

FCC - TEST REPORT

Report Number	:	68.950.18.0523	.01	Date of Iss	sue:	December 18, 2018
Model		Blue Byrd				
Product Type	:	IN-EAR HEADF	HONES			
Applicant	:	Beyerdynamic				
Address	:	56 Central Ave,	Farmingda	ale, New Yo	ork Unite	d States
Manufacturer	:	Beyerdynamic				
Address	:	56 Central Ave,	Farmingda	ale, New Yo	ork Unite	d States
Test Result	:	Positive	D Negati	ve		
Total pages including Appendices	:	32				

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9	1 Conducted peak output power	10
9	2 Power spectral density	13
9	6 dB Bandwidth and 99% Occupied Bandwidth	16
9	4 Spurious RF conducted emissions	20
9	5 Band edge	26
9	6 Spurious radiated emissions for transmitter	28
10	Test Equipment List	31
11	System Measurement Uncertainty	32

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China
Telephone: Fax:	86 755 8828 6998 86 755 828 5299
FCC Registration	514049
IC Registration No.:	10320A -1

3 Description of the Equipment Under Test

Product:	IN-EAR HEADPHONES
Model no.:	Blue Byrd
FCC ID:	OSDBBYRD
Options and accessories:	USB Cable
Rating:	3.7VDC, 110mAh (Supplied by Built Li-ion Polymer battery) 5V 0.5A Charging by USB port
RF Transmission	2402MHz-2480MHz
Frequency: No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	Integrated antenna
Antenna Gain:	1.6dBi
Description of the EUT:	The Equipment Under Test (EUT) is IN-EAR HEADPHONES operated at 2.4GHz

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2017 Edition	Subpart C - Intentional Radiators

All the test methods were according to KDB558074 D01 15.247 Meas Guidance v05 and ANSI C63.10 (2013).

5 Summary of Test Results

	Technical Requirement	S				
RSS-247 Issue 2/RSS-Gen	Issue 5			r		
Test Condition		Pages	Test	Test Result		
§15.207	Conducted emission AC power port		Site 	Pass	Fail	N/A ⊠
§15.247 (b) (1)	Conducted peak output power	10	Site 1	\boxtimes		
§15.247(a)(1)	20dB bandwidth					\square
§15.247(a)(1)	Carrier frequency separation					\boxtimes
§15.247(a)(1)(iii)	Number of hopping frequencies					\boxtimes
§15.247(a)(1)(iii)	Dwell Time					\square
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	13	Site 1	\boxtimes		
§15.247(e)	Power spectral density	16	Site 1	\bowtie		
§15.247(d)	Spurious RF conducted emissions	20	Site 1	\square		
§15.247(d)	Band edge	26	Site 1	\boxtimes		
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	28	Site 1	\boxtimes		
§15.203	Antenna requirement	See r	note 2	\bowtie		

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a Integrated antenna, which gain is 1.6dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: OSDBBYRD complies with Section 15.209, 15.205, 15.247 of the FCC Part 15, Subpart C, RSS-247 and RSS-Gen rules.

Blue Byrd is a IN-EAR HEADPHONES with Bluetooth 5.0, which supports 1Mbps only for Bluetooth Low Energy. The TX and RX range is 2402MHz-2480MHz.

Note: The report is BLE only

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:	November 14, 2018
Testing Start Date:	November 14, 2018
Testing End Date:	November 29, 2018

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

. .

Reviewed by: non

Phoebe Hu EMC Section Manager

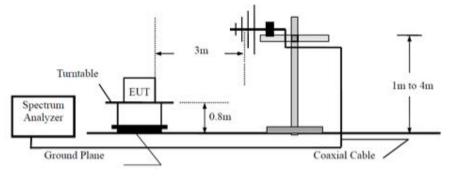
Prepared by:

.

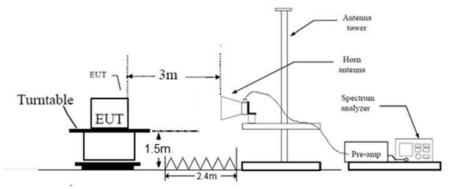
Tested by:

Tree them

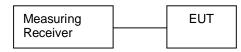
Tree Zhan EMC Test Engineer


mane zhen

Vincent Zheng


EMC Project Engineer

7 Test Setups


Below 1GHz

Above 1GHz

Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	X220	

Test software: CSR tool, which used to control the EUT in continues transmitting mode.

