Lightspeed Technologies, Inc.

AC-CAVWC

Report No. LITS0005.5

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: May 28, 2010 Lightspeed Technologies, Inc. Model: AC-CAVWC

Emissions						
Test Description	Specification	Test Method	Pass/Fail			
Occupied Bandwidth	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			
Output Power	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			
Band Edge Compliance	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			
Spurious Conducted Emissions	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			
Power Spectral Density	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			
Spurious Radiated Emissions	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			
Pulse Duration	FCC 15.247 (DTS):2009	ANSI C63.10:2009	Pass			

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By:

Don Facteau, IS Manager

RAJVIN

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Product Description

Rev 11/17/06

Party Requesting the Test

Company Name:	Lightspeed Technologies, Inc.
Address:	11509 SW Herman Rd
City, State, Zip:	Tualatin, OR 97062
Test Requested By:	Dave Jordahl
Model:	AC-CAVWC
First Date of Test:	May 25, 2010
Last Date of Test:	May 28, 2010
Receipt Date of Samples:	May 25, 2010
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equip	ment Under Test):
2.4 GHz DTS radio device	

Testing Objective:
To demonstrate compliance to FCC 15.247 requirements.

Configurations

Revision 9/21/05

CONFIGURATION 1 LITS0005

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Remote	Lightspeed Technologies, Inc.	AC-CAVWC	A1019 0005

CONFIGURATION 7 LITS0005

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Remote	Lightspeed Technologies, Inc.	AC-CAVWC	A1019 0002

Revision 4/28/03

	Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT		
1	5/25/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	5/25/2010	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	5/25/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	5/25/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
5	5/26/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
6	5/26/2010	Pulse Duration	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
7	5/28/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.		

OCCUPIED BANDWIDTH

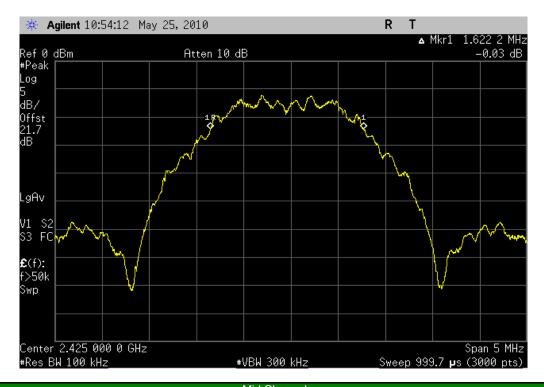
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

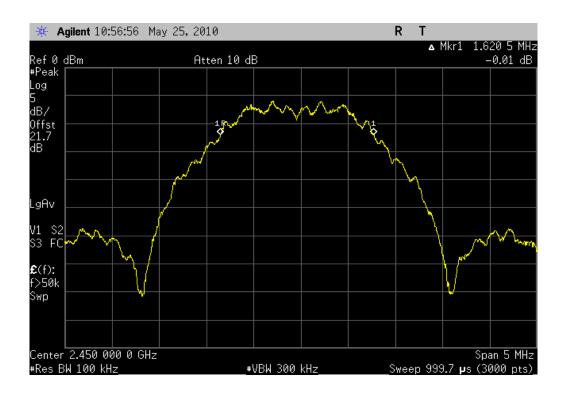
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate with the typical modulation.

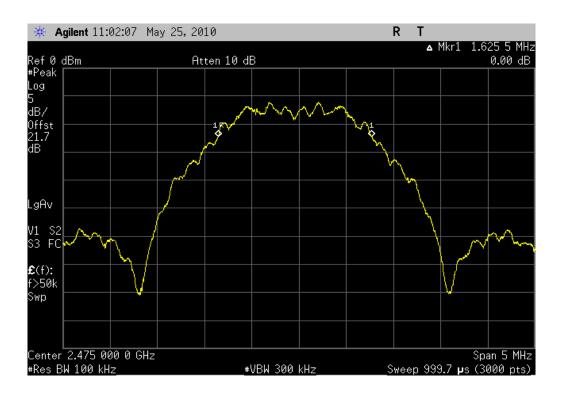
NORTHWEST		OCCUPIED D	ANDWIDTH			XMit 2010.01.14
EMC		OCCUPIED B	ANDWIDIR			
EUT:	AC-CAVWC				Work Order:	LITS0005
Serial Number:	A1019 0005				Date:	05/25/10
Customer:	Lightspeed Technologies, Inc.				Temperature:	22°C
Attendees:	Steve Krieg				Humidity:	
Project:	None			Е	Barometric Pres.:	29.75 in
	Rod Peloquin		Power: Battery		Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method	t		
FCC 15.247:2010			ANSI C63.1	0:2009		
COMMENTS						
None						
DEVIATIONS FROM	/I TEST STANDARD					
No Deviations						
Configuration #	1	Signature Rolly le Ro	lugs			
	·	•		Value	Lir	nit Results
Low Channel	_	_		1.622 MHz	> 500) kHz Pass
Mid Channel				1.621 MHz	> 500) kHz Pass
High Channel				1.626 MHz	> 500) kHz Pass

OCCUPIED BANDWIDTH


Low Channel

Result: Pass Value: 1.622 MHz Limit: > 500 kHz

Mid Channel


Result: Pass Value: 1.621 MHz Limit: > 500 kHz

OCCUPIED BANDWIDTH

High Channel

Result: Pass Value: 1.626 MHz Limit: > 500 kHz

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

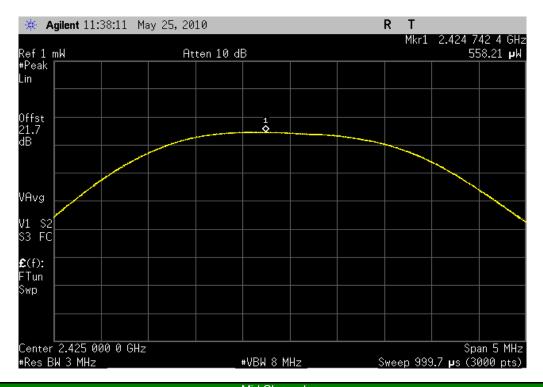
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

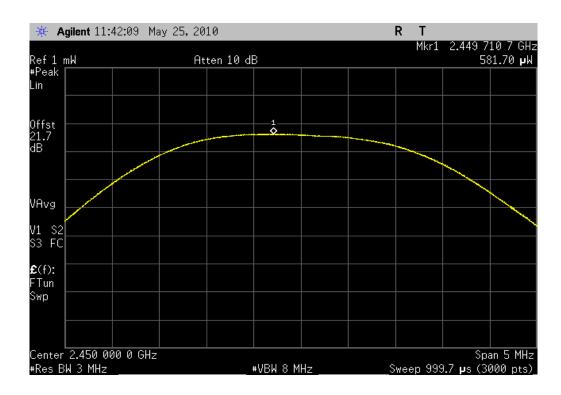
TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

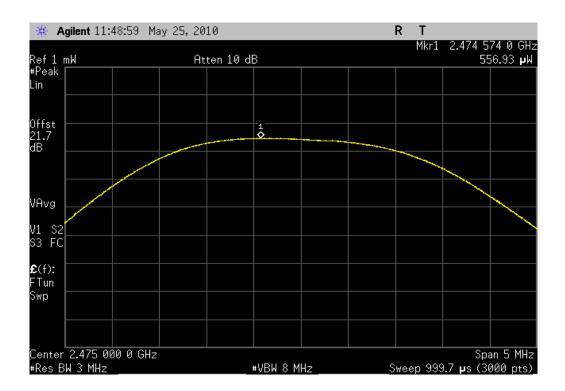
NORTHWEST		OUT	DUT DOWE	-D		XMit 2010.01.14
EMC		0011	PUT POWE	:K		
EUT:	AC-CAVWC				Work Order:	LITS0005
Serial Number:	A1019 0005				Date:	05/25/10
Customer:	Lightspeed Technologies, Inc	.			Temperature:	22°C
Attendees:	Steve Krieg				Humidity:	
Project:					Barometric Pres.:	
	Rod Peloquin		Power:		Job Site:	EV06
TEST SPECIFICATION	ONS			Test Method		
FCC 15.247:2010			/	ANSI C63.10:2009		
COMMENTS						
None						
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
Configuration #	1	Rec Signature	by to Robings			
				Valu		mit Results
Low Channel				0.558 r		W Pass
Mid Channel				0.582 r		W Pass
High Channel				0.557 r	nW 1	W Pass

OUTPUT POWER


Low Channel

Result: Pass Value: 0.558 mW Limit: 1 W

Mid Channel


Result: Pass Value: 0.582 mW Limit: 1 W

OUTPUT POWER

High Channel

Result: Pass Value: 0.557 mW Limit: 1 W

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

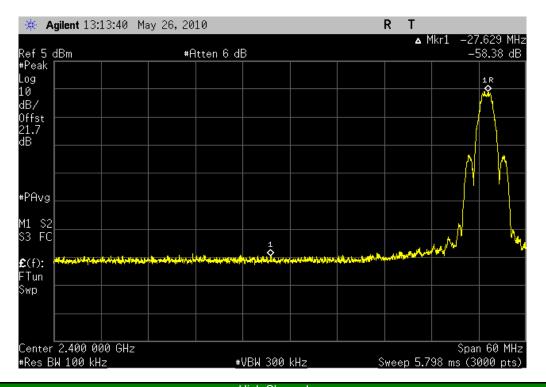
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

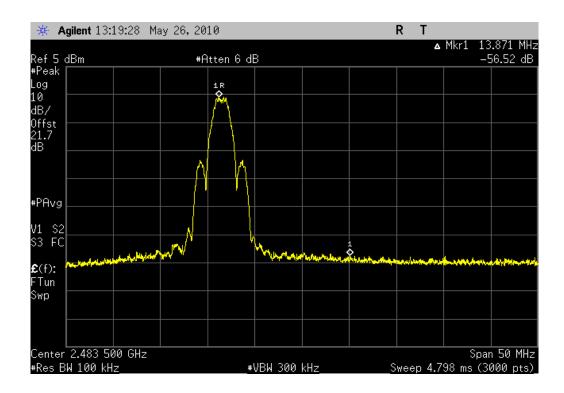
TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its lowest, middle, and maximum data rate available.


The spectrum was scanned across each band edge from at least 25 MHz below the band edge to 25 MHz above the band edge.

NORTHWEST EMC		BAND EDGE COMP	LIANCE		XMit 2010.01.14
EUT:	AC-CAVWC			Work Order:	LITS0005
Serial Number:					05/25/10
Customer:	Lightspeed Technologies, Inc.			Temperature:	22°C
Attendees:	Steve Krieg			Humidity:	43%
Project:				Barometric Pres.:	29.75 in
	Rod Peloquin	Power:	Battery	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
None					
	M TEST STANDARD				
No Deviations					
Configuration #	1	Signature Rolling			
			Va	lue Li	mit Results
Low Channel	_	_	-58.4	4 dBc ≤ -20	0 dBc Pass
High Channel			-56.	5 dBc ≤ -20	0 dBc Pass

BAND EDGE COMPLIANCE


 Low Channel

 Result: Pass
 Value: -58.4 dBc
 Limit: ≤ -20 dBc

High Channel

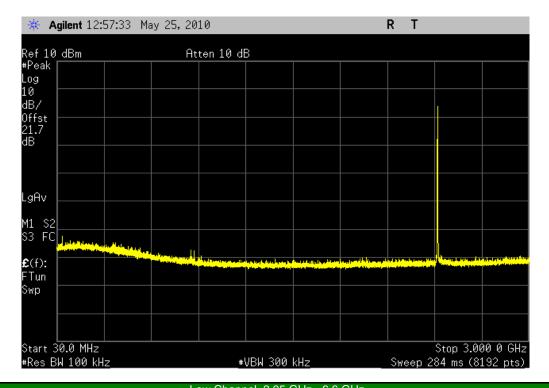
Result: Pass Value: -56.5 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13

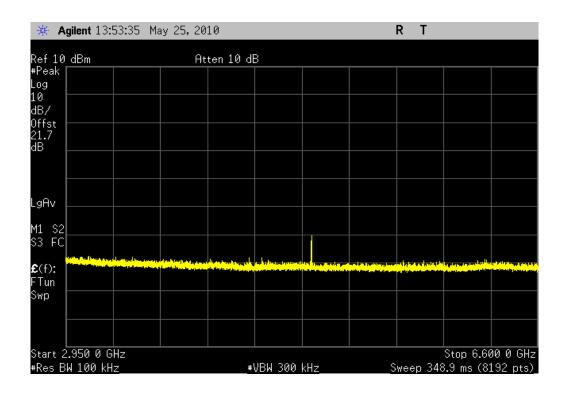
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

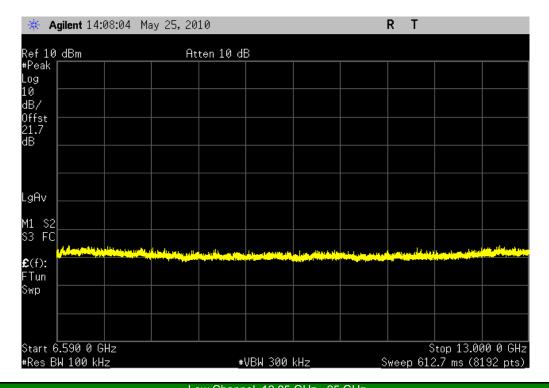

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

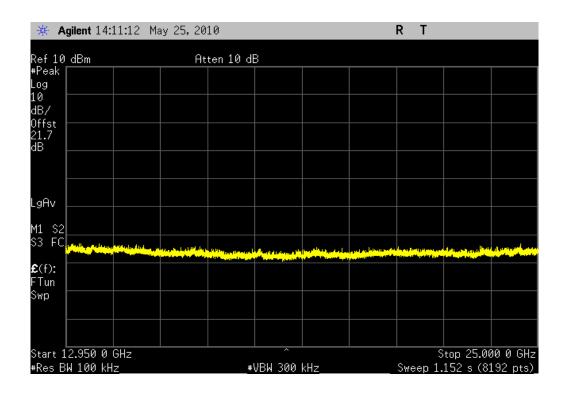
NORTHWEST		SPURIOUS CON	DUCTED EMISS	ONS _		XMit 2010.0
EMC		or orious con	DOCTED LIVINGS			
EUT:	: AC-CAVWC				Work Order: LITS0005	
Serial Number:	A1019 0005				Date: 05/25/10	
	Lightspeed Technologies	s, Inc.		Т	emperature: 22°C	
Attendees:					Humidity: 43%	
Project:				Baroi	metric Pres.: 29.75 in	
	Rod Peloquin		Power: Battery		Job Site: EV06	
EST SPECIFICAT	TONS		Test Method			
CC 15.247:2010			ANSI C63.10:20	09		
OMMENTS						
lone						
EVIATIONS FROM	M TEST STANDARD					
o Deviations	W TEST STANDARD					
o Deviations		1.0				
Configuration #	1	Rocking	he Relenge			
g	· ·	Signature				
				Value	Limit	Resul
ow Channel						
	30M Hz - 3 GHz			< -40 dBc	≤ -20 dBc	Pass
	2.95 GHz - 6.6 GHz					
				< -40 dBc	≤ -20 dBc	Pass
	6.59 GHz - 13 GHz			< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	
	6.59 GHz - 13 GHz 12.95 GHz - 25 GHz					Pass Pass Pass
1id Channel				< -40 dBc	≤ -20 dBc	Pass
/lid Channel				< -40 dBc	≤ -20 dBc	Pass Pass
flid Channel	12.95 GHz - 25 GHz			< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
fid Channel	12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz			< -40 dBc < -40 dBc < -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass
fid Channel	12.95 GHz - 25 GHz 30M Hz - 3 GHz			< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass
	12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz 6.59 GHz - 13 GHz			< -40 dBc < -40 dBc < -40 dBc < -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
	12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz 6.59 GHz - 13 GHz 12.95 GHz - 25 GHz			< -40 dBc < -40 dBc < -40 dBc < -40 dBc < -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
	12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz 6.59 GHz - 13 GHz 12.95 GHz - 25 GHz 30M Hz - 3 GHz			< -40 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass
	12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz 6.59 GHz - 13 GHz 12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz			< -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass
flid Channel	12.95 GHz - 25 GHz 30M Hz - 3 GHz 2.95 GHz - 6.6 GHz 6.59 GHz - 13 GHz 12.95 GHz - 25 GHz 30M Hz - 3 GHz			< -40 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass


Low Channel, 30M Hz - 3 GHz

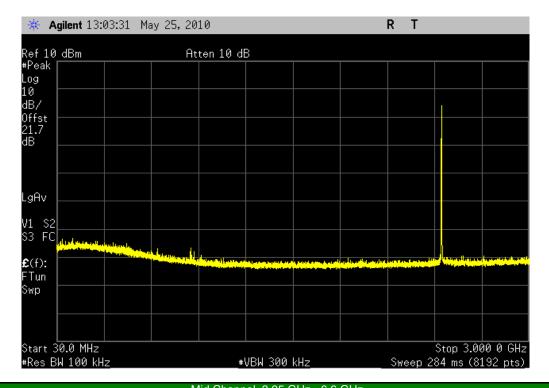
Result: Pass
Value: < -40 dBc</th>
Limit: ≤ -20 dBc


 Low Channel, 2.95 GHz - 6.6 GHz

 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc

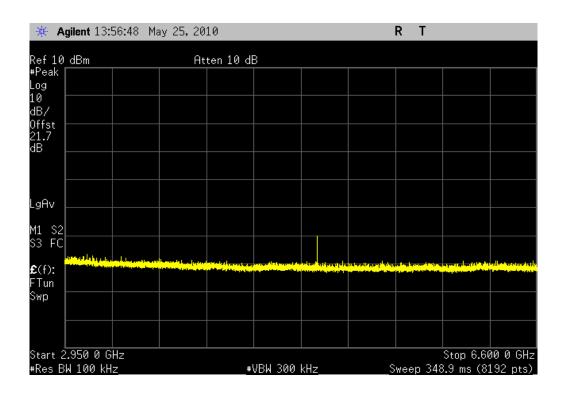

Low Channel, 6.59 GHz - 13 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

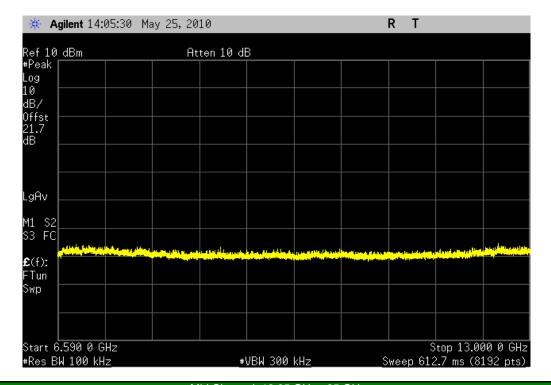


 Low Channel, 12.95 GHz - 25 GHz

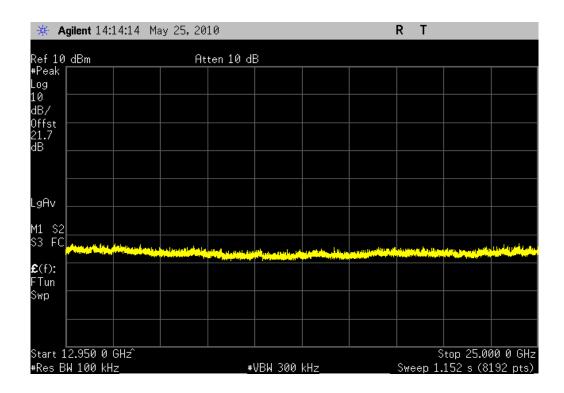
 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc



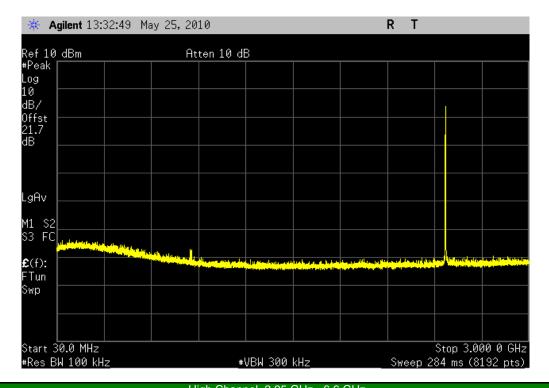
	Mid Channel, 30M Hz - 3 GHz		
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc


 Mid Channel, 2.95 GHz - 6.6 GHz

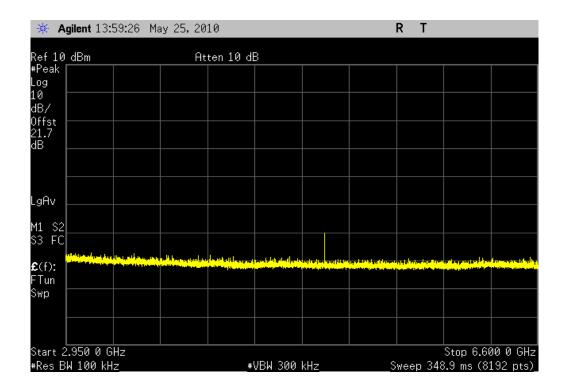
 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc


Mid Channel, 6.59 GHz - 13 GHz

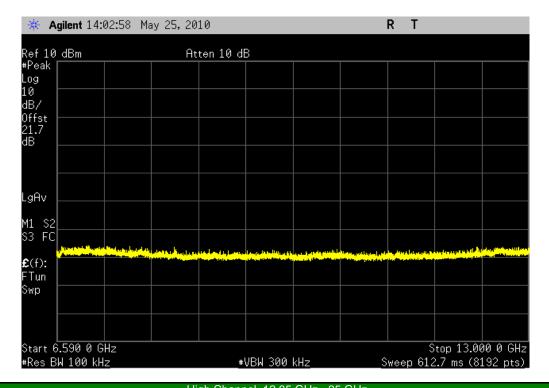
Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc


 Mid Channel, 12.95 GHz - 25 GHz

 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc

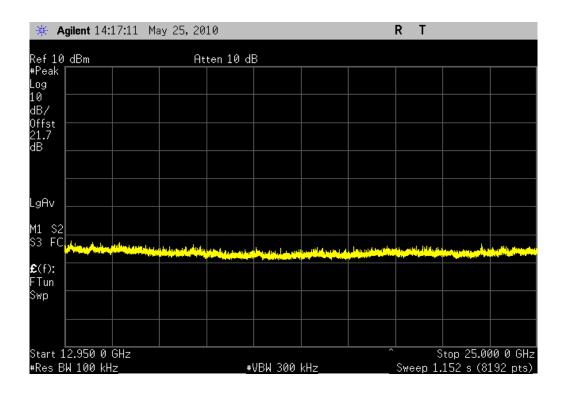

High Channel, 30M Hz - 3 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc



 High Channel, 2.95 GHz - 6.6 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc



	High Channel, 6.59 GHz - 13 GHz		
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

High Channel, 12.95 GHz - 25 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor Gigatronics		80701A	SPL	1/7/2010	13
Signal Generator Agilent		E8257D	TGX	12/10/2008	24

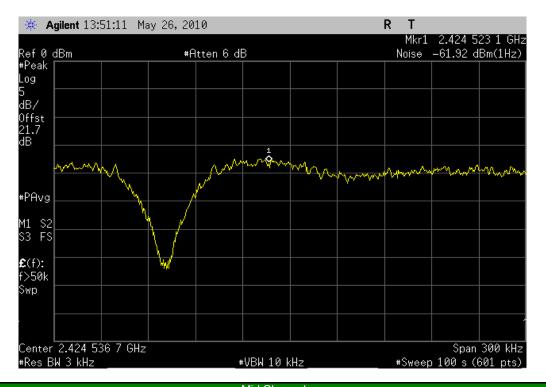
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

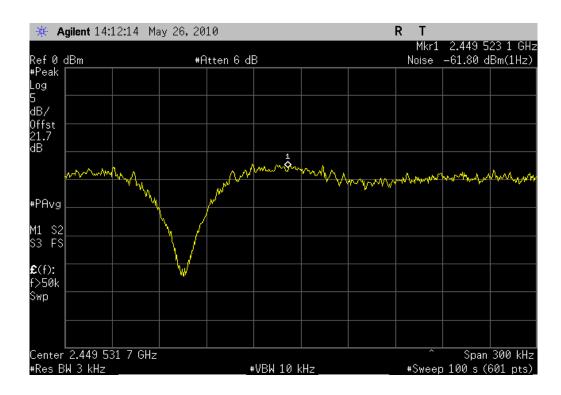
The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. While the average output power was measured as defined in section ANSI C63.10:2009, Section 6.11.2.3 was followed.

The the spectrum analyzer was set as follows:

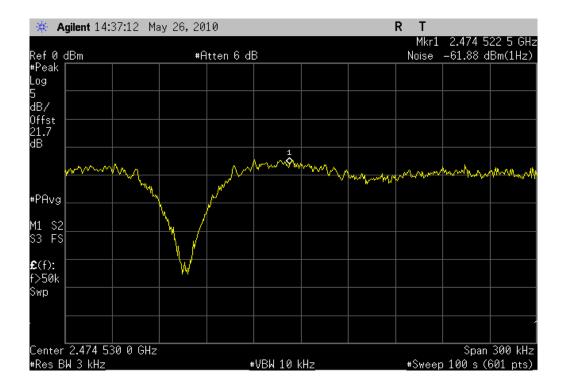

The emission peak was located and zoomed in on within the passband.

- a) RBW = 3 kHz
- b) VBW = 10 kHz
- c) Span = 300 kHz
- d) Sweep time = 100s
- e) Trace set to MAX
- f) The 1 hz Marker Noise function on the analyzer was used. The data was corrected to 3 kHz by adding 34.8 dB to the reading.

NORTHWEST EMC		POWER S	SPECTRAL I	DENSITY			XMit 2010.01	.14
EUT:	AC-CAVWC					Work Order:	LITS0005	
Serial Number:							05/26/10	
	Lightspeed Technologies, Inc.					Temperature:	22°C	
Attendees:	Steve Krieg					Humidity:		
Project:					Ba	rometric Pres.:		
	Rod Peloquin			Battery		Job Site:	EV06	
TEST SPECIFICATI	IONS			Test Method				
FCC 15.247:2010				ANSI C63.10:2009				
COMMENTS								
None								
DEVIATIONS FROM	/I TEST STANDARD							
No Deviations								
Configuration #	1	Signature	Rolly le Felings					
				v	/alue	Lin		;
Low Channel				-27.1 dBm		8 dBm / 3 kHz		
Mid Channel				-27.0 dBm	/ 3 kHz	8 dBm / 3 kHz	: Pass	
High Channel				-27.1 dBm	/ 3 kHz	8 dBm / 3 kHz	: Pass	


POWER SPECTRAL DENSITY

	Low Channel			
Result: Pass	Value: -27.1 dBm / 3 kHz	Limit:	8 dBm / 3 kHz	


Mid Channel

Result: Pass Value: -27.0 dBm / 3 kHz Limit: 8 dBm / 3 kHz

POWER SPECTRAL DENSITY

	High Channel		
Result: Pass	Value: -27.1 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting with normal modulation at 100% duty cycle

CHANNELS TESTED

Low channel, 2425 MHz Mid channel, 2450 MHz High channel, 2475 MHz

POWER SETTINGS INVESTIGATED

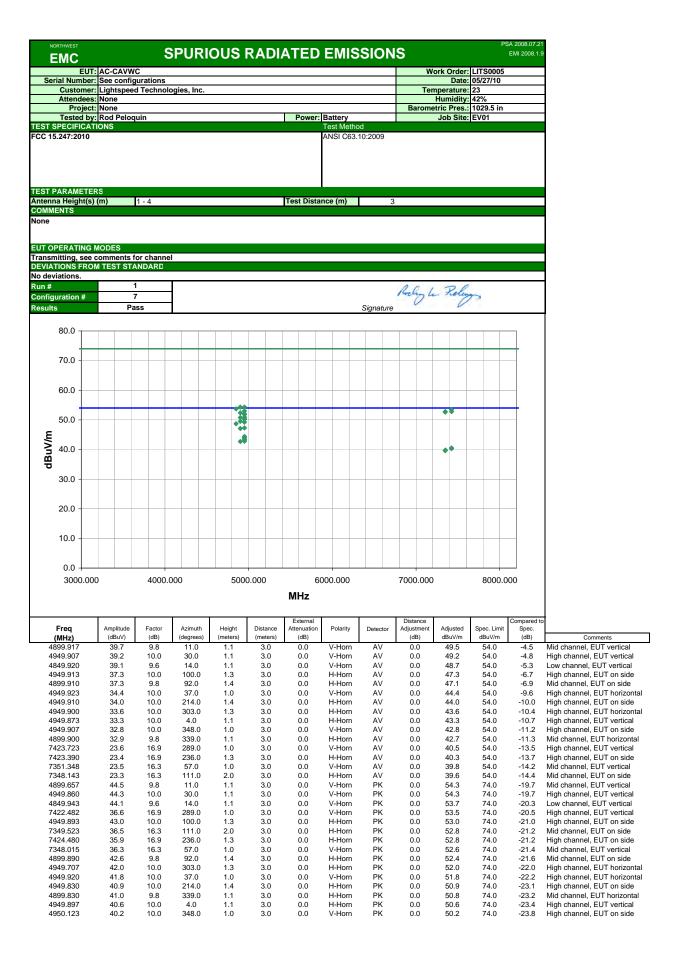
Battery

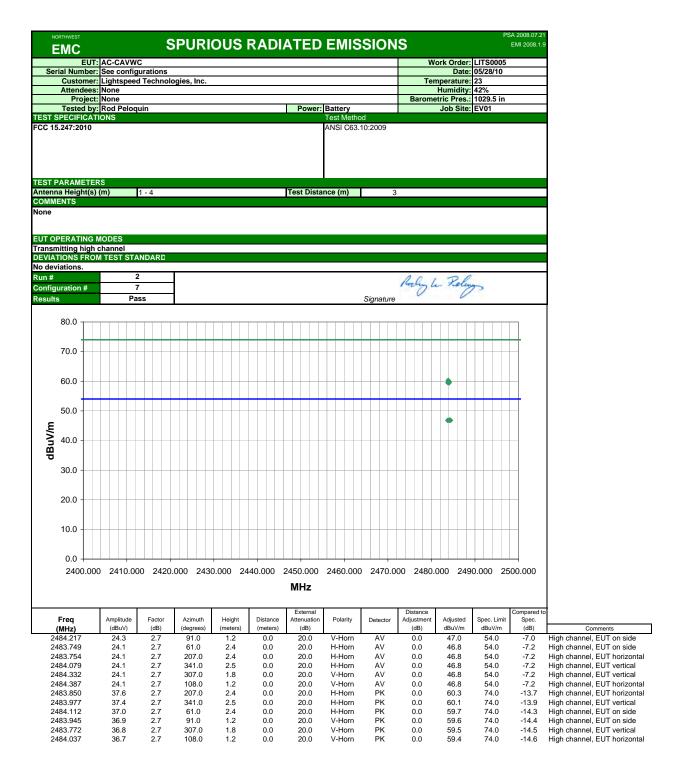
FREQUENCY RANGE INVESTIGATED					
Start Frequency	30 MHz	Stop Frequency	25 GHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	12
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	7/10/2009	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	7/10/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13
EV01 Cables	N/A	Bilog Cables	EVA	7/10/2009	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	7/10/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	13
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	11/3/2009	13


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

PULSE DURATION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

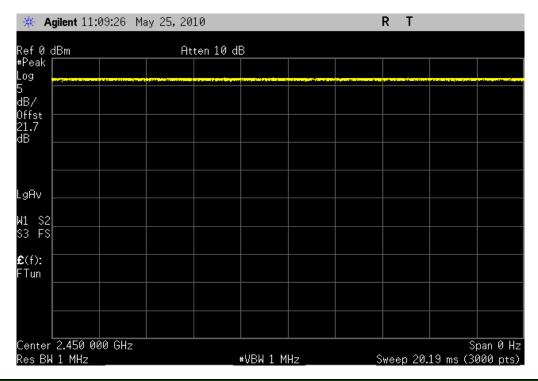
TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24				
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13				
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13				
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0				

MEASUREMENT UNCERTAINTY

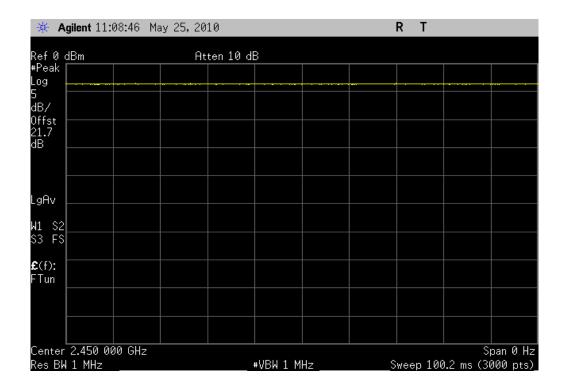
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Per ANSI C63.10, for unlicensed wireless devices unable to be configured for 100 % duty cycle even in test mode, the system should be configured for the longest duration duty cycle supported. The transmission pulse duration is that time over which the unlicensed wireless device is on and transmitting at its maximum output power.

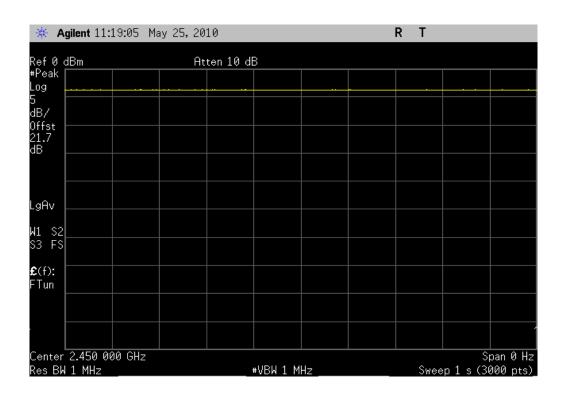

Measurement methods defined in ANSI C63.10 are often based upon the relationship between the EUT transmission pulse duration and the sweep speed of the measurement analyzer.

The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer.


NORTHWEST EMC		PULSE DURAT	ION		XMit 2010.01.1
EUT:	AC-CAVWC			Work Order:	LITS0005
Serial Number:	A1019 0005			Date:	05/25/10
Customer:	Lightspeed Technologies, Inc.			Temperature:	22°C
Attendees:	none			Humidity:	43%
Project:	None			Barometric Pres.:	29.75 in
Tested by:	Rod Peloquin	Power	: Battery	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS			•		
None DEVIATIONS FROM	M TEST STANDARD				
No Deviations					
Configuration #	1	Signature Rolling to Rolling			
					Value
20ms Sweep					100%
100ms Sweep					100%
1s Sweep					100%

PULSE DURATION

20ms Sweep Value: 100%



100ms Sweep Value: 100%

PULSE DURATION

1s Sweep Value: 100%

