	CTC advanced
	REPORT -2521/21-01-06-A
Testing laboratory	Applicant
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>	beyerdynamic GmbH & Co. KG Theresienstraße 8 74072 Heilbronn / GERMANY Phone: +49 7131 617-0 Contact: Ulrich Roth e-mail: <u>roth@beyerdynamic.de</u>
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.	Manufacturer beyerdynamic GmbH & Co. KG Theresienstraße 8 74072 Heilbronn / GERMANY
	andard/s

FCC - Title 47 CFR Part 15 frequency devices

RSS - 247 Issue 2

frequency devices Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:	Bluetooth headset
Model name:	Blue Byrd ANC (2nd generation)
FCC ID:	OSDPIE21A
ISED certification number:	3628C-PIE21A
Frequency:	2400 MHz to 2483.5 MHz
Technology tested:	Bluetooth [®] + EDR
Antenna:	Integrated antenna
Power supply:	3.8 V DC by Li-Ion polymer battery
Temperature range:	-10°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Michael Dorongovski Lab Manager Radio Communications

Test performed:

Marco Bertolino Lab Manager Radio Communications

Table of contents 1

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s, references and accreditations	4
4	Repo	rting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test i	tem	6
	6.1 6.2	General description Additional information	
7	Desci	iption of the test setup	7
	7.1 7.2	Shielded semi anechoic chamber Shielded fully anechoic chamber	9
	7.3 7.4	Radiated measurements > 18 GHz Conducted measurements Bluetooth system	
	7.5	AC conducted	
8	Sequ	ence of testing	13
	8.1 8.2	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3 8.4	Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	
9	Meas	urement uncertainty	17
10	Su	nmary of measurement results	18
11	Ado	ditional comments	19
12	Ме	asurement results	20
	12.1	Radiated peak power	20
	12.2	Maximum output power	
	12.3	Band edge compliance radiated	
	12.4 12.5	Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz	
	12.5	Spurious emissions radiated above 1 GHz	
	12.7	Spurious emissions conducted below 30 MHz (AC conducted)	
13	Obs	servations	40
14	Glo	ssary	41
15	Doo	cument history	42
16	Acc	creditation Certificate – D-PL-12076-01-04	42
17	Acc	creditation Certificate – D-PL-12076-01-05	43

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-2521/21-01-06 and dated 2021-12-01.

2.2 Application details

Date of receipt of order:	2021-08-12
Date of receipt of test item:	2021-11-16
Start of test:*	2021-11-16
End of test:*	2021-12-13
Person(s) present during the test:	-/-

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

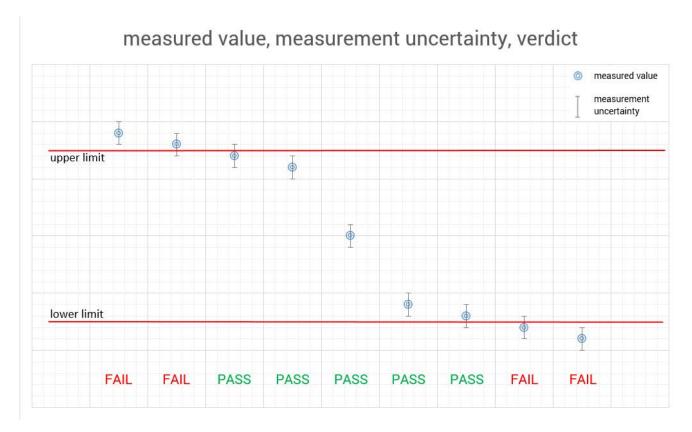
None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	DALKES Deutsche Akkreditierungsstelle D-PI-12076-01-05


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+24 °C during room temperature tests No tests under extreme temperature conditions performed. No tests under extreme temperature conditions performed.
Relative humidity content	:		44 %
Barometric pressure :			1018 hpa
		V _{nom}	3.8 V DC by Li-Ion polymer battery
Power supply	:	V_{max}	No tests under extreme voltage conditions performed.
		V_{min}	No tests under extreme voltage conditions performed.

6 **Test item**

General description 6.1

Kind of test item :	Bluetooth headset
Model name :	Blue Byrd ANC (2nd generation)
HMN :	-/-
PMN :	Blue Byrd ANC (2nd generation)
HVIN :	Blue Byrd ANC (2nd generation)
FVIN :	1.00
S/N serial number :	Radiated unit 1: BD address 0022BB770046
S/N Senai number .	Radiated unit 2: BD address 0022BB77007C
Hardware status :	VOP2
Software status :	-/-
Firmware status :	V0.2.0-0-b7e5
Frequency band :	2400 MHz to 2483.5 MHz
Type of radio transmission :	FHSS
Use of frequency spectrum :	1105
Type of modulation :	GFSK, Pi/4-DQPSK, 8DPSK
Number of channels :	79
Antenna :	Integrated antenna
Power supply :	3.8 V DC by Li-Ion polymer battery
Temperature range :	-10°C to +55°C

6.2 Additional information

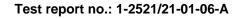
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-2521/21-01-01_AnnexA 1-2521/21-01-01_AnnexD

7 Description of the test setup

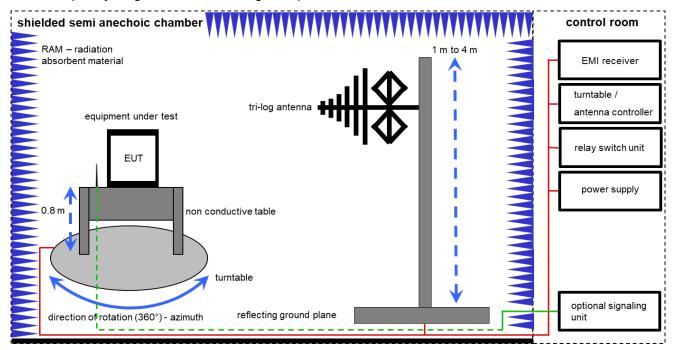
Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

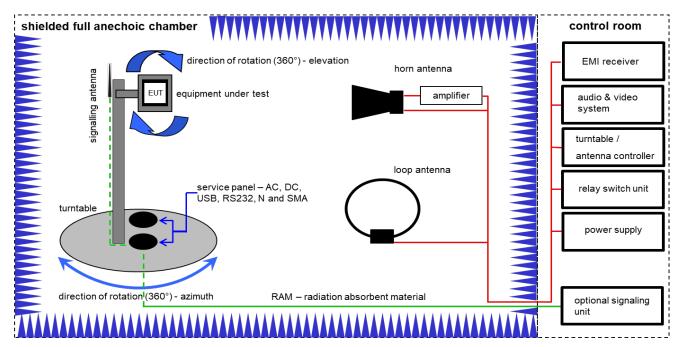
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	30.09.2021	29.09.2023
7	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
8	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.12.2021

NOTE: These tests were performed before the 2021-12-09.

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	30.06.2023
2	B, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vlKI!	12.03.2021	11.03.2023
3	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	С	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	с	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	A, B, C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
9	A, B, C	NEXIO EMV- Software	BAT EMC V3.20.0.26	EMCO	-/-	300004682	ne	-/-	-/-
10	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
11	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	09.12.2020	08.12.2021
12	с	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

NOTE: These tests were performed before the 2021-12-08.

CTC I advanced

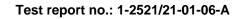
member of RWTÜV group

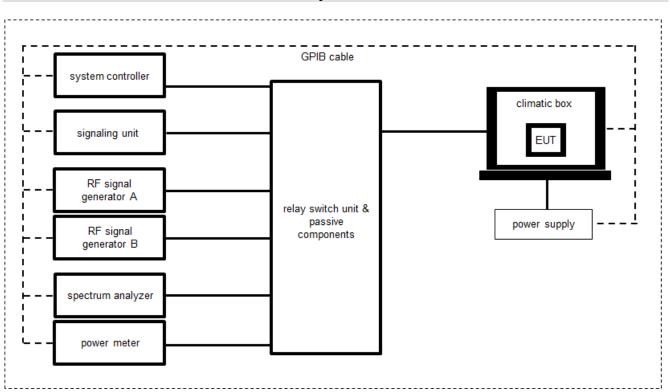
7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:


FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

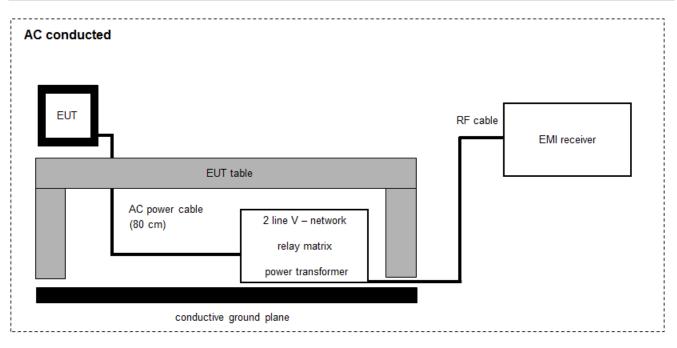
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKl!	21.01.2020	20.01.2022
3	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	07.12.2020	06.12.2021
4	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

NOTE: These tests were performed before the 2021-12-06.

7.4 Conducted measurements Bluetooth system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Hygro-Thermometer	-/-, 5-45C, 20-100rF	Thies Clima	-/-	40000080	ev	13.08.2020	12.08.2022
2	А	PC Laboratory 19"	Exone i3	Fröhlich + Walter	35230157A037 0	300004646	ne	-/-	-/-
3	А	Signal analyzer	FSV30	Rohde&Schwarz	1321.3008K30/ 103809	300005359	vlKl!	08.12.2020	07.12.2022
4	А	USB-GPIB-Interface	82357B	Agilent Technologies	MY54323070	300004852	ne	-/-	-/-
5	А	Tester Software C.BER	Version 5.0	CTC advanced GmbH	0001	400001379	ne	-/-	-/-
6	Α	Bluetooth tester	CBT	Rohde&Schwarz	100185	300003416	vlKI!	11.12.2020	10.12.2022

CTC I advanced

7.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 <math>\mu V/m$)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKl!	11.12.2019	10.12.2021
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2020	08.12.2021
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKl!	17.01.2020	16.01.2022
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
6	Α	PC	TecLine	F+W	-/-	300003532	ne	-/-	-/-

NOTE: These tests were performed before the 2021-12-08.

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Time of occupancy	According BT Core specification					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Desc	ription		V	erdict		Date		Remark
RF-Testing		R Part 15 Se 247, Issue 2		See	e table!	2	2021-12-13		Tests according customer demand
Test specification clause	Test case	Temperature & voltage conditions	Mode	9	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4.(f)(ii)	Antenna gain	Nominal	GFSH	<				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1.(b)	Carrier frequency separation	Nominal	GFSk	<				X	-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	GFSK	<				\boxtimes	-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (c)	Time of occupancy (dwell time)	Nominal	GFSH Pi/4 DQI 8 DPS	PSK					-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	GFSK Pi/4 DQI 8 DPS	PSK				X X X	-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	GFSK Pi/4 DQI 8 DPS	PSK	X X X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	GFSK Pi/4 DQI 8 DPS	PSK	X X X				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	GFSK Pi/4 DQI 8 DPS	PSK				X X X	-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	GFSH	<					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	GFSŀ	¢					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	GFSK	<					-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	GFSH	(-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

11 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	1-2521_21-01-06_log1_conducted.pdf					
Special test descriptions:	None					
Configuration descriptions:	TX tests: were performed with x-DH5 packets and static PRBS patter payload. RX/Standby tests: BT test mode enabled, scan enabled, TX Idle					
Test mode:	\boxtimes	Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU/CMW)				
		Special software is used. EUT is transmitting pseudo random data by itself				
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) 				

12.1 Radiated peak power

Measurement:

Measurement parameters (radiated)				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 setup B			
Measurement uncertainty	See sub clause 9			

<u>Limits:</u>

FCC	ISED			
Maximum output power				
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi				

Results:

T _{nom}	V _{nom}	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Radiated power [dBm] Measured with GFSK modulation		2.47	3.93	4.82

CTC I advanced

12.2 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

Measurement parameters				
	1-2521_21-01-06_log1_conducted.pdf			
External result file	FCC Part 15.247 Maximum Peak Conducted Output			
	Power FHSS			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	ISED
Maximum o	utput power
Systems using more the	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi

Results:

Modulation	Maximum output power conducted [dBm]					
Frequency	2402 MHz 2441 MHz 2480 MHz					
GFSK	7.2	7.4	7.4			
Pi/4 DQPSK	8.4	8.7	8.4			
8 DPSK	8.3	8.7	8.4			

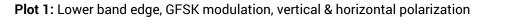
12.3 Band edge compliance radiated

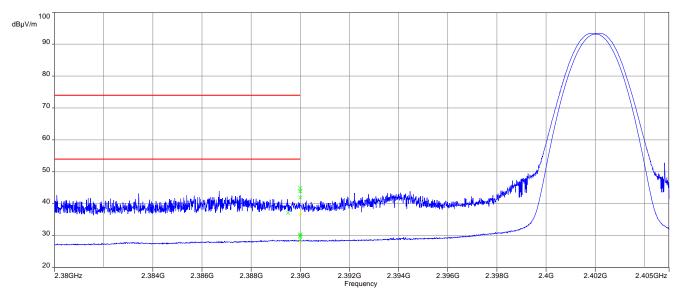
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

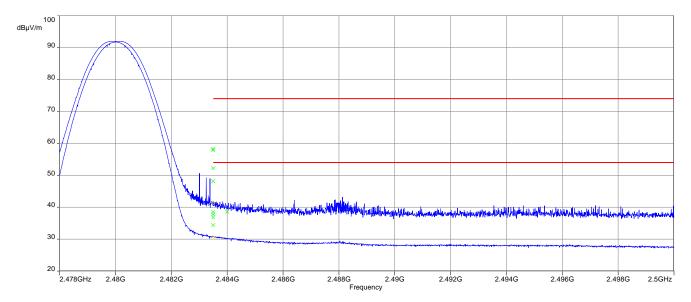
Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 MHz			
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 setup B			
Measurement uncertainty	See sub clause 9			

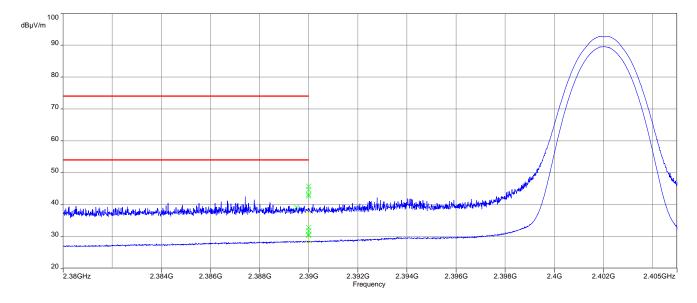
<u>Limits:</u>

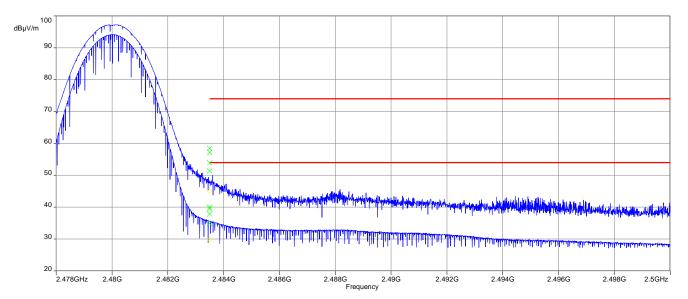

FCC	ISED
Band edge com	pliance radiated
radiator is operating, the radio frequency power that is producted in the 100 kHz bandwidth within the band that contains conducted or a radiated measurement. Attenuation below the	hich the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below the highest level of the desired power, based on either an RF e general limits specified in Section 15.209(a) is not required. ands, as defined in Section 15.205(a), must also comply with see Section 5.205(c)).
	//m AVG //m Peak

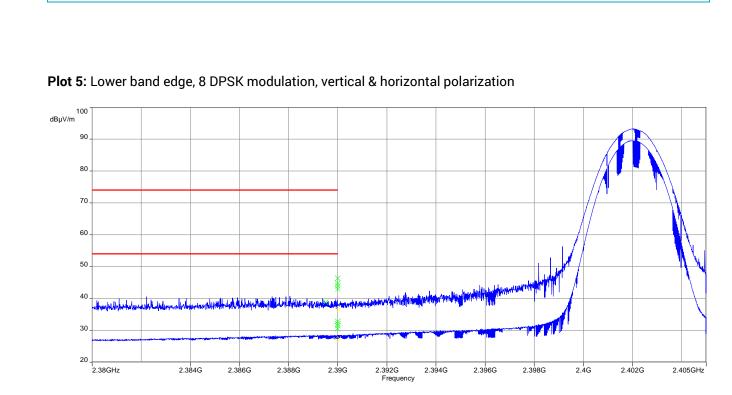

Results:

Scenario	Band edge compliance radiated [dBµV/m]					
Modulation	GFSK	Pi/4 DQPSK	8DPSK			
Lower restricted band	30.4 dBµV/m AVG	32.7 dBµV/m AVG	32.8 dBµV/m AVG			
	44.9 dBµV/m Peak	45.7 dBµV/m Peak	46.3 dBµV/m Peak			
Upper restricted band	37.8 dBµV/m AVG	34.9 dBµV/m AVG	41.6 dBµV/m AVG			
	58.2 dBµV/m Peak	58.5 dBµV/m Peak	58.2 dBµV/m Peak			

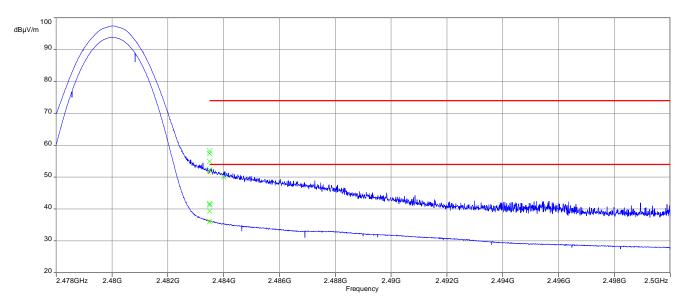



Plots:


Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization



Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization


Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization

CTC I advanced

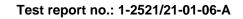
Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

CTC I advanced

12.4 Spurious emissions radiated below 30 MHz

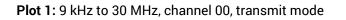
Description:

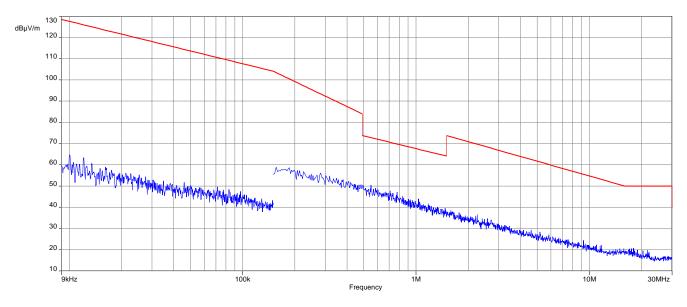
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

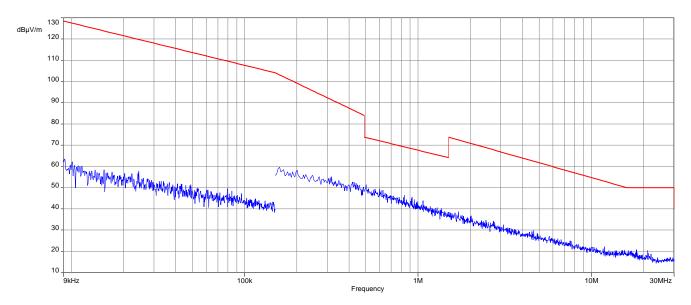

N	Measurement parameters					
Detector	Peak / Quasi peak					
Sweep time	Auto					
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span	9 kHz to 30 MHz					
Trace mode	Max hold					
Test setup	See sub clause 7.2 setup A					
Measurement uncertainty	See sub clause 9					

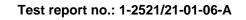
Limits:

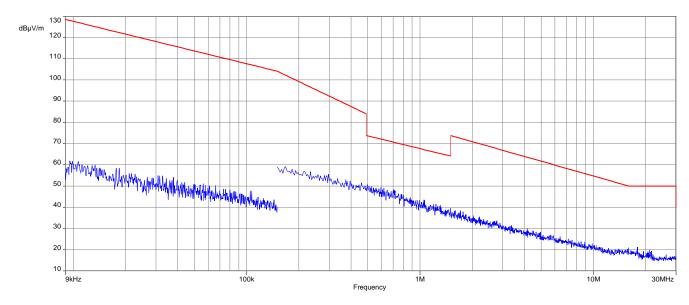
FCC			ISED		
TX spurious emissions radiated below 30 MHz					
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance		
0.009 - 0.490	2400/F(kHz)		300		
0.490 - 1.705	24000/F(kHz)		24000/F(kHz)		30
1.705 - 30.0	3	0	30		


Results:


TX spurious emissions radiated below 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detect	ed emissions are more than 20 dB below	the limit.					




Plots:



Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

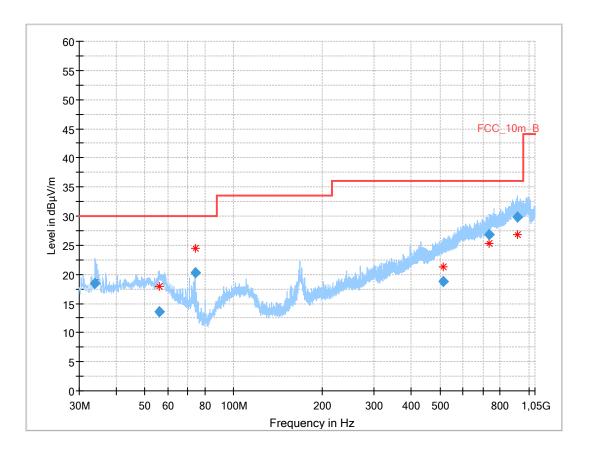
12.5 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

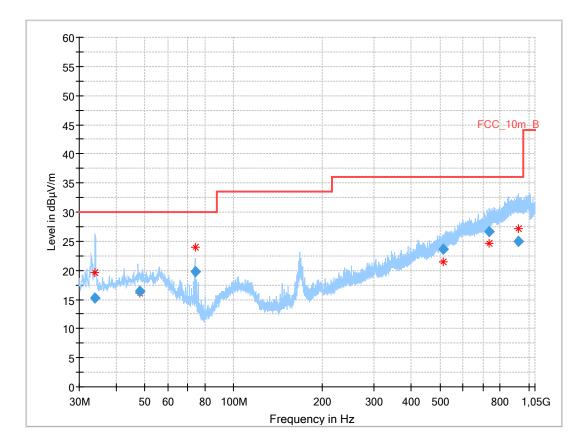
Measurer	nent parameters
Detector	Peak / Quasi Peak
Sweep time	Auto
Resolution bandwidth	120 kHz
Video bandwidth	3 x RBW
Span	30 MHz to 1 GHz
Trace mode	Max hold
Measured modulation	GFSK 🗆 Pi/4 DQPSK 🗆 8DPSK
Test setup	See sub clause 7.1 setup A
Measurement uncertainty	See sub clause 9

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

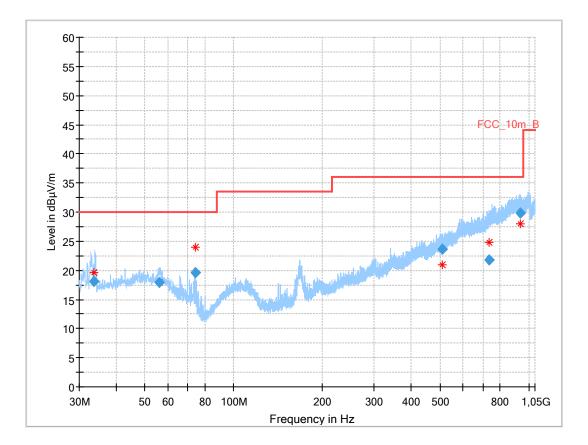

Limits:

FCC			ISED						
	TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15	.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
30 - 88	30).0	10						
88 - 216 33.5 10									
216 - 960	216 - 960 36.0 10								
Above 960	54	l.0	3						

Plots: Transmit mode


Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.009	18.45	30.0	11.6	1000	120.0	105.0	v	121	13
55.988	13.57	30.0	16.4	1000	120.0	144.0	v	248	16
73.998	20.23	30.0	9.8	1000	120.0	185.0	v	62	9
513.818	18.71	36.0	17.3	1000	120.0	195.0	v	307	20
736.139	26.85	36.0	9.2	1000	120.0	195.0	н	142	23
913.533	29.80	36.0	6.2	1000	120.0	195.0	v	298	26


Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.983	15.18	30.0	14.8	1000	120.0	108.0	V	-31	13
48.047	16.43	30.0	13.6	1000	120.0	138.0	н	279	15
74.006	19.74	30.0	10.3	1000	120.0	185.0	V	52	9
514.602	23.64	36.0	12.4	1000	120.0	195.0	v	279	20
733.195	26.73	36.0	9.3	1000	120.0	167.0	Н	142	23
921.264	24.92	36.0	11.1	1000	120.0	170.0	v	232	26

Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.523	18.17	30.0	11.8	1000	120.0	116.0	v	5	13
56.002	17.90	30.0	12.1	1000	120.0	98.0	v	232	16
74.009	19.57	30.0	10.4	1000	120.0	195.0	v	277	9
510.873	23.65	36.0	12.4	1000	120.0	167.0	Н	-35	20
732.193	21.71	36.0	14.3	1000	120.0	191.0	v	-37	23
935.494	29.91	36.0	6.1	1000	120.0	191.0	v	142	26

12.6 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 x RBW		
Span	1 GHz to 26 GHz		
Trace mode	Max hold		
Measured modulation	🖾 GFSK 🗆 Pi/4 DQPSK 🗆 8DPSK		
Test setup	See sub clause 7.2 setup C (1 GHz - 18 GHz)		
	See sub clause 7.3 setup A (18 GHz - 26 GHz)		
Measurement uncertainty	See sub clause 9		

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			ISED
	TX spurious em	issions radiated	
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement.	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (and SEE 200(c)).		
§15.209			
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance
Above 960	54	.0	3

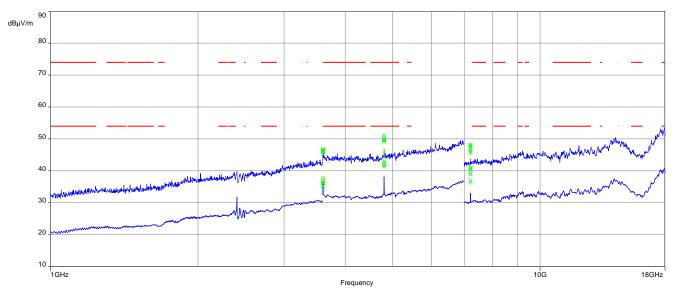
Results: Transmitter mode

	TX spurious emissions radiated [dBµV/m]							
	2402 MHz			2441 MHz		2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
	All detected emissions are more than 20 dB below the limit.							
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
,	Peak	-/-	/	Peak	-/-	/	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
,	Peak	-/-	/	Peak	-/-	1	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

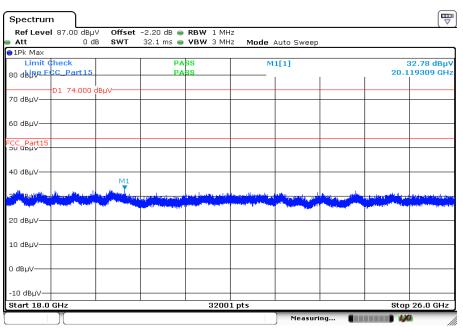
*) Average emission adjusting factor:

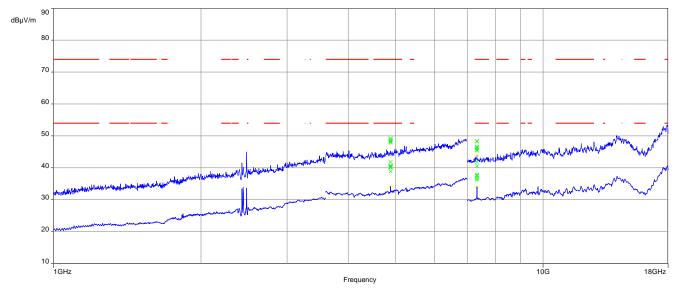
F = 20 * log (dwell time / 100 ms)

The dwell time of the longest possible Bluetooth transmission (DH5-packet) is 3.125 ms.


In a period of 100 ms, we have a maximum of 1 transmission and that implies a correction factor for spurious measurement emissions:

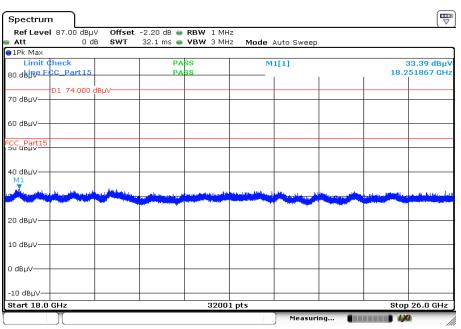
F = 20 * log (1 * 3.125 / 100) = -30.1 dB


Plots: Transmitter mode

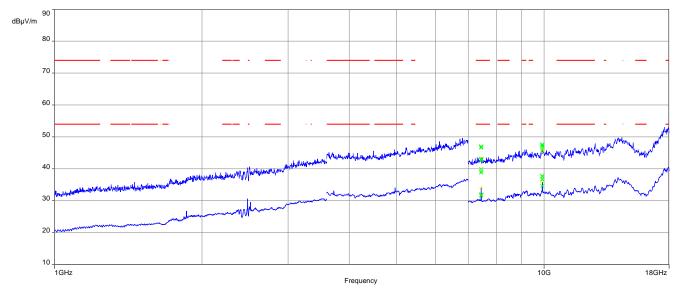

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 19.NOV.2021 11:43:33

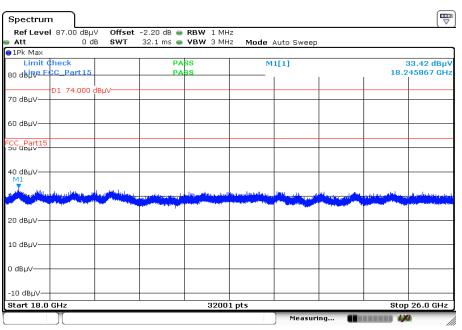


Plot 3: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 19.NOV.2021 11:46:44



Plot 5: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 19.NOV.2021 11:48:22

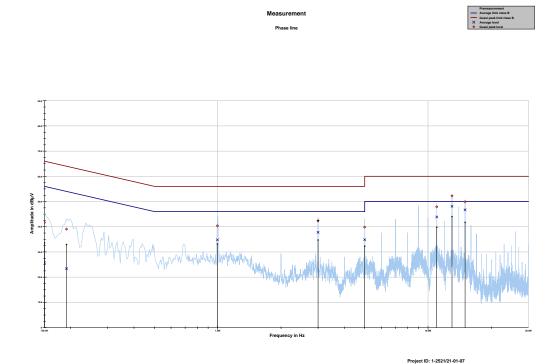
12.7 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

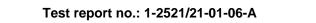
Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement parameters				
Detector	Peak - Quasi peak / average			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.5 setup A			
Measurement uncertainty	See sub clause 9			

<u>Limits:</u>

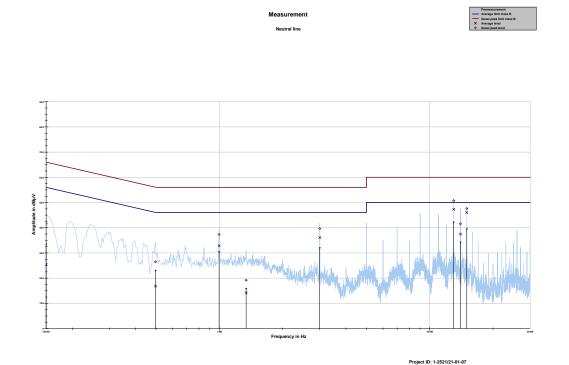

FCC			ISED
TX spurious emissions conducted < 30 MHz			lz
Frequency (MHz)	Quasi-peak	α (dBµV/m)	Average (dBµV/m)
0.15 – 0.5	66 to 56*		56 to 46*
0.5 - 5	5	6	46
5 - 30.0	6	0	50

*Decreases with the logarithm of the frequency



Plots:

Plot 1: 150 kHz to 30 MHz, phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150000	41.72	24.28	66.000	25.77	30.23	56.000
0.191044	39.05	24.94	63.991	23.36	31.46	54.827
0.996994	40.36	15.64	56.000	34.79	11.21	46.000
3.000675	42.34	13.66	56.000	37.79	8.21	46.000
4.996894	39.85	16.15	56.000	34.85	11.15	46.000
11.000475	47.88	12.12	60.000	43.85	6.15	50.000
13.000425	52.24	7.76	60.000	48.09	1.91	50.000
15.000375	49.87	10.13	60.000	46.70	3.30	50.000

Plot 2: 150 kHz to 30 MHz, neutral line

Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150000	41.57	24.43	66.000	25.47	30.53	56.000
0.497006	26.48	29.57	56.050	16.84	29.24	46.086
0.996994	37.30	18.70	56.000	32.83	13.17	46.000
1.340269	19.19	36.81	56.000	14.17	31.83	46.000
3.000675	39.64	16.36	56.000	36.08	9.92	46.000
13.000425	50.71	9.29	60.000	47.30	2.70	50.000
14.004131	41.53	18.47	60.000	37.44	12.56	50.000
15.000375	47.57	12.43	60.000	46.04	3.96	50.000

13 Observations

No observations except those reported with the single test cases have been made.

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
ETSI	European Standard
FCC	Federal Communications Commission
FCC ID IC	Company Identifier at FCC
PMN	Industry Canada
	Product marketing name
HMN	Host marketing name Hardware version identification number
HVIN	Firmware version identification number
FVIN	
EMC	Electromagnetic Compatibility Hardware
HW	
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-12-01
А	Conducted output power results added	2021-12-13

16 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Image: Constraint of the constraint	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-01 Frankfurt am Main, 09.06.2020 The certificate spectra with its aware reflects the status at the time of the date of issue. The current assus of the scope of accredition can be found in the database of database Advectoremysterie Ginaxi. http://www.datak.advectoremen/accredited-badies-datase	The publication of extracts of the accreditation extificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXAS). Exempted is the unchanged form of segarate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAXAS. The accreditation attested by DAXAS. The accreditation attested by DAXAS. The accreditation attested by DAXAS. Developed the cover of the transmitter of the cover of the cover and an analysis of the furgeant and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Difical Journal of the European Incover J 228 of 9 July 2008, p. 30). DAXAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA). International Accreditation Formu (AF) and International Laboratory Accreditation Cooperation (ILA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.iaf.nu LAC: www.iaf.nu

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

17 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	Office Berlin Spittelmark 10 10117 Berlin Office Frankfurt am Main Europa.Nile 52 00327 Frankfurt am Main Office Braunschweig Bundesalies 100 38116 Braunschweig 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01.05 Frankfurt am Main, 99.06.2020 The certificate page for the certificate of the determine of the determine of the score of accreditation can be found in the distables of doctable Advertiberwaystelle limits. The certificate in the found in the distables of doctable Advertiberwaystelle limits. Interview.disk.ad.phylometer/loccedited-badies -disks.	The accreditation was granted pursuant to the Act on the Accreditation Body (AkStelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2625) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of July 2008 etting out the requirements for accreditation and market anveillance netating to the marketing of products (Official Journal of the European Office European cooperation for Accreditation (EA), International Accreditation forum (IAP) and International Laboratory Accreditation Cooperation (ILG), The signatories to these agreements free organice act other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.ilacong ILAC: www.ilacong ILAC: www.ilacong

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf