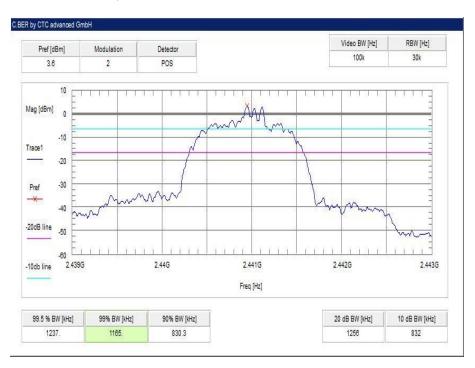
Plot 4: lowest channel - 2402 MHz, Pi / DQPSK modulation





Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation



Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel - 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

11.6 Maximum output power

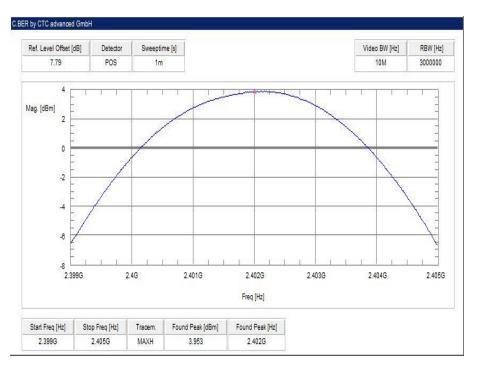
Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

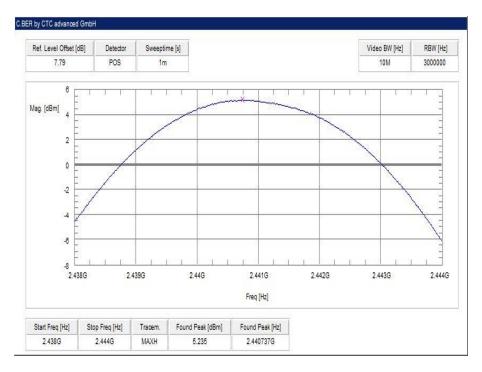
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	6 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

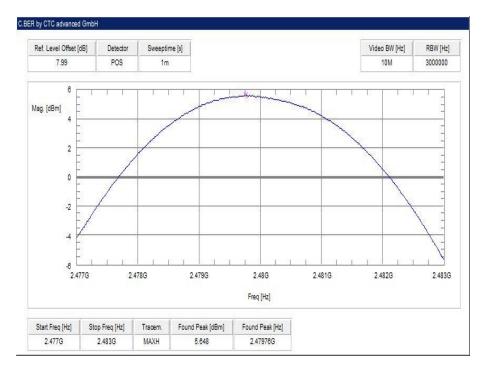
FCC	IC
Maximum output power	
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi


Results:

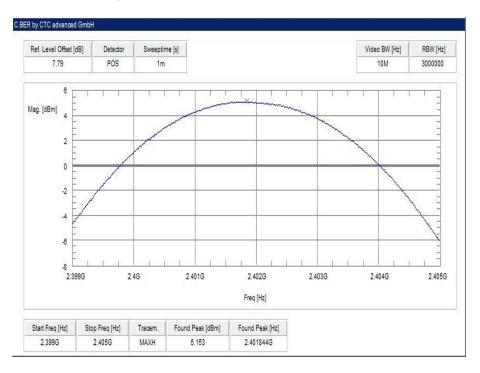
Modulation	Maximum output power conducted [dBm]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	4.0	5.2	5.6
Pi/4 DQPSK	5.2	6.0	6.5
8 DPSK	5.5	6.4	6.9

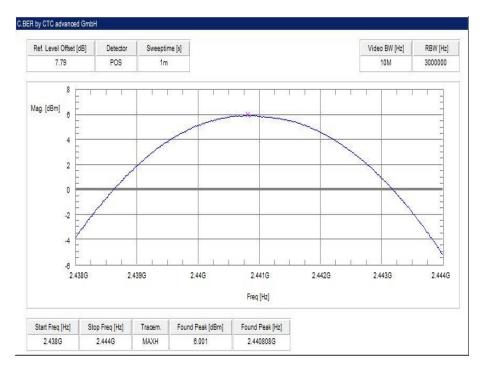


Plots:


Plot 1: lowest channel - 2402 MHz, GFSK modulation

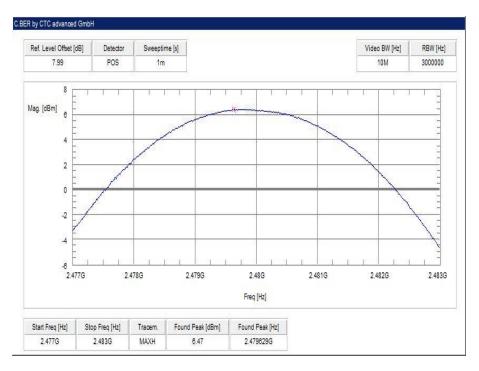
Plot 2: middle channel - 2441 MHz, GFSK modulation

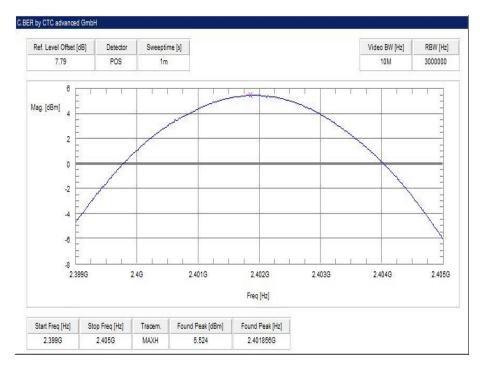




Plot 3: highest channel – 2480 MHz, GFSK modulation

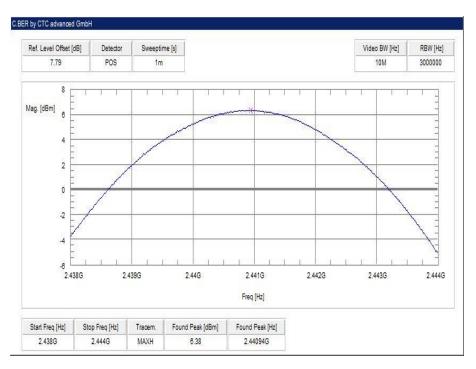
Plot 4: lowest channel - 2402 MHz, Pi / DQPSK modulation





