Application For Certification In Accordance With FCC Part 101

for

Triton Network Systems, Inc.

28 GHz SONET OC-3

Wireless Consecutive Point Millimeter-Wave Transceiver Models: TNS-28-SNP-03-100, TNS-28-SNP-03-200, TNS-28-SNP-03-300, TNS-28-SNP-03-400, TNS-28-SNP-03-500

FCC ID: OQT-28-SNP-03

September 1999

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

Table of Contents

Τe	est Report Certification	3
1.	Introduction	4
2.	Product Description	4
	2.1. Multiple list/ Family information	4
	2.2. Frequency Availability	5
	2.3. Block Diagram of the product	
3.	Summary of Tests and results	
	Test plan	
	4.1. Frequency stability	
	4.2. Output power	
	4.3. Bandwidth	6
	4.4. Emission Limitation (Mask)	6
	4.5. Spurious emissions	7
	4.6. Incidental radiation	
5.	Test results	8
	5.1. Frequency Tolerance and Frequency Stability	8
	5.2. Output power	
	5.3. Bandwidth	9
	5.4. Emission Limitation (Mask)	. 10
	5.5. Spurious emissions	. 15
	5.6. Incidental radiation	
6.	Equipment list	. 16
	Photos of the EUT	
8.	Additional Materials	. 24
	8.1. Bill of Materials Error! Bookmark not define	ed.

Test Report Certification

Company Name: Triton Network Systems, Inc.

8529 SouthPark Circle, 4th Floor

Orlando, FL 32819

Attention: Mr. Michael Clark

Model No.: TNS-28-SNP-03-100, TNS-28-SNP-03-200,

TNS-28-SNP-03-300, TNS-28-SNP-03-400, TNS-28-SNP-03-500, TNS-28-SNