

TEST REPORT

Test Report No.: 1-4846/17-02-26-A

Testing Laboratory

CTC advanced GmbH

Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: mail@ctcadvanced.com

Accredited Test Laboratory:

The testing laboratory (FCC part 15 D) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03 / -04

Applicant

 beyerdynamic GmbH & Co. KG

 Theresienstraße 8

 74072 Heilbronn / Germany

 Phone:
 +49 7131 617-0

 Fax:
 +49 7131 617-215

 Contact:
 Ulrich Roth

 e-mail:
 roth@beyerdynamic.de

 Phone:
 +49 7131 617-155

Manufacturer

beyerdynamic GmbH & Co. KG Theresienstraße 8 74072 Heilbronn / Germany

Test Standard/s

FCC Part 15, subpart D: 2016

Isochronous UPCS Device 1920 – 1930 MHz

Industry Canada RSS-213, Issue 3: 2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS) 2015

Test Item

restriction						
Kind of product: Product name: HVIN:	Digital 4-Channel Access Point Transceiver [DECT Fixed Part] Unite AP4 Unite AP4					
PMN:	Unite AP4					
FVIN:	Unite AP4					
HMN:						
FCC ID:	OSDUNITEAP4					
IC:	3628C-UNITEAP4					
S/N serial number:	Radiated: /					
	Conducted: /					
HW hardware status:	V3					
SW software status:	V10					
Frequency [MHz]:	1920 -1930					
Type of Modulation:	Digital (Gaussian Frequency Shift Keying)					
Number of channels:	5 RF Channels, 5x12 = 60 TDMA Duplex Channels					
Antenna:	2 internal antennas					
Power Supply:	12 V AC/DC Adapter or POE					
Temperature Range:	-20°C to 50°C					

Test Report authorised:

Test performed:

2019-06-05 L

Lenjoint, Marco Lab Manager RCE 2019-06-05

Wolf, Joachim Head of Department EPNS

1 Table of contents

1	Table	of contents	2			
2	General information					
	2.1	Notes and disclaimer	4			
	2.2	Application details	4			
3	Test s	tandard/s:	4			
4	Test E	nvironment	5			
5		nary of Measurement Results				
-		Set-up				
6		•				
	6.1 6.2	Frequency Measurements				
	6.2 6.3	Timing Measurements Conducted Emission Test				
	6.3 6.4	Radiated Emission Test				
	6.5	Power Line Conducted Emissions Test				
	6.6	Monitoring Tests				
	6.7	Radiated Output Power Test				
		•				
7	Detail	ed Test Results	12			
	7.1	Power Line Conducted Emissions	12			
	7.2	Digital Modulation Techniques				
	7.3	Labeling Requirements				
	7.4	Antenna Requirements				
	7.5	Channel Frequencies				
	7.6	Automatic Discontinuation of Transmission	17			
	7.7	Peak Power Output	18			
	7.8	Emission Bandwidth B	23			
	7.9	Power Spectral Density	26			
	7.10	In-Band Unwanted Emissions, Conducted	29			
	7.11	Out-of-Band Emissions, Conducted				
	7.12	Carrier Frequency Stability				
	7.13	Frame Repetition Stability				
	7.14	Frame Period and Jitter				
	7.15	Monitoring Threshold, Least Interfered Channel				
	7.16	Threshold Monitoring Bandwidth				
	7.17	Reaction Time and Monitoring Interval				
	7.18	Time and Spectrum Window Access Procedure				
	7.19	Acknowledgments and Transmission duration				
	7.20	Dual Access Criteria Check				
	7.21	Alternative monitoring interval				
	7.22	Spurious Emissions (Radiated)				
	7.23	Receiver Spurious Emissions				
8	Test e	quipment and ancillaries used for tests	55			
9	Obser	vations	57			
Anr	nex A:	Photographs of the Test Set-up	57			
		External Photographs of the EUT				
		Internal Photographs of the EUT				
		Document History				
Anr	nex E:	Further Information	59			
Anr	nex F: S	Safety exposure levels	60			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report replaces test report 1-4846/17-02-26 and dated 2019-04-16.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2019-03-06
Date of receipt of test item:	2019-03-06
Start of test:	2019-03-06
End of test:	2019-03-12
Person(s) present during the test:	1

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2016-06	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 3	2015-03	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)
ANSI C63.17	2013-08	American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communication Services (UPCS) Devices
ANSI C63.4	2014-06	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

4 **Test Environment**

Temperature:

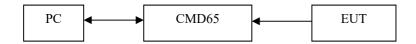
+ 22 °C during room temperature tests + 50 °C during high temperature test - 20 °C during low temperature test Relative humidity content: 38 % not relevant for this kind of testing Air pressure:

Summary of Measurement Results 5

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	6.3	Complies
Fusianing Danskright	15.207(a)	RSS_GEN 7.2.2	Osmanliss
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time			
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	N/A
Reaction time and monitoring interval	15.323(c)(1);(5);	4.3.4	Complies
	(7)		-
Access criteria test interval	15.323(c)(4);(6)	4.3.4	Complies
Access criteria functional test	15.323(c)(4);(6)	4.3.4	Complies
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	N/A ¹
Dual access criteria	15.323(c)(10)	4.3.4	N/A ¹
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
,	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions	N/A	6.8	Complies


¹Only applicable for EUT that can initiate a communication link ²The client declares that the tested equipment does not implement this provision ³The tested equipment has integrated antennas only ⁴Only requirement FCC 15.109 for unintentional radiators was tested radiated

6 Test Set-up

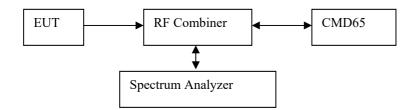
6.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

6.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

6.3 Conducted Emission Test

Test Set-up 3:

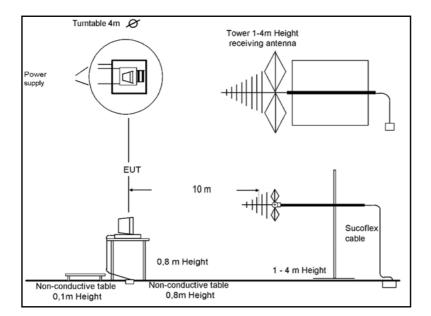
This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

6.4 Radiated Emission Test

30 MHz – 1GHz:

Test Set-up 4:


- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

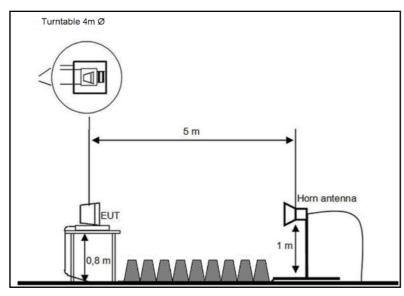
- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software
 maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

1GHz – 10 GHz:

Test Set-up 5:

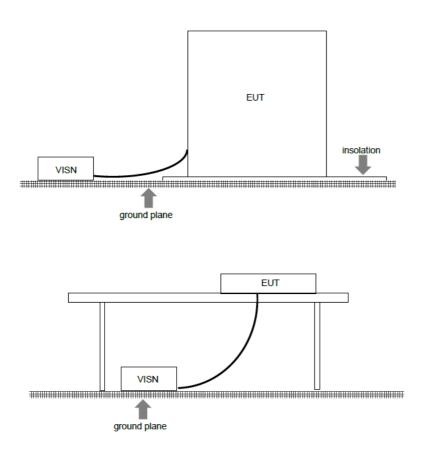

- The Equipment was setup to simulate a typical usage like described in the user manual / or described by manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0,8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is: (see ANSI C 63.4)
 < 18 GHz = 3 m
 - 18 GHz = 3 III
 18-26 GHz = 1,5 m
 26-40 GHz = 0,75 m
- The EUT was set into operation.

Premeasurement

- The turntable rotates continuous from 0° to 360°
- The antenna is polarized vertical and horizontal.
- In accordance to the antenna beam and the size of the EUT the antenna height changes in 30 cm steps, start at 1 meter. If it is not possible to tilt the emissions will be checked with a manually tilted antenna from top side.
- The analyzer scans quickly to find the maximum emissions of the EUT

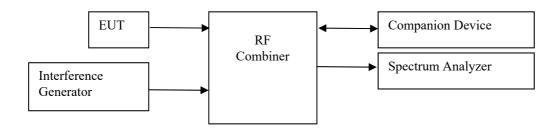
Final measurement

- The final measurement will be performed with minimum the six highest peaks (depends on emissions and number of measured points below 1 GHz)
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with AV (Average / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



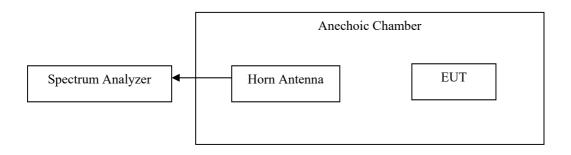
6.5 Power Line Conducted Emissions Test

Test Set-up 6:


According to EMC basic standard ANSI C 63.4

6.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

6.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

7 Detailed Test Results

7.1 Power Line Conducted Emissions

Measurement Procedure:

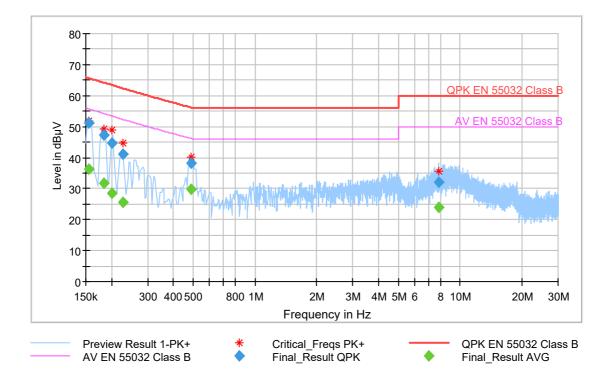
ANSI C63.4-2014 using 50µH/50 ohms LISN.

Test Result:

Measurement Data: See attached plots and tables

Pass

Requirement: FCC 15.207 (a)



Phase Line

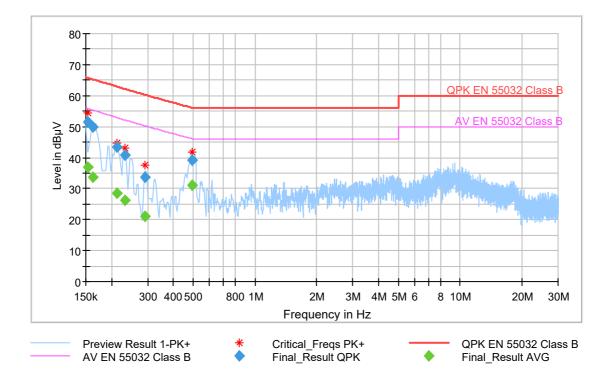
EUT Information

EUT Name:
Manufacturer:
Operator:
Operating Mode:
Comment:

AP4 beyerdynamic Schmidt audio via DANTE + traffic at ETH + sync master to slave + analogue AC 115 V / 60 Hz

Final_Result

Frequenc	QuasiPea	Averag	Limit	Margin	Meas.	Bandwidth	Line	PE	Corr.
У	k	е	(dBµV)	(dB)	Time	(kHz)			(dB)
0.155715		36.42	55.66	19.24	1000.0	9.000	L1	FLO	10.8
0.155715	51.30		65.66	14.36	1000.0	9.000	L1	FLO	10.8
0.184374		31.79	54.14	22.35	1000.0	9.000	L1	FLO	10.2
0.184374	47.15		64.17	17.02	1000.0	9.000	L1	FLO	10.2
0.200083		28.59	53.43	24.84	1000.0	9.000	L1	FLO	10.1
0.200083	44.69		63.46	18.77	1000.0	9.000	L1	FLO	10.1
0.227188		25.54	52.33	26.79	1000.0	9.000	L1	FLO	10.0
0.227188	41.22		62.37	21.14	1000.0	9.000	L1	FLO	10.0
0.486561		29.71	46.21	16.50	1000.0	9.000	L1	FLO	9.9
0.486561	38.09		56.21	18.12	1000.0	9.000	L1	FLO	9.9
7.863008		24.06	50.00	25.94	1000.0	9.000	L1	FLO	10.6
7.863008	32.16		60.00	27.84	1000.0	9.000	L1	FLO	10.6



Neutral Line

EUT Information

EUT Name:
Manufacturer:
Operator:
Operating Mode:
Comment:

AP4 beyerdynamic Schmidt audio via DANTE + traffic at ETH + sync master to slave + analogue AC 115 V / 60 Hz

Final_Result

Frequenc	QuasiPea	Averag	Limit	Margin	Meas.	Bandwidth	Line	PE	Corr.
У	k	е	(dBµV)	(dB)	Time	(kHz)			(dB)
0.153912		36.84	55.77	18.93	1000.0	9.000	Ν	FLO	10.9
0.153912	51.61		65.77	14.16	1000.0	9.000	Ν	FLO	10.9
0.161868		33.80	55.31	21.51	1000.0	9.000	Ν	FLO	10.6
0.161868	49.86		65.32	15.46	1000.0	9.000	Ν	FLO	10.6
0.212086		28.65	52.92	24.27	1000.0	9.000	Ν	FLO	10.1
0.212086	43.40		62.95	19.55	1000.0	9.000	Ν	FLO	10.1
0.232329		26.08	52.14	26.06	1000.0	9.000	Ν	FLO	10.0
0.232329	40.69		62.18	21.48	1000.0	9.000	Ν	FLO	10.0
0.291426		20.99	50.24	29.25	1000.0	9.000	Ν	FLO	9.9
0.291426	33.73		60.28	26.55	1000.0	9.000	Ν	FLO	9.9
0.496444		30.98	46.05	15.07	1000.0	9.000	Ν	FLO	9.9
0.496444	39.32		56.06	16.73	1000.0	9.000	Ν	FLO	9.9

7.2 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

7.3 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

Test report no.: 1-4846/17-02-26-A	СТС	advanced member of RWTÜV group
7.4 Antenna Requirements		
Does the EUT have detachable antenna(s)?	□Yes	🛛 No
If detachable, is the antenna connector(s) non-standard?	□Yes	🗌 No

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirements: FCC 15.203, 14.204. 15.317

7.5 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.301

Within 1920-1930 MHz band for isochronous devices.

7.6 Automatic Discontinuation of Transmission

Does the EUT transmit contro	⊠Yes	🗌 No	
Type of EUT:	Initiating device	🛛 Respond	ding device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	A	Pass
2	EUT switched Off	N/A	N/A
3	Hook-On by companion device	N/A	N/A
4	Hook-On by EUT	N/A	N/A
5	Power removed from companion device	N/A	N/A
6	Companion device switched Off	В	Pass

A – Connection breakdown, Cease of all transmissions

B – Connection breakdown, EUT transmits control and signaling information

C – Connection breakdown, companion device transmits control and signaling information

N/A – Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

7.7 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

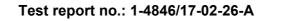
Test Results: Pass

Measurement Data:

Maximum Conducted Output Power

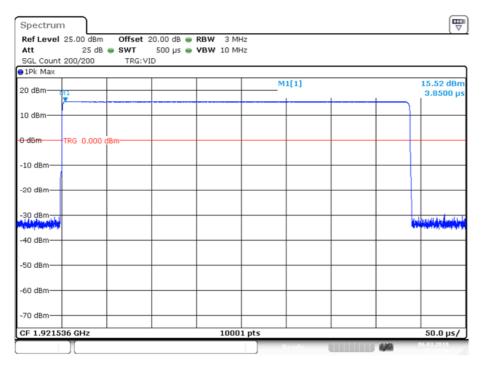
Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Radiated Output Power (dBm)	Maximum Antenna Gain (dBi)
4	1921.536	15.5	17.2	1.7
2	1924.992	15.6	17.1	1.5
0	1928.448	15.4	17.4	2.0

For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

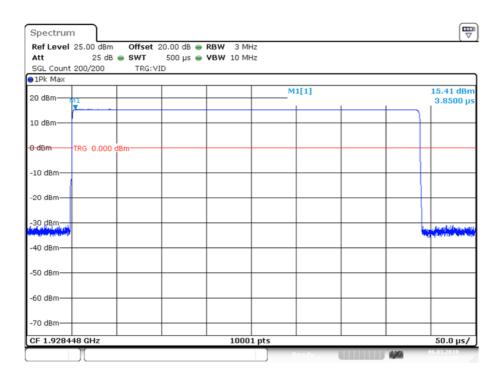

Limit:

Conducted: 100 µW X SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):20.8 dBm (120 mW)RSS-213, Issue 2:20.6 dBm (115 mW)The antenna gain is below 3 dBi.

Requirements: FCC 15.319(c)(e). RSS-213, Issue 2


Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

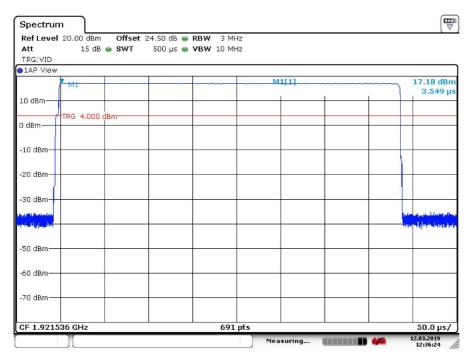
The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.



Conducted Peak Output Power

Lower Channel

Upper Channel



Att SGL Count 2 1Pk Max		SWT TRG:	VBW 10 MH	z			
20 dBm				M	1[1]		15.57 dBn 3.9000 μ
10 dBm							
) dBm Ti	RG 0.000 d	lBm					
-10 dBm							
-20 dBm							
30 dBm						*	
40 dBm							
50 dBm							
-60 dBm							
-70 dBm			 			 	
CF 1.92499	2 GHz		1000	L pts			50.0 µs/

Middle Channel

Radiated Peak Output Power

Lower Channel

Spectrum					
Ref Level 20.00 dBm Offse Att 15 dB SWT TRG: VID	et 24.50 dB 👄 RBW 3 ΜΗ 500 μs 👄 VBW 10 ΜΗ				
●1AP Max					17.00.17
MI		<u>M1[1]</u>			17.39 dBm 3.549 µs
10 dBm			+ +		
0 dBm					
-10 dBm					
-20 dBm			_	\rightarrow	
-30 dBm					
					andra Millio atalaan Ing Kapanala na di
-50 dBm					
-60 dBm					
-oo ubiii					
-70 dBm			+ +		
CF 1.928448 GHz	691	pts			50.0 µs/
		Measuring		4)/4 1	12.03.2019 12:33:02

Upper Channel

Att TRG: VID	15 dB	IWT	500 µs 👄	VBW 10 M	Ηz			
1AP View								
	M1				N	u[1]		 17.05 dBm
.0 dBm						1	1	3.549 µ:
ı dBm —	TRG 4.000	dBm						
10 dBm-								
20 dBm								
30 dBm								
Henry H-								 - การการการการการการการการการการการการการก
50 dBm—							-	
60 dBm—								
70 dBm—								
, o ubm								
CF 1.9249	992 GHz			691	pts			50.0 µs/

Middle Channel

7.8 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

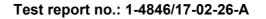
Test Results: Pass

Measurement Data:

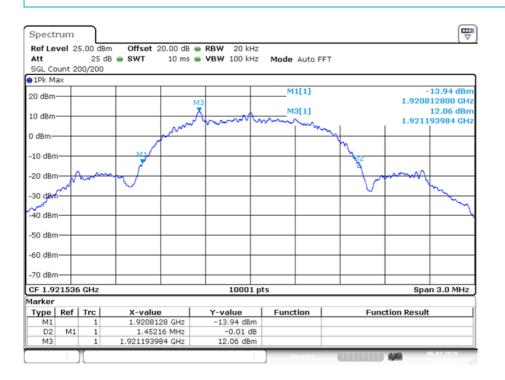
Channel No.	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1452
0	1928.448	1436

Channel No.	Frequency (MHz)	20 dB Bandwidth B (kHz)
2	1924.992	1325

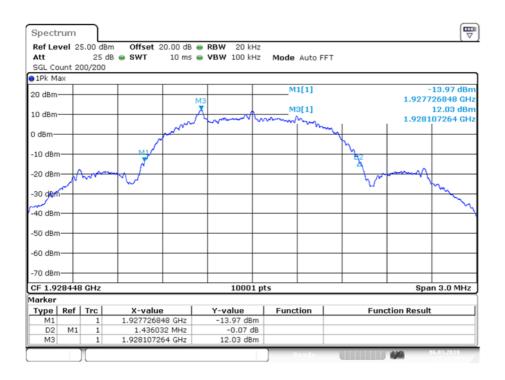
Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A

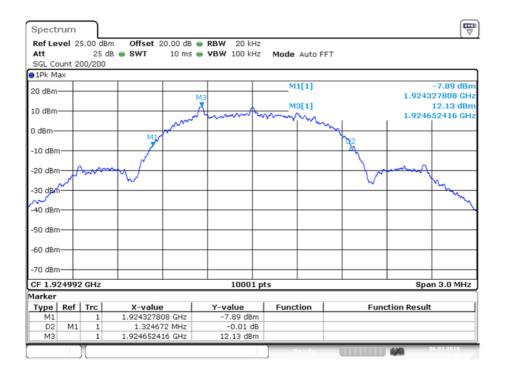

Requirement: FCC 15.323(a)

The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


Requirement: RSS-213 Issue 2, clause 6.4

The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).



Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel

20 dB Bandwidth B, Middle Channel

7.9 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

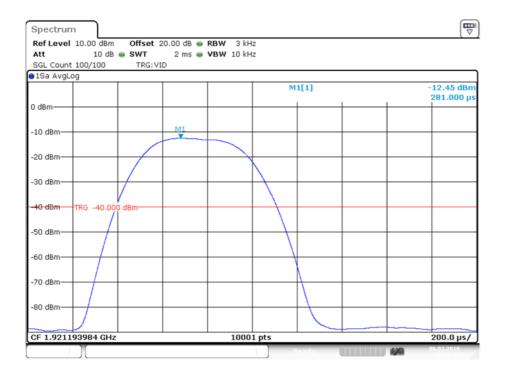
Test Results: Pass

Measurement Data:

Channel No.	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.193984	-12.45
0	1928.107264	-10.64

Averaged over 100 sweeps.

Requirement: FCC 15.319(d)

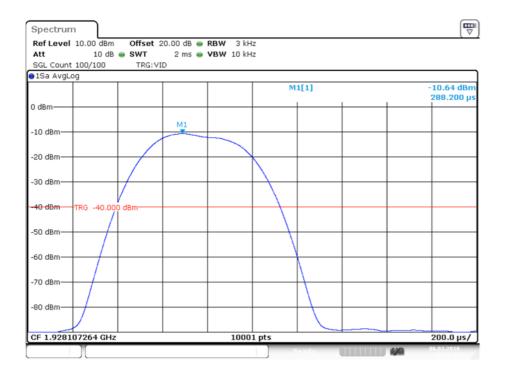

The Power Spectral Density shall be less than 3 mW/3kHz (4.77 dBm) when averaged over at least 100 sweeps.

Power Spectral Density

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps


Pulse power [dBm]	-12.45
Pulse power [mW]	0.06

Power Spectral Density

Upper Channel:

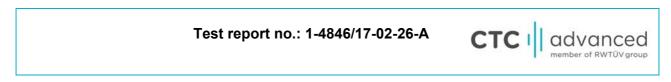
Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps

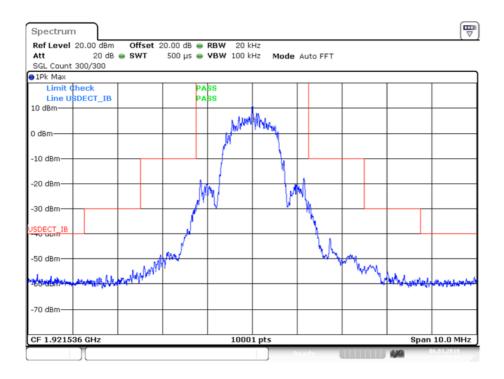
Pulse power [dBm]	-10.64
Pulse power [mW]	0.07

7.10 In-Band Unwanted Emissions, Conducted

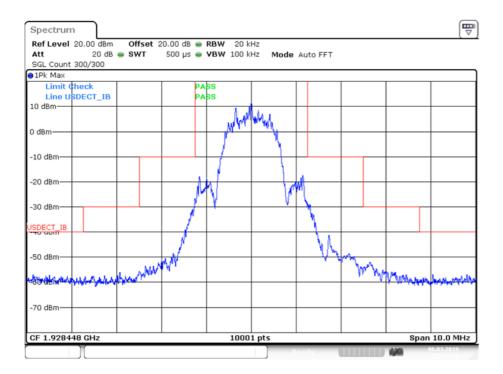
Measurement Procedure:

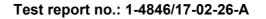

ANSI C63.17, clause 6.1.6.1.

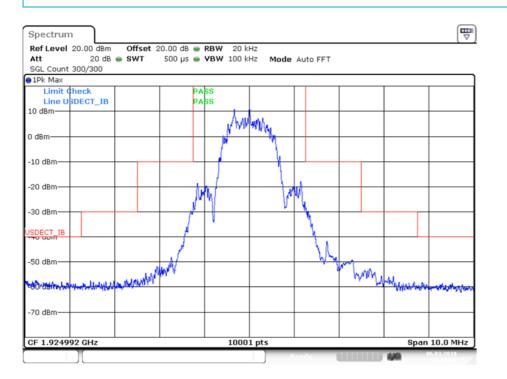
Test Results: Pass


Measurement Data: See plots.

Requirement: FCC 15.323(d)


B < f2 ≤2B:	less than or equal to 30 dB below max. permitted peak power level
2B < f2 ≤3B:	less than or equal to 50 dB below max. permitted peak power level
3B < f2 ≤UPCS Band Edge:	less than or equal to 60 dB below max. permitted peak power level


In-Band Unwanted Emissions, Conducted


Lower Channel

Upper Channel

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

7.11 Out-of-Band Emissions, Conducted

Measurement Procedure:

ANSI C63.17, clause 6.1.6.2.

Test Results: Pass

Measurement Data: See plots.

Requirement: FCC 15.323(d)

$f \leq 1.25$ MHz outside UPCS band:	≤ -9.5 dBm
1.25 MHz \leq f \leq 2.5 MHz outside UPCS band:	≤ -29.5 dBm
$f \ge 2.5 \text{ MHz}$ outside UPCS band:	≤ -39.5 dBm

Out-of-Band Unwanted Emissions, Conducted

Upper and Lower Channel:

Spectrum	- 44							[₩
Ref Level 20.00 dB Att 20 d	m Offset 2 B = SWT	20.00 dB 👄	RBW 20 k VBW 100 k		Auto Swee	0		
SGL Count 20/20	0.00		1011 100 1	ine inioue	Addo Sileej	2		
1Pk Max								
Limit Check		PA		M	1[1]		-	55.03 dBn
Line USDECT_O	BE	PA	88					190 kH
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
USDECT_OBE								
-50 dBm								
60,d8m+1-11,1		والمعرفين المعرفين			المراجعة ال مراجعة المراجعة المراج			
-70 dBm								
Start 100.0 kHz			1000	1 pts			Sto	p 1.9 GHz

Spectrum				
Ref Level 20.00 dBm Offse Att 20 dB = SWT	et 20.00 dB RBW 201 150 ms VBW 100		n	
SGL Count 200/200	130 m3 🖕 🕬 100 m	And Mode Auto Swee	P	
●1Pk Max				
Limit Check	PASS	M1[1]		-42.27 dBm
Line USDECT_OBE	PASS		1.91	1997300 GH
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
ISDECT_OBE				
-50 dBm				
والمستعد والمراجع والمراجع والمراجع والمراجع والمراجع	and a share and a share and a share a second	والمراجع والمحاوية والمحاوية والمحاوية والمراد	Independite land some of the part high	
a new design of the second state of the second states and second states	and a straight of the second	Compared with contraction detroited by the	and the second states in the second states of	and had a block of the same
-70 dBm				
Start 1.9 GHz)1 pts	Sto	op 1.92 GHz
Start 1.9 GHz	1000)1 pts Ready	Ste	op 1.92 GHz

Out-of-Band Unwanted Emissions, Conducted

tt 20 dB 🖷 SWT	20.00 dB • RBW 20 150 ms • VBW 100	kHz Mode Auto Swee	эp	
GL Count 200/200				
LPk Max	PASS			10.00 10
Limit Gneck	PASS	M1[1]		-40.03 dB 93017900 GF
) dBm	PADO		· · · · ·	.93017900 Gr
dBm				
dBm-				
DECT_OBE				
0 dBm				
O dBm			<u> </u>	
0 dBm				
dur -				
COBM-				
the state of the second se	kara bilang kara baatimanibar	I have been a		يعدد والمعامة
C descention of the state of th	a-te colleraturgap-dalegite terdepitegener		n dijelents of stants theories of	
0 dBm				
0 dBm				

Spectrum								
Ref Level 20.00 dBm Att 20 dB SGL Count 10/10	Offset 2 SWT	20.00 dB 👄 I 10 s 👄 V	RBW 20 ki VBW 100 ki		Auto Swee	p		
1Pk Max								
Limit Check Line USDECT_OBI 10 dBm		PA PA		м	1[1]			52.11 dBn 97170 GH
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
JSDECT_OBE								
-50 dBm			La de antisale	والمعادية ومعارفة	مى ئەرىلىلىلەر يەرى	N	1 authorithetics	
a hadre halter har he had a hadre had been been been been been been been bee		a talan ka kaka		a A the first in the part of the		Collectory attribute	A design of the second s	David a factoria age
-70 dBm								
Start 1.95 GHz			1000	1 pts			Sto	p 6.0 GHz
Y					te a dy		4/6	06.03.2019

Out-of-Band Unwanted Emissions, Conducted

Ref Level 20.00 dBm Offset Att 20 dB ● SWT	20.00 dB • RBW 20 20 s • VBW 100	kHz kHz Mode Auto Swe	ep	
SGL Count 10/10				
1Pk Max				
Limit Check	PASS	M1[1]		-49.06 dBn
Line USDECT_OBE	PASS		1 1	6.21770 GH
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
JSDECT_OBE				
M1				
-\$0 dBm-				
and the second s	La L	الكلامية والمرج كأسر بالمحد أطرادان وا	which	in the second
-60 dBm		No. of the second s		
-70 dBm				
-/u ubin-				
Start 6.0 GHz	100	01 pts		Stop 20.0 GHz

The BS spurious out-of-band transmission level is below the indicated limit.

7.12 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Requirement: FCC 15.323(f)

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.985090	-3.25	-7.23	1.900	±10

Deviation ppm = ((Max.Diff. - Mean.Diff.) / Mean Carrier Freq.) x 10⁶ Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
120 V AC	1924.987	Ref.	Ref.	
138 V AC	1924.987	0.0	0.0	±10
102 V AC	1924.987	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10⁶

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20°C	1924.987	Ref.	Ref.	
T = -20°C	1924.990	+3.0	1.5	±10
T = +50°C	1924.982	-5.0	-2.5	

Deviation ppm = ((Mean – Measured frequency) / Mean) $\times 10^{6}$

7.13 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(ppm)	Stability (ppm)
1924.992	100.0000015582	0.014	0.042

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

7.14 Frame Period and Jitter

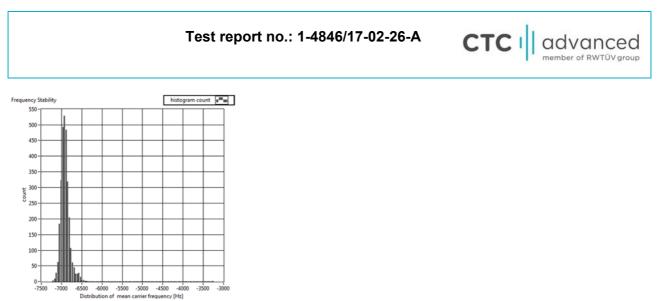
Measurement Procedure:

ANSI C63.17, clause 6.2.3.

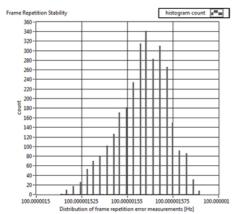
Test Results: Pass

Measurement Data:

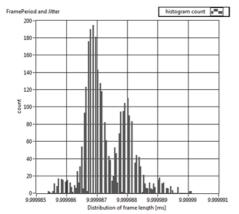
The Frame Repetition Stability is measured with the CMD65


Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(μs)	Jitter (μs)
1924.992	10.000	-0.010	0.002

Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. 3xSt.Dev.Jitter $3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) x 10^{6}$


Limit:

Frame Period	20 or 10 ms
Max Jitter	25 µs
3 times St.Dev. of Jitter	12.5 µs


Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.

Histogram of Carrier Frequency Stability

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

7.15 Monitoring Threshold, Least Interfered Channel

Measurement Procedure:

ANSI C63.17, clause 7.3.2

Monitoring Threshold limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

B is measured Emission Bandwidth in Hz $\ensuremath{\mathsf{P}_{\mathsf{EUT}}}$ is measured Transmitter Power in dBm

Calculated value:

Lower Threshold	-77.1 dBm
-----------------	-----------

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) <i>f</i> ₁ T _L + 13 dB, <i>f</i> ₂ T _L + 6 dB	Transmission always on f_2	Pass
c) <i>f</i> ₁ T _L + 6 dB, <i>f</i> ₂ T _L + 13 dB	Transmission always on f_1	Pass
d) <i>f</i> ₁ T _L + 7 dB, <i>f</i> ₂ T _L	Transmission always on f_2	Pass
e) <i>f</i> ₁ T _L , <i>f</i> ₂ at T _L + 7 dB	Transmission always on f_1	Pass

Measurement Procedure:

ANSI C63.17, clause 7.3.3

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict
b) Shall not transmit on <i>f</i> ₁	EUT transmits on <i>f</i> ₂	N/A
d) Shall not transmit on <i>f</i> ₂	EUT transmits on <i>f</i> ₁	N/A

Comment: This test is only applicable for EUTs that can be an initiating device.

7.16 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if either the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

7.17 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

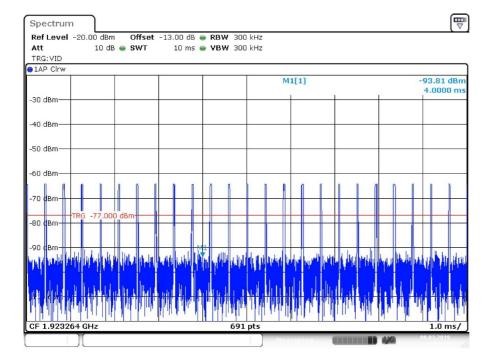
Test Results:

By administrative commands and out-of-operating region interference, the EUT is restricted to operate on carrier frequencies f_1 and f_2 .

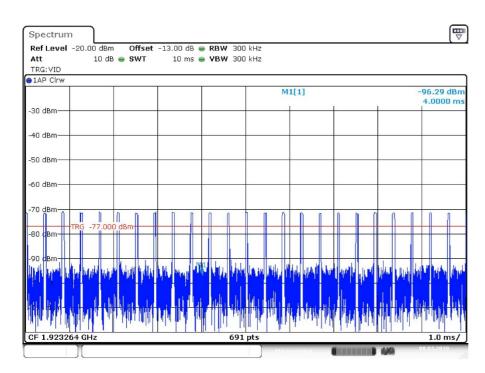
Time-synchronized pulsed interference was then applied on f_1 at pulsed levels TL + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 µs pulses. Additionally a CW signal was applied on f_2 with a level of TL.

The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 μs and 50*SQRT(1.25/B)	Transmission on f ₂	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B) and with interference level raised 6 dB	Transmission on f ₂	Pass


Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.

Limits: FCC 15.323(c)(1), (5) and (7)


The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.

If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

35 µs Pulses

50 µs Pulses

7.18 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	EUT transmits on the Interference free time slot	Pass
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	Transmission stops every 1.3 s	Pass

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	EUT changes to Interference free time slot, and stays there	Pass

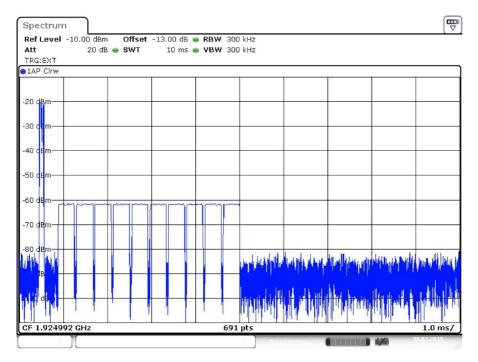
If FCC 15.323(c)(6) option Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

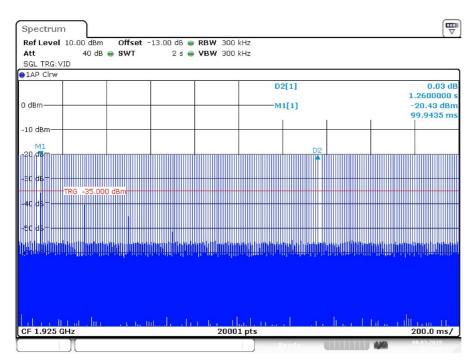
Comment: The tested EUT does not support the Random Waiting Interval option.

Limits:

FCC 15.323(c)(4):

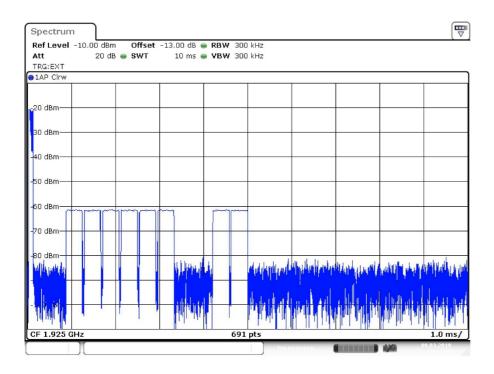

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

FCC 15.323(c)(6):

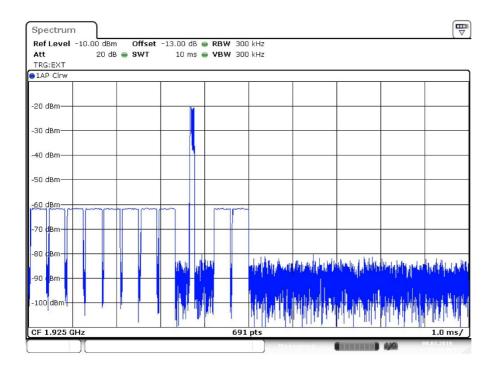

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

Access Criteria Check

8.1.1b) EUT Transmits on Unblocked Slot



8.1.1b) EUT Terminates Repetitive Transmission


Capture of transmission of base EUT control and signaling transmissions. The base EUT pauses in its transmission of the control and signaling channel to repeat the access criteria every 1.3 s seconds, meeting the requirement that it do so at least as often as every 30 seconds.

Test report no.: 1-4846/17-02-26-A CTC I advanced

Access Criteria Check

8.1.2) EUT Changes to an Interference Free Timeslot, Before

8.1.2) EUT Changes to an Interference Free Timeslot, After

7.19 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	Only for initiating device	N/A
c) Transmission time after loss of acknowledgments	1 s	Pass

Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and frequency window	Only for initiating device that controls which time slot is used	N/A

Comment: /

Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which the time access criteria must be repeated.

7.20 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

EUTs that do NOT implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
 c) d) No transmission on interference-free receive time/spectrum window. All transmit slots blocked 	N/A	N/A
e) f) No transmission on interference-free transmit time/spectrum window. All transmit slots blocked	N/A	N/A

EUTs that implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
c) d) Transmission on interference-free receive time/spectrum window.	N/A	N/A
e) f) Transmission on interference-free transmit time/spectrum window.	N/A	N/A

Comment: This test is only applicable for EUTs that can be an initiating device of a duplex connection.

Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

7.21 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

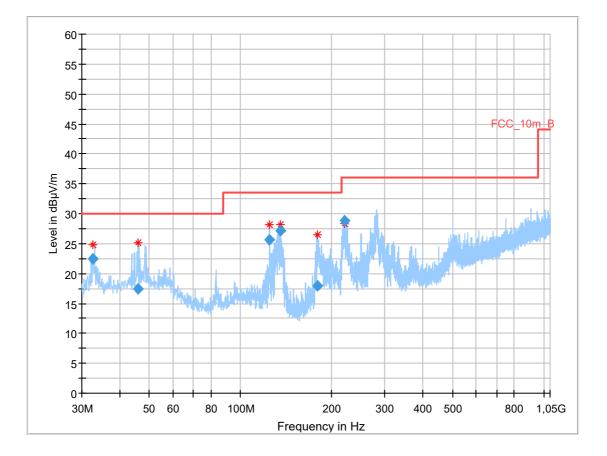
7.22 Spurious Emissions (Radiated)

Measurement Procedure:

FCC 15.209, FCC 15.109

Test Result: Pass

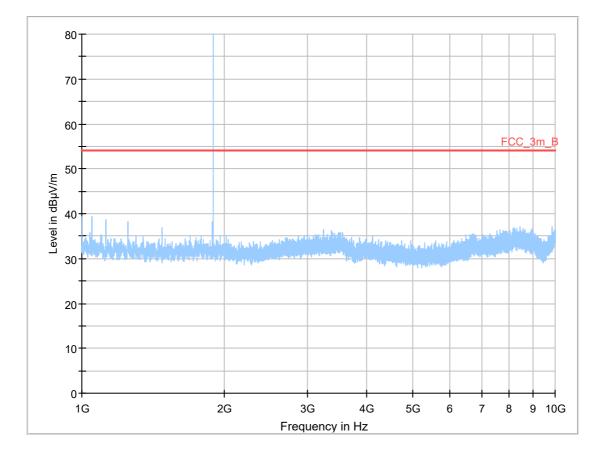
Measurement Data: See plots


Requirement: FCC 15.109(b)

30 –	88 MHz:	90 µV/m
88 –	216 MHz:	150 µV/m
216 –	960 MHz:	210 µV/m
960 -	1000 MHz:	300 µV/m

Common Information

EUT:	AP4
Serial number:	10012
Test description:	FCC part 15 B class B @ 10 m
Operating condition:	audio via DANTE + traffic at ETH + sync master to slave + analogue ports terminated
Operator name:	Hennemann
Comment:	PoE powered; ETH-cables: screened (Cat. 5E); dante-board: all modifications with screening cup


Final Result

Frequenc y (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	P ol	Azimuth (deg)	Corr. (dB/m)
32.637	22.42	30.0	7.58	1000	120	103.0	V	150.0	13
45.936	17.35	30.0	12.65	1000	120	184.0	V	173.0	15
124.992	25.71	33.5	7.79	1000	120	103.0	V	300.0	11
135.240	27.17	33.5	6.33	1000	120	98.0	V	166.0	10
179.085	17.90	33.5	15.60	1000	120	98.0	V	150.0	11
220.261	28.83	36.0	7.17	1000	120	101.0	V	128.0	13

Common Information

EUT:	AP4
Serial number:	10012
Test description:	FCC part 15 B class B
Operating condition:	audio via DANTE + traffic at ETH + sync master to slave + analogue ports terminated
Operator name:	Hennemann
Comment:	PoE powered; ETH-cables: screened (Cat. 5E); dante-board: all modifications with screening cup; DECT carrier @ ~1,8 GHz

7.23 Receiver Spurious Emissions

Measurement Procedure:

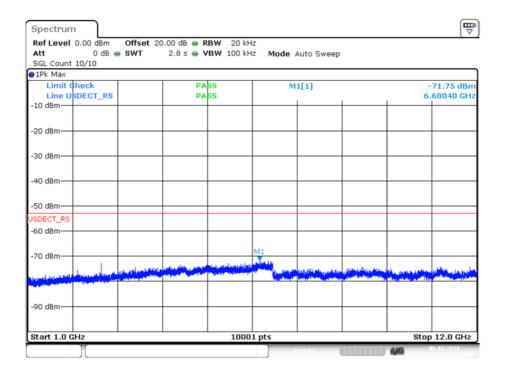
Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB
30 - 1000	all	-73.7	-57	16.7
> 1000	all	-71.0	-53	18.0

Requirements: RSS-GEN Issue 2, clause 6

The measurement can be performed either radiated or conducted.


When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.

When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

Ref Level 0.1 Att SGL Count 25	0 dB 👄		.00 dB 👄 R 250 ms 👄 V	BW 20 kH BW 100 kH	-	Auto Sweep			
1Pk Max	/25								
Limit Che Line USD			РА РА		м	1[1]	1		73.74 dBm 150.0 kHz
-10 dBm									
20 dBm									
30 dBm									
40 dBm									
50 dBm									
SDECT_RS 60 dBm									
70 dBm									
0 dBmm	and state to the local of	-	र्रस्य प्र ^{क्र} णने नगरित्स	A CHICK THE C		add to the state			A. Maria
90 dBm	gathers for side	ion (ide providencia)	Harris (Babalanana	n i havar a naiseiseiseiseiseiseiseiseiseiseiseiseisei	a filmentan a fina da fi	فيريده يرتار ماريد	and the second	allow a state of the second	Contraction of the second
tart 100.0 k				1000					p 1.0 GHz

Receiver Spurious Emissions, Conducted, 100 kHz – 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz – 12 GHz

Test rep	oort no.:	1-4846/17	-02-26-A
----------	-----------	-----------	----------

Ref Level 0.00 dBm Offs Att 0 dB - SW SGL Count 10/10	set 20.00 dB ● RBW 20 k T 2 s ● VBW 100 k		2	
1Pk Max Limit Check Line USDECT_RS 10 dBm	PASS PASS	M1[1]	18	-71.00 dBm .690930 GHz
20 dBm				
30 dBm				
SDECT_RS				
50 dBm			M1	
at dBm		فالوز والمترية		alat bi ya ku dani ya ku a
90 dBm				

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Instrument/Ancillary	Manufacturer	Туре	Serial-No.	Internal identification
	Power Line Conducted Emission				
G-1	EMI Receiver	Agilent	MXE (N9038A)	MY51210197	300004405
G-2	V-ISN	Rohde & Schwarz	ESH 3-Z5	892475/017	300002209
G-2a	V-ISN	Rohde & Schwarz	ESH 2-Z5	892602/024	300000587
G-3	2-Wire ISN	Schaffner	ISN T200	19075	300003422
G-4	4-Wire ISN	Schaffner	ISN T400	22325	300003423
G-5	Shielded wire ISN	Schaffner	ISN ST08	22583	300003433
G-6	Unshielded 8 wire ISN	Teseq	ISN T800	26113	300003833
G-7	Unshielded 8 wire ISN	Teseq	ISN T8-Cat. 6	26374	300003851
G-8	RF Current probe	FCC	F-33-4	46	300003257
G-9	V-ISN	Schaffner	ISN PLC-150	21579	300003318
G-10	V-ISN	Schaffner	ISN PLC-25-30	21584	300003319
G	PLC Filter	TESEQ	Filter PLC	23436	300003598
10a					
G	Coupling unit 75 Ohm	Fiedler	AC		300003272.0
10b					4
	Conducted				
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950
L-2	Signal Generator	R&S	SMBV100A	257858	300004529
L-3	Oscilloscope	R&S	RTO1044	30084	300004615
L-4	Signaling Unit	R&S	CMD 65	847527/005	300003611
L-5	Combiner	R&S	1025.3400.02	- / -	- / -
L-6	Combiner	Suhner	4901.19A	- / -	- / -
L-7	Combiner	Weinschel	1515	KW438	- / -
L-8	Detector	Hewlett Packard	HP 8473C	03690	- / -
L-9	Attenuator	Narda	4779-50	9101	- / -
L-10	Attenuator	Narda	4779-30	9305	- / -
L-11	Attenuator	Narda	4779-20	9310	- / -
L-12	Control PC	F+W	- / -	FW0712052	300003735

No.	Instrument/Ancillary	Manufacturer	Туре	Serial-No.	Internal identificatio n
	Radiated emission in c	hamber F			
F-1	Control Computer	F+W		FW0502032	300003303
F-2	Trilog-Antenna	Schwarzbeck	VULB 9163	9163-295	300003787
F-3a	Amplifier	Veritech Microwave Inc.	0518C-138	- / -	-/-
F-4b	Switch	Netgear	GS108P	26V12A3H50336	300000368
F-5	EMI Test receiver	R&S	ESCI	100083	300003312
F-6	Turntable Interface-Box	EMCO / ETS- LINDGREN	Model 105637	44583	300003747
F-7	Tower/Turntable Controller	EMCO / ETS- LINDGREN	Model 2090	64672	300003746
F-8	Tower	EMCO / ETS- LINDGREN	Model 2175	64762	300003745
	Radiated emission in cha	amber F > 1GHz			
F-29	Horn antenna	Schwarzbeck	BBHA 9120 B	188	300003896
F-30	Amplifier	ProNova	0518C-138	005	F 024
F-31	Amplifier	Miteq	42-00502650-28-5A	1103782	300003379
F-32	Horn antenna	Emco	3115	9709-5289	300000213
F-33	Spectrum Analyzer	R&S	FSU26	200809	300003874
F-34	Loop antenna	EMCO	6502	8905-2342	300000256

9 Observations

No observations exceeding those reported with the single test cases have been made.

Annex A: Photographs of the Test Set-up

See additional PDF document Annex A-C.

Annex B: External Photographs of the EUT

See additional PDF document Annex A-C.

Annex C: Internal Photographs of the EUT

See additional PDF document Annex A-C.

Annex D: Document History

Version	Applied Changes	Date of Release
-A	Reference to Annex A-C	2019-06-05

Annex E: Further Information

<u>Glossary</u>

DUT	-	Device under Test
EMC	-	Electromagnetic Compatibility
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
S/N	-	Serial Number
SW	-	Software

Annex F: Safety exposure levels

Prediction of MPE limit at a given distance:

Equation from page 18 of OET Bulletin 65, Edition 97-01

$S = PG / 4\pi R^2$

- where: S = Power density
 - P = Power input to the antenna
 - G = Antenna gain
 - R = Distance to the center of radiation of the antenna

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm ²)	Averaging Time (minutes)
300 -1500	f/1500	30
1500 - 100000	1.0	30

where f = Frequency (MHz)

Р	Max power input to the antenna:	15.57 dBm
Р	Max power input to the antenna:	36.1 mW
R	Distance:	20 cm
G	Maximum antenna gain:	3.00 dBi
G	Maximum antenna gain:	2.0 numeric
S	MPE limit for uncontrolled exposure:	1 mW/cm ²

Calculated Power density:

0.0143 mW/cm² 0.143 W/m²

This prediction demonstrates the following:

The power density levels at a distance of 20 cm are below the maximum levels allowed by FCC regulations

Annex G: Accreditation Certificate

Note:

The current certificate including annex can be received on request.