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

9.1 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 - Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

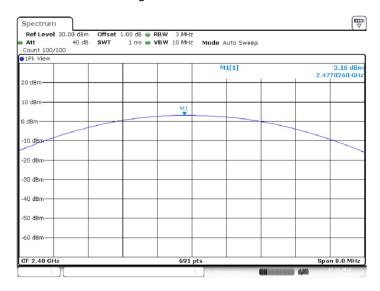
Test result as below table

Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 2402MHz	3.69	Pass
Middle channel 2440MHz	3.53	Pass
Top channel 2480MHz	3.16	Pass

Low channel 2402MHz

1Pk View			MI	[1]	2.40	3.69 dBi 222580 GH
20 dBm						
10 dBm			M1			
) dBm	-					
20 dBm						
30 dBm			2			5
40 dBm						
50 dBm						
60 dBm						

Middle channel 2440MHz


1Pk View							
					M1[1]	3. 2.44095	53 dB
20 dBm-			_			 2.11055	TUG
LO dBm							
			_	M	-		
dBm	-	_					
10 dBm	-		_			 -	~
20 dBm						 	
30 dBm							
40 dBm			_			 	
50 dBm						 	

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 11 of 32

High channel 2480MHz

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.2 Power spectral density

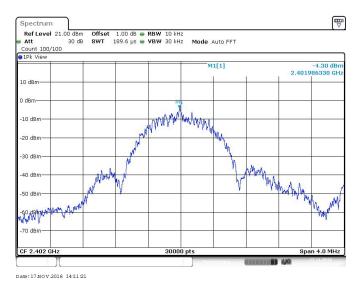
Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

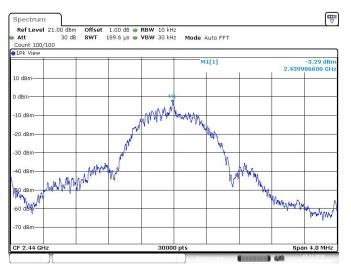
- 1. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm]

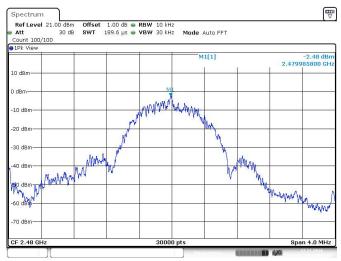

≤8

Test result


Power spectral density	Result
dBm	
-4.30	Pass
-3.29	Pass
-2.48	Pass
	density <u>dBm</u> -4.30 -3.29

Low channel 2402MHz

Middle channel 2440MHz


Date:17 NOV 2018 14:13:41

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 14 of 32

High channel 2480MHz

Date: 17 NOV 2018 14:15:24

9.3 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

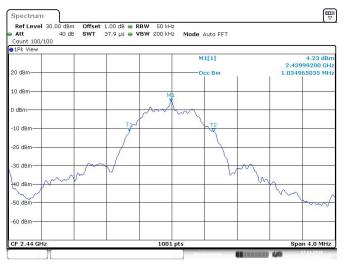

	Limit [kH	lz]	
—	≥500		
Test result Frequency MHz	6dB bandwidth MHz	99 bandwidth MHz	Result
Bottom channel 2402MHz Middle channel 2440MHz Top channel 2480MHz	0.716 0.724 0.720	1.043 1.035 1.047	Pass Pass Pass

6 dB Bandwidth

Low channel 2402MHz

Att Count		30.00 dBi 40 d			Mode Auto FFT		
1Pk Vi		50		12 I.V			
					M1[1]		-2.76 dB
20 dBm				-			2.40164000 GH
					M2[1]		3.33 dB 2.40199200 G
10 dBm	-			ME		1 1	2.40199200 G
				Ma X	~		
) dBm–	D	1 -2.675	dBm		~ \23		
10 dBm					-		
10 aBn							
20 dBm							
20 000	8					(
30 dBm						my	
		0				~	m
40 dBm		\sim		-			
50 dBm	1						
SU UBII							
60 dBm	_						
CF 2.4	32 GH	z		1001 pts	s		Span 4.0 MH
1arker							
Type	Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1		1	2.40164 GHz	-2.76 dBm			
M2		1	2.401992 GHz	3.33 dBm			
D3	M1	1	716.0 kHz	-0.03 dB			

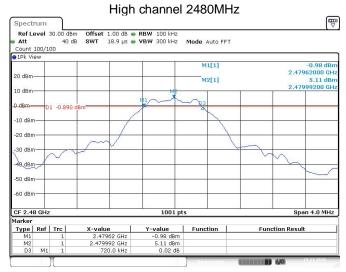
Date: 17 NOV 2018 14:10:57


Date: 17 NOV 2018 14:11:08

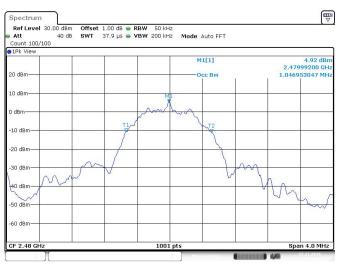
EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Middle channel 2440MHz Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 Offset 1.00 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT ●1Pk View -1.70 dBm 2.43961600 GHz 4.45 dBm 2.43998800 GHz M1[1] 20 dBm M2[1] 10 dBm 0 dBr D1 -1.553 d -10 dBm -20 dBm 30 dBm--40 dBm--50 dBm--60 dBm CF 2.44 GH Span 4.0 MHz 1001 pts Marker Type Ref Trc X-value 2.439616 GHz 2.439988 GHz 724.0 kHz Function Result M1 M2 D3 M1

Date: 17 NOV 2018 14:13:17



Date: 17 NOV 2018 14:13:28


EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 18 of 32

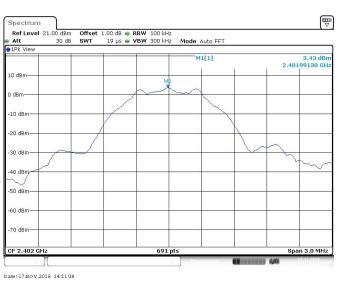
Date: 17 NOV 2018 14:15:00

Date: 17 NOV 2018 14:15:11

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 19 of 32

9.4 Spurious RF conducted emissions


Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

				M1[1]			-67.64 dBn 6.0150 MH
0 dBm						1	
-10 dBm—							
-20 dBm—	-D1 -16.570	dBm	 				
-30 dBm—							
-40 dBm—					-		-
-50 dBm—							
-60 dBm—	M1 .						
	Y			des plantes lapol ^{es l} avorato			

Date:17NOV.2018 14:11:46

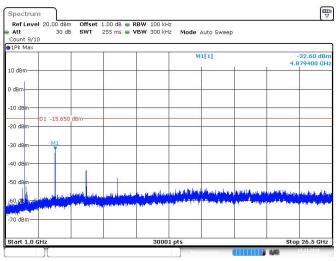
2402MHz

EMC_SZ_FR_21.00 FCC Release 2014-03-20

Report Number: 68.950.18.0523.01

					M	11[1]			30.08 dBi 04600 GH
10 dBm									
D dBm				-		-			
-10 d6m									
-20 d6m	D1 -16.570 (dBm				-		-	
-30 dBm	M1			-					
-40 d8m									
-50 dEm					Lange at				
60 da 0	and the second s	ا دراهادين فبالقري	1. 18	In the Island	AL ISLAND AND	Manu, Addise Aliferia Bolton	(BUPP STREET	A LOUGH BUILDER	And state and a little s

Date:17NOV.2018 14:11:58



Date: 17 NOV 2018 14:13:56

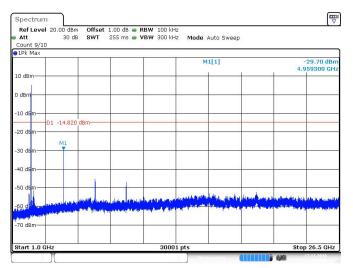
EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Date: 17 NOV 2018 14:14:07

2480MHz

Date: 17 NOV 2018 14:15:40

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299


Page 24 of 32

Report Number: 68.950.18.0523.01

				M	11[1]		-66.04 dBn 9.3220 MH
) dBm			 	_			
10 dBm—							
20 dBm—	D1 -14.820	dBm					
30 dBm—							
40 dBm—							
50 dBm—							
60 dBm—	м	1	2	0			
70 d8m			 			In the local sector	and the late

Date: 17 NOV 2018 14:15:49

Date: 17 NOV 2018 14:16:00

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 25 of 32

9.5 Band edge

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Band edge testing

2402MHz

Att Count	300/3	20.00 dBi 30 d 00		 RBW 100 kHz VBW 300 kHz 	Mode Auto FF	т	
1Pk Vi	ew		1		M1[1]		3.42 dBm
10 dBm				-			2.402040 GH
					M2[1]		-49.35 dBn
) dBm—	-			-		- n	2.400000 GH
							1
10 dBm				-			1 (1
20 dBm	D	1 -16.58	D dBm				
20 001							
30 dBm							
40 dBm	1-1-1						
50 dBm							M
-30 UBII	1		1940 - C. M.				
60 dBm	-			n Muture muth		M3	manyund
	- St	whymen	whiterson and a summer	Malan work. and of	moundand	mperhapping	normalia
70 dBm	+						-
Start 2	.3 GH	z	-985 - 987	691 pt	s	Sto	op 2.405 GHz
larker							
Туре	Ref	Trc	X-value	Y-value	Function	Function Res	sult
M1		1	2.40204 GHz	3.42 dBm			
M2		1	2.4 GHz	-49.35 dBm			
M3 M4		1	2.39 GHz 2.399978 GHz	-62.15 dBm -49.34 dBm			
1714		1	2.399978 GH2	-+>.34 UBM			

Date:17NOV.2018 14:11:31

2480MHz

Ref Le	evel 2	0.00 dBm	Offset 1	.00 dB	RB	W 100 kHz						
Att Count	300/30	30 dB	SWT	1.1 ms	• VB	W 300 kHz	Mode	Auto Sv	reep			
1Pk Vi		-										
							P	11[1]				5.02 dBr 480010 GH
10 dBm	M	1			-		N	42[1]				-53.25 dBr
							17	12[1]				483500 GH
) dBm—		1						1	1	2	1	
10 dBm												
10 001		-14.980	dBm					-				-
20 dBm								-				
	14	10										
30 dBm												-
40 dBm	hl"											
40 UBII	10	1										
50 dBm		M2	-			-						-
	3				13	A				A A		
60 dBm		blue	- to a to	handulan	to a la	the broad	Janant	de-to-mer	good the	and for for	man and press	m and contrate
70 dBm												
70 aBir								58				
start 2	47 GH	7				691 p	nts				Sto	p 2.55 GHz
larker		-										
Type	Ref	Trc	X-value	1	,	Y-value	Eune	ction		Fund	tion Resu	lt
M1	-	1	2.4800			5.02 dBn						
M2		1	2.483	IS GHz		-53.25 dBn						
M3		1	2.	5 GHz		-59.87 dBn	n					

Date:17NOV.2018 14:15:34

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.6 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Low channel 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-	573.98	33.51	Н	46	QP	12.49	-19.3	Pass
1000MHz	625.87	31.25	V	46	QP	14.75	-18.7	Pass
	4804.51*	45.67	Н	74	PK	28.33	4.3	Pass
1000-	7204.67*	44.13	Н	74	PK	29.87	8.2	Pass
25000MHz	4804.22*	42.68	V	74	PK	31.32	4.3	Pass
	7204.76*	43.58	V	74	PK	30.42	8.2	Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	4880.15*	48.25	Н	74	PK	25.75	4.8	Pass
1000-	7320.61*	49.25	Н	74	PK	24.75	8.5	Pass
25000MHz	4879.68*	45.92	V	74	PK	28.08	4.5	Pass
	7319.83*	46.75	V	74	PK	27.25	8.4	Pass

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	4959.41*	47.85	Н	74	PK	26.15	4.3	Pass
1000-	7439.75*	45.62	Н	74	PK	28.38	8.2	Pass
25000MHz	4960.17*	45.33	V	74	PK	28.67	4.3	Pass
	7440.27*	44.29	V	74	PK	29.71	8.2	Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain. Below 1GHz: Corrector factor = Antenna Factor + Cable Loss.

10 Test Equipment List

List of Test Instruments

adiated Emission Test					
DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE	
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2019-7-6	
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2019-7-14	
Horn Antenna	Rohde & Schwarz	HF907	102294	2019-7-14	
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2019-7-6	
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2019-7-6	
Attenuator	Agilent	8491A	MY39264334	2019-7-6	
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7	
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A	

TS8997 Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	108272	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMBV100A	262825	2019-7-6
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	101251	2019-5-31
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2019-7-6
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2019-7-6
Power Splitter	Weinschel	1580	SC319	2019-7-5
10dB Attenuator	Weinschel	4M-10	43152	2019-7-6
10dB Attenuator	R&S	DNF	DNF-001	2019-7-6
10dB Attenuator	R&S	DNF	DNF-002	2019-7-6
10dB Attenuator	R&S	DNF	DNF-003	2019-7-6
10dB Attenuator	R&S	DNF	DNF-004	2019-7-6
Test software	Rohde & Schwarz	EMC32	Version 10.38.00	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Emission in 3m chamber 30MHz-	Horizontal: 4.91dB;			
1000MHz	Vertical: 4.89dB;			
Uncertainty for Radiated Emission in 3m chamber 1000MHz-	Horizontal: 4.80dB;			
18000MHz	Vertical: 4.79dB;			
Uncertainty for Radiated Spurious Emission 18000MHz-	Horizontal: 5.05dB;			
40000MHz	Vertical: 5.04dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 1.16dB Frequency test involved: 0.6×10 ⁻⁷			