Plot 5: middle channel - 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel - 2480 MHz, Pi / DQPSK modulation





Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel - 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

11.7 Detailed spurious emissions @ the band edge - conducted

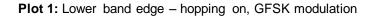
Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 2395 – 2405 MHz Upper Band Edge: 2478 – 2489 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

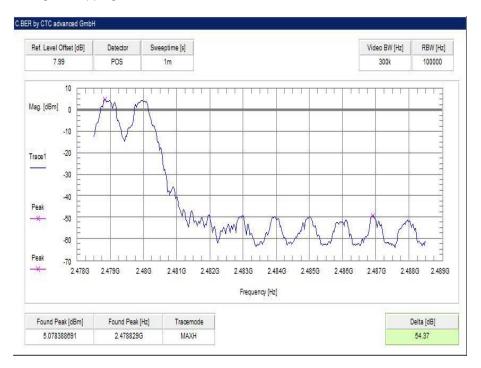
Limits:

FCC	IC
In any 100 kHz bandwidth outside the frequency band in w radiator is operating, the radio frequency power that is produ	iced by the intentional radiator shall be at least 20 dB below

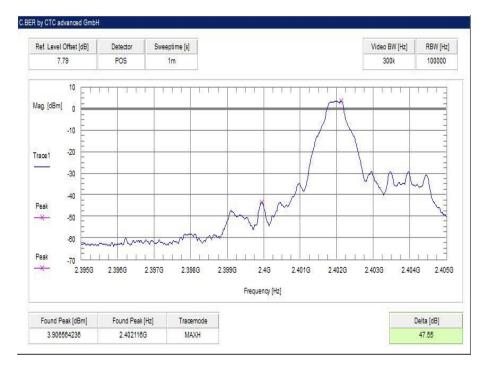

that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results:

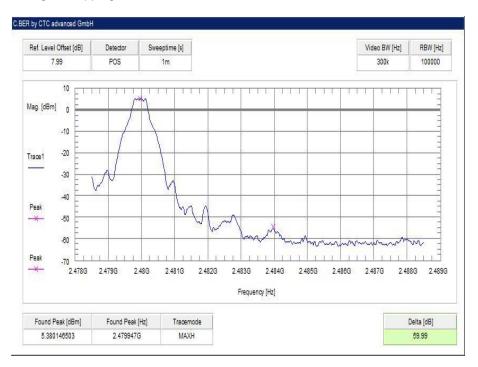
Scenario	Spurious band edge conducted [dB]		
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge - hopping off	> 20 dB	> 20 dB	> 20 dB
Lower band edge - hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

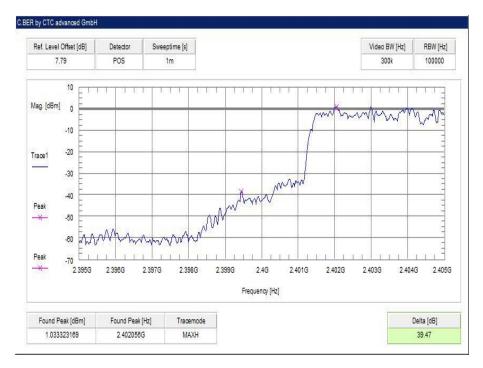


Plots:



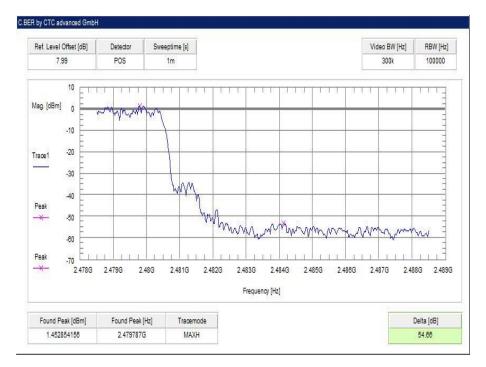
Plot 2: Upper band edge - hopping on, GFSK modulation





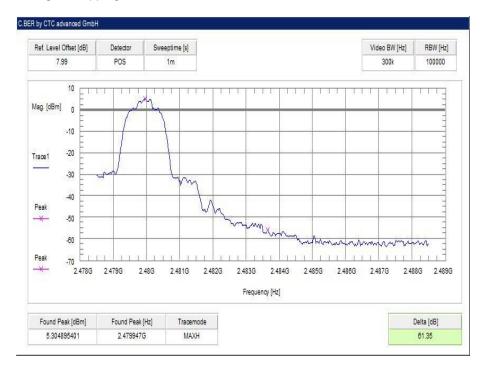
Plot 3: Lower band edge – hopping off, GFSK modulation

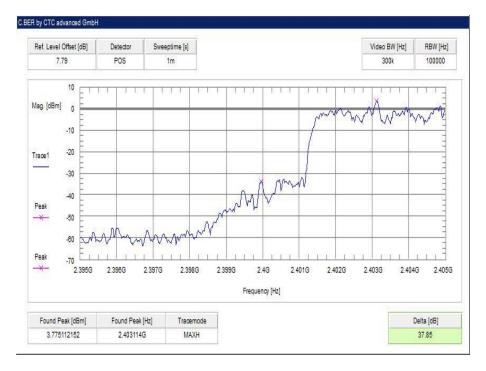
Plot 4: Upper band edge - hopping off, GFSK modulation



Plot 5: Lower band edge - hopping on, Pi/4 DQPSK modulation

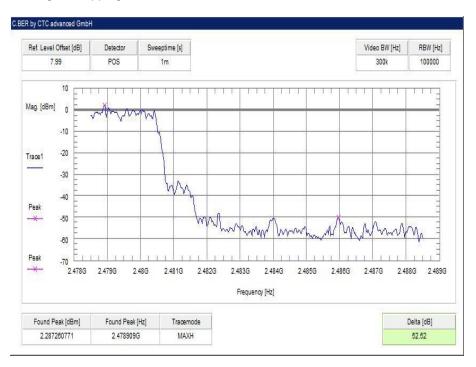
Plot 6: Upper band edge - hopping on, Pi/4 DQPSK modulation





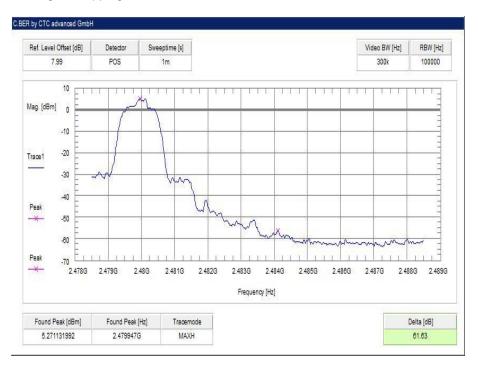
Plot 7: Lower band edge - hopping off, Pi/4 DQPSK modulation

Plot 8: Upper band edge - hopping off, Pi/4 DQPSK modulation



Plot 9: Lower band edge – hopping on, 8DPSK modulation

Plot 10: Upper band edge - hopping on, 8DPSK modulation



Plot 11: Lower band edge – hopping off, 8DPSK modulation

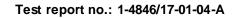
Plot 12: Upper band edge - hopping off, 8DPSK modulation

11.8 Band edge compliance radiated

Description:

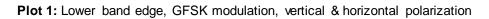
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

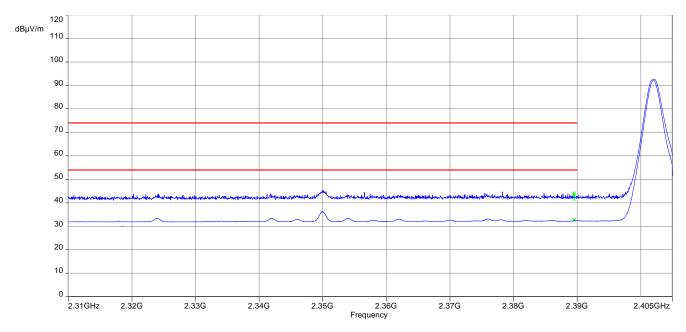
Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B		
Measurement uncertainty	See sub clause 8		

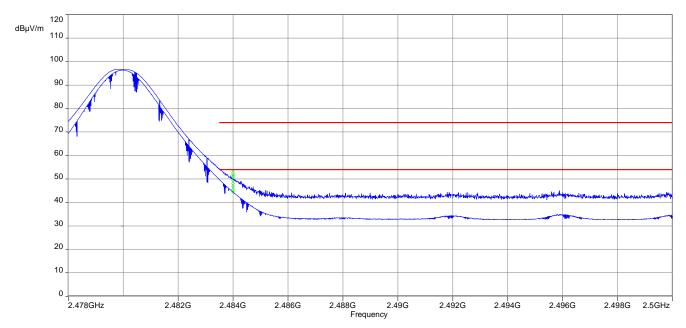

Limits:

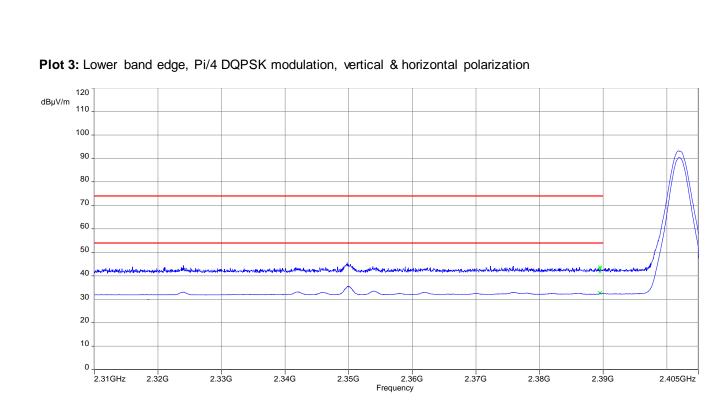
FCC	IC		
Band edge com	pliance radiated		
that in the 100 kHz bandwidth within the band that contains t conducted or a radiated measurement. Attenuation below the	uced by the intentional radiator shall be at least 20 dB below he highest level of the desired power, based on either an RF e general limits specified in Section 15.209(a) is not required. ds, as defined in Section 15.205(a), must also comply with the		
54 dBuV/m AVG			

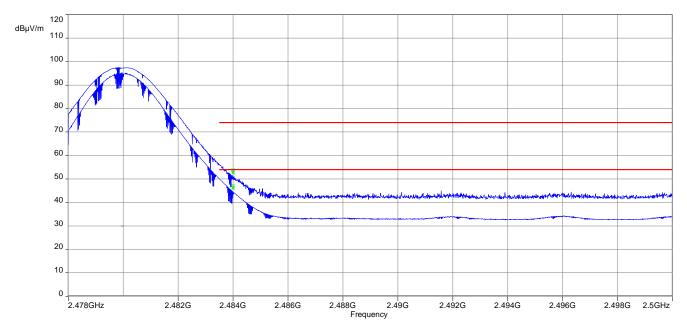
74 dBµV/m Peak


Results:

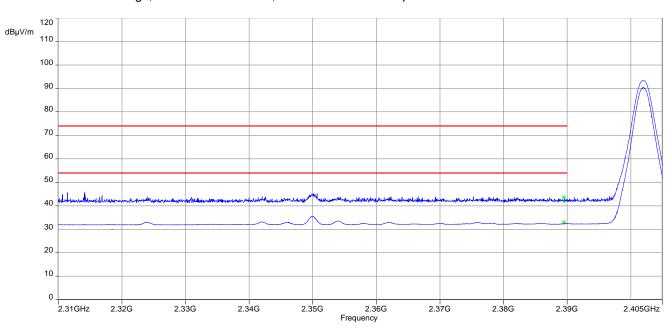

Scenario	Band edge compliance radiated [dBµV/m]		
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP



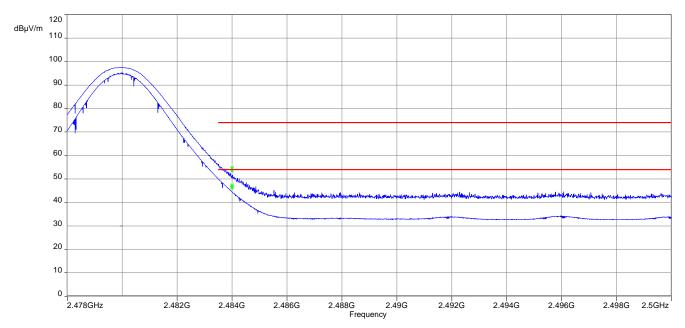

Plots:



Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization



Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization



CTC I advanced

Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization

Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

CTC I advanced

11.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	9 kHz to 25 GHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

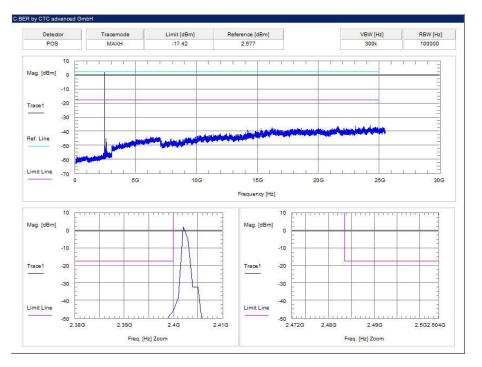
FCC		IC	
TX spurious emissions conducted			
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RI conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required			

Results:

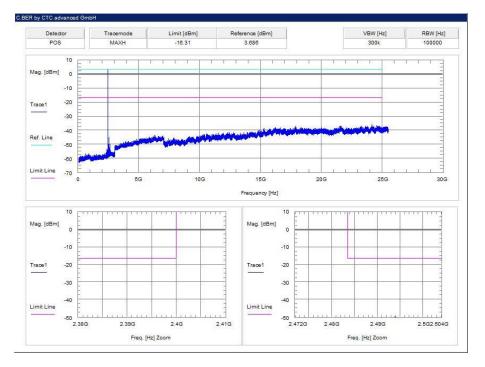
	TX spurious emissions conducted				
	GFSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		2.6	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
2441		3.7	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!				compliant
			-20 dBc		
2480		4.0	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
			-20 060		

Results:

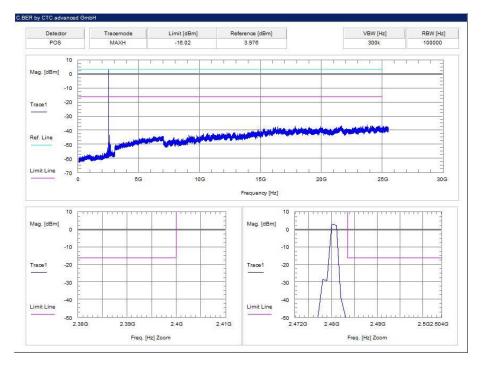
	TX spurious emissions conducted				
	Pi/4-DQPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		2.6	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
			-20 000		
2441		3.5	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
			-20 060		
2480		3.8	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	


Results:

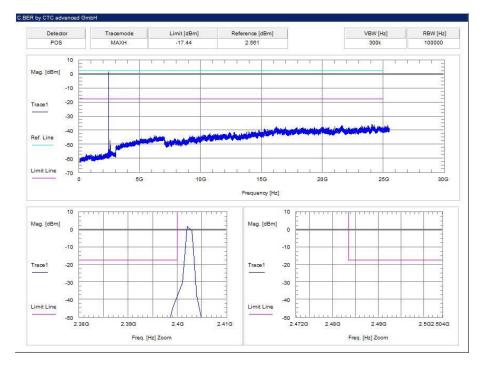
	TX spurious emissions conducted					
	8DPSK - mode					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2402		2.6	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant		
2441		3.5	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant		
0.400			00.15			
2480		3.8	30 dBm		Operating frequency	
	emissions are b Please take a loc		-20 dBc		compliant	

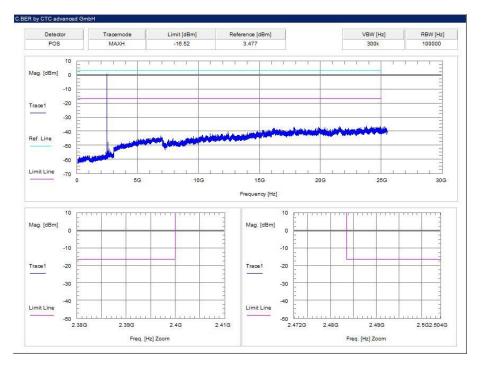


Plots:


Plot 1: lowest channel - 2402 MHz, GFSK modulation

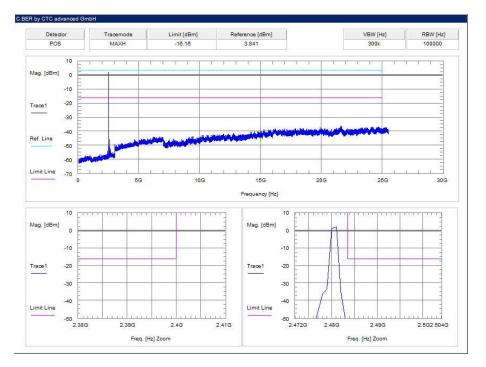
Plot 2: middle channel - 2441 MHz, GFSK modulation

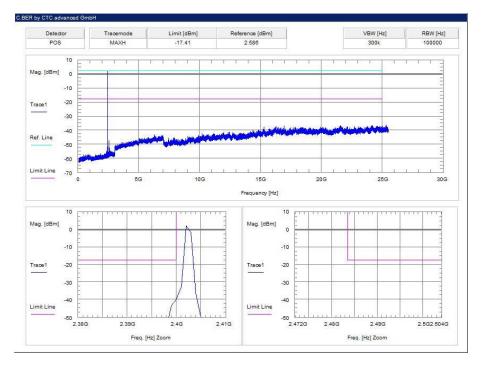




Plot 3: highest channel – 2480 MHz, GFSK modulation

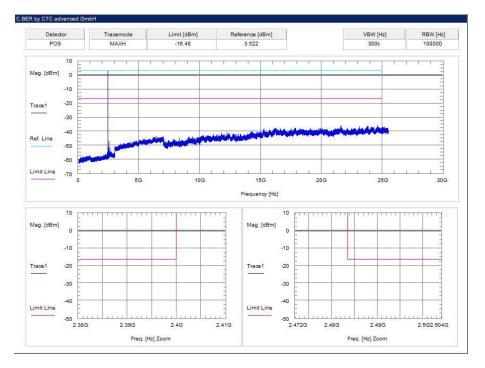
Plot 4: lowest channel - 2402 MHz, Pi / DQPSK modulation

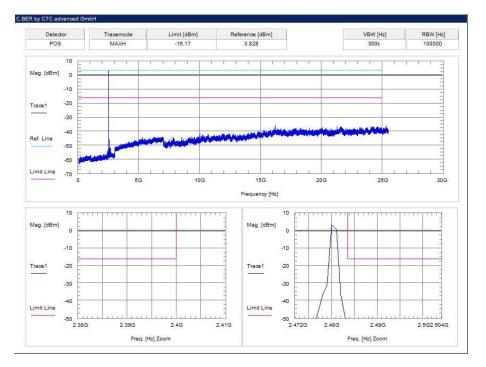




Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation





Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

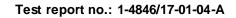
Plot 8: middle channel - 2441 MHz, 8 DPSK modulation

Plot 9: highest channel - 2480 MHz, 8 DPSK modulation

11.10 Spurious emissions radiated below 30 MHz

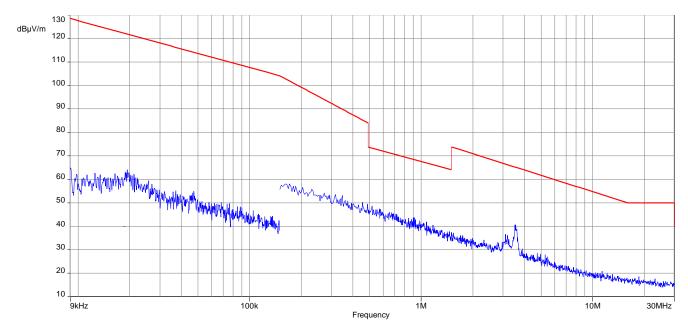
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

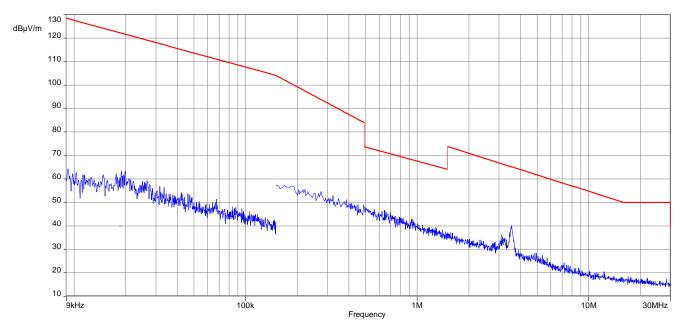

Measurement parameters				
Detector	Peak / Quasi peak			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 A			
Measurement uncertainty	See sub clause 8			

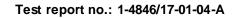
Limits:

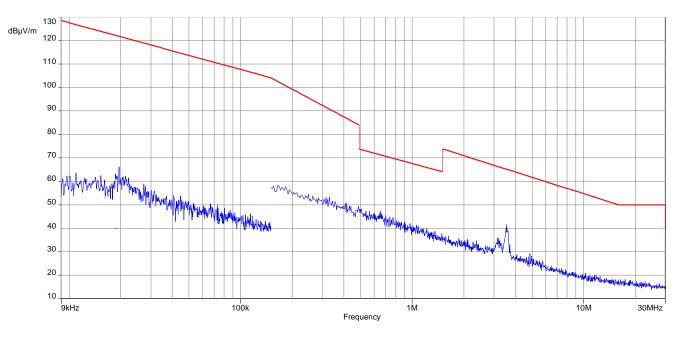
FCC		IC			
TX spurious emissions radiated below 30 MHz					
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance			
0.009 – 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			


Results:

TX spurious emissions radiated below 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected emissions are more than 20 dB below the limit.							




Plots:



Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode

Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

CTC I advanced

11.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

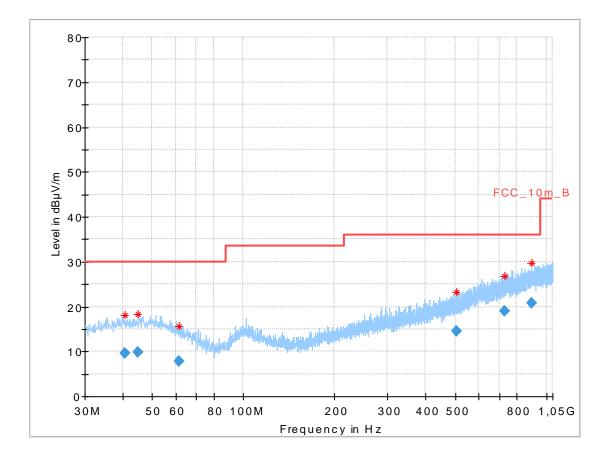
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	120 kHz					
Video bandwidth	3 x RBW					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	🗆 GFSK 🛛 Pi/4 DQPSK 🛛 8DPSK					
Test setup	See sub clause 7.1 A					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

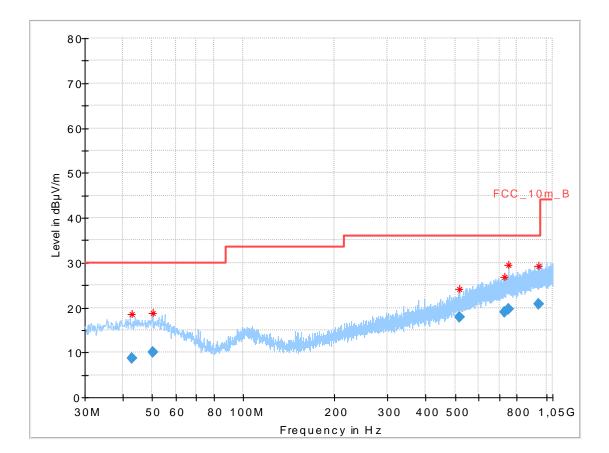
Limits:

FCC		IC					
	TX spurious em	issions radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
	§15.209						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance				
30 - 88	30	0.0	10				
88 – 216	33	5.5	10				
216 – 960	36.0 10						
Above 960	54	.0	3				

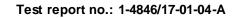

Plots: Transmit mode

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

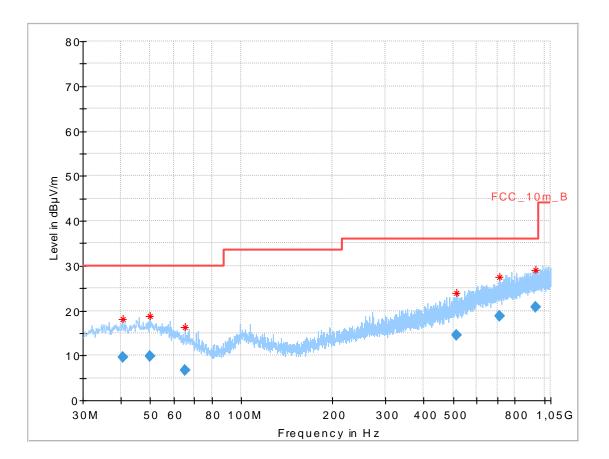
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.959	8.84	30.0	21.16	1000	120	101.0	V	270.0	13.1
47.151	9.12	30.0	20.88	1000	120	101.0	V	90.0	13.7
61.818	7.66	30.0	22.34	1000	120	101.0	V	180.0	11.4
493.792	14.24	36.0	21.76	1000	120	98.0	н	270.0	18.6
734.031	19.00	36.0	17.00	1000	120	101.0	н	90.0	22.3
897.385	20.85	36.0	15.15	1000	120	170.0	Н	90.0	24.2



Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.533	9.59	30.0	20.41	1000	120	101.0	V	180.0	13.3
45.060	9.91	30.0	20.09	1000	120	170.0	н	0.0	13.6
61.149	7.91	30.0	22.09	1000	120	170.0	н	270.0	11.6
507.044	14.57	36.0	21.43	1000	120	98.0	н	90.0	18.8
728.658	18.97	36.0	17.03	1000	120	98.0	н	90.0	22.2
892.314	20.85	36.0	15.15	1000	120	98.0	Н	180.0	24.1

Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.959	8.75	30.0	21.25	1000	120	101.0	V	0.0	13.5
50.474	9.95	30.0	20.05	1000	120	170.0	V	270.0	13.7
515.369	17.89	36.0	18.11	1000	120	98.0	V	90.0	18.9
728.679	18.96	36.0	17.04	1000	120	101.0	V	90.0	22.2
752.152	19.56	36.0	16.44	1000	120	98.0	н	0.0	22.7
945.716	20.87	36.0	15.13	1000	120	101.0	V	90.0	24.3

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.743	9.50	30.0	20.50	1000	120	101.0	V	0.0	13.3
49.949	9.91	30.0	20.09	1000	120	170.0	Н	90.0	13.7
65.190	6.72	30.0	23.28	1000	120	101.0	V	180.0	10.7
513.682	14.58	36.0	21.42	1000	120	170.0	V	270.0	18.9
714.384	18.70	36.0	17.30	1000	120	101.0	V	180.0	21.9
933.842	20.87	36.0	15.13	1000	120	170.0	V	90.0	24.3

11.12 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 26 GHz				
Trace mode	Max hold				
Measured modulation	🗌 GFSK 🗌 Pi/4 DQPSK 🛛 8DPSK				
Test setup	See sub clause 7.2 C (1 GHz - 18 GHz) See sub clause 7.3 A (18 GHz - 26 GHz)				
Measurement uncertainty	See sub clause 8				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC			
TX spurious emissions radiated In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the						
radiated emission limits specified in §15	§15.209(a) (\$ 66 § 15.205					
Frequency (MHz) Field strength (dBµV/m) Measurement distance						
Above 960	54.0 3					

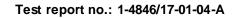
Results: Transmitter mode

	TX spurious emissions radiated [dBµV/m]								
	2402 MHz			2441 MHz		2480 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
2337	Peak	46.7	2337	Peak	46.7	4965	Peak	55.7	
2337	AVG	40.6	2337	AVG	40.6	4905	AVG	25.6*	
	Peak	56.1		Peak	55.6		Peak	No	
4804	AVG	26.0*	4882	AVG	25.5*	9924	AVG	restricted band	
9608	Peak	50.6	19204	Peak	49.5	19829	Peak	45.7	
9000	AVG	20.5*	19204	AVG	CBT CH00	19629	AVG	15.6*	
19204	Peak	47.5	19524	Peak	45.1				
19204	AVG	17.4*	19324	AVG	15.0*				

*) Average emission adjusting factor:

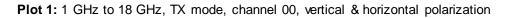
F = 20 * log (dwell time / 100 ms)

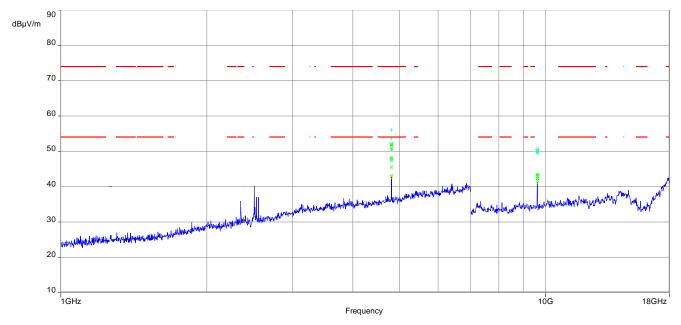
The dwell time of the longest possible Bluetooth transmission (DH5-packet) is 3.125 ms.

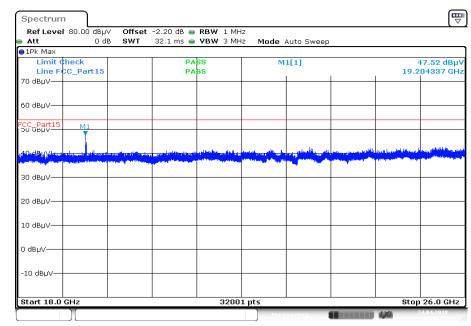

In a period of 100 ms, we have a maximum of 1 transmission and that implies a correction factor for spurious measurement emissions:

F = 20 * log (1 * 3.125 / 100) = -30.1 dB

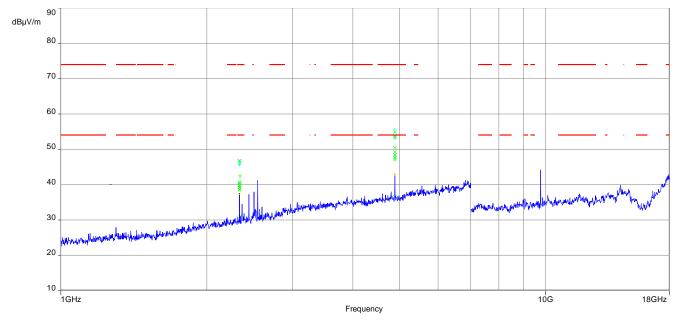
Results: Receiver mode


RX spurious emissions radiated [dBµV/m]							
F [MHz] Detector Level [dBμV/m]							
All detecte	d emissions are more than 20 dB below	<i>t</i> the limit.					
1	Peak	-/-					
-/-	AVG	-/-					

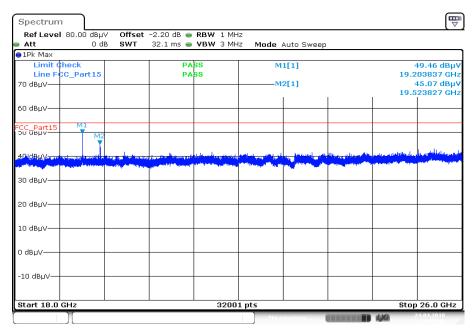

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)



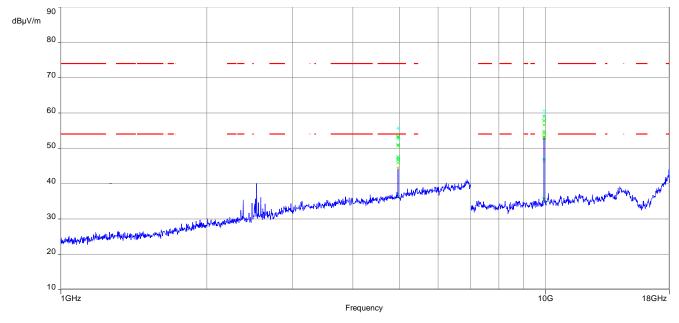
Plots: Transmitter mode


The carrier signal is notched with a 2.4 GHz band rejection filter.

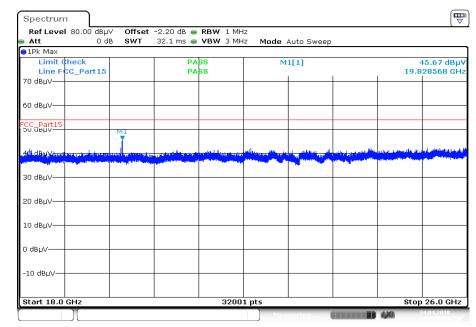
Plot 2: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

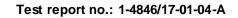

Date: 24.APR.2018 11:06:58

Plot 3: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization



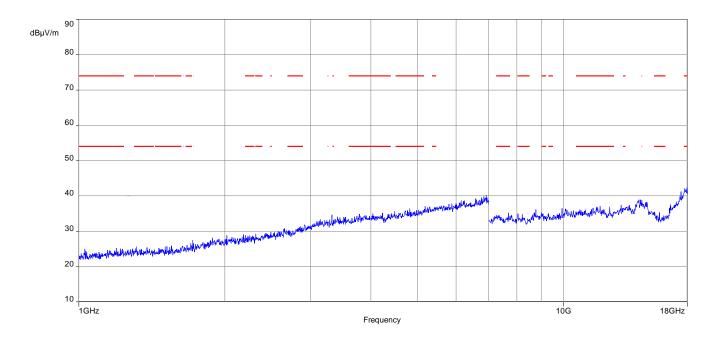
Plot 4: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization


Date: 24.APR.2018 11:07:46


Plot 5: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization


Date: 24.APR.2018 11:08:51

Plots: Receiver mode

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

Ref Level 80.00 dBµV Offset Att 0 dB SWT	-2.20 dB RBW 1 M 32.1 ms VBW 3 M		a	
∋1Pk Max				
Limit Check Line FCC_Part15 70 dBuV	PASS PASS	M1[1]		44.72 dBµ 19.636324 GH
,0 000				
60 dBµV				
CC_Part15				
AB dBHY		the state of the late of the state of the st		and a second state of the second states of the second states of the second states of the second states of the s
a talah sa ang panang pang pang pang pang pang pa			to the state of th	and the second sec
30 dBµV				
20 dBµV				
10 dBµV				
0 dBµV				
-10 dBµV				
Start 18.0 GHz)1 pts		Stop 26.0 GHz

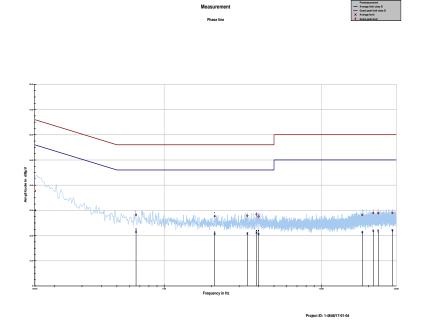
11.13 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

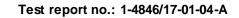
Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

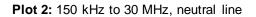
Measurement parameters				
Detector	Peak - Quasi peak / average			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.5. A			
Measurement uncertainty	See sub clause 8			

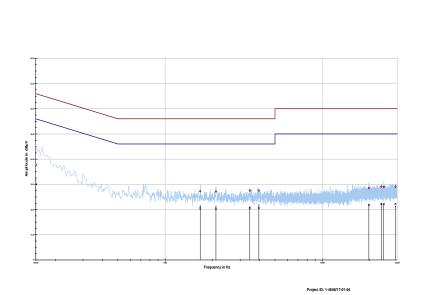
Limits:


FCC			IC	
TX spurious emissions conducted < 30 MHz				
Frequency (MHz)	Quasi-peak (dBµV/m)		Average (dBµV/m)	
0.15 – 0.5	66 to 56*		56 to 46*	
0.5 – 5	56		46	
5 – 30.0	60		50	

*Decreases with the logarithm of the frequency




Plots:


Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150464	37.74	28.24	65.974	30.12	25.87	55.987
0.662346	28.21	27.79	56.000	21.48	24.52	46.000
2.097115	27.68	28.32	56.000	20.72	25.28	46.000
3.383142	27.88	28.12	56.000	20.76	25.24	46.000
3.866711	28.41	27.59	56.000	21.15	24.85	46.000
3.987625	27.56	28.44	56.000	20.58	25.42	46.000
18.232312	28.18	31.82	60.000	21.45	28.55	50.000
21.408030	29.00	31.00	60.000	21.97	28.03	50.000
23.027183	28.89	31.11	60.000	21.96	28.04	50.000
28.337136	28.99	31.01	60.000	22.16	27.84	50.000

easuremen

Neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150324	37.85	28.13	65.982	30.08	25.91	55.991
1.671278	27.27	28.73	56.000	20.48	25.52	46.000
2.104392	27.20	28.80	56.000	20.33	25.67	46.000
3.456117	27.53	28.47	56.000	20.54	25.46	46.000
3.946952	27.53	28.47	56.000	20.57	25.43	46.000
19.781852	28.53	31.47	60.000	21.78	28.22	50.000
23.727256	29.14	30.86	60.000	22.20	27.80	50.000
24.617474	28.97	31.03	60.000	22.20	27.80	50.000
29.195694	29.09	30.91	60.000	22.21	27.79	50.000

12 **Observations**

No observations except those reported with the single test cases have been made.

CTC I advanced

Average limit class B — Cussi peak limit class B X Average level

Annex A Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT	Unit under test			
GUE	GNSS User Equipment			
ETSI	European Telecommunications Standards Institute			
EN	European Standard			
FCC	Federal Communications Commission			
FCC ID	Company Identifier at FCC			
	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
C	Compliant			
NC NC	Not compliant			
NA	Not applicable			
NA	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
OOB	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz			
0/110				

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-05-02
A	Two model names, HVINs and PMNs removed	2018-09-05

Annex C Accreditation Certificate

first page	lastpage
Exercision of the state of the	Deutsche Akkreditierungsstelle GmbH Office Brlin Spitalmark 10 10117 Berlin Office Standburg 60327 Frankfurt am Main Office Braunschweig Bundesalles 100 38116 Braunschweig
Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkks). Exempted is the unchanged form of separate disseminations of the cover subet by the conforming assessmet body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkIstelleG) of 31 July 2009 (rederal Law Gazette Jp. 2523) and the Regulation (EC) No 755/2008 of the European Parliament and of
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annew with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03 Frankfurt, 02.06.2017 Dick for (Ph) and Reverse Head of Division Ended of Division Ende	the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Into L 28 of 9 July 2008, p. 30). DAMAS is a signatory to the Multilateral Agreements for Mutual Recepition of the European co-operation for Accreditation ICA). International Accreditation for Journu (AA) and International Laboratory Accreditation Cooperation (LAC). The signatories to these agreements recognise each other's accreditations. The up-to-date of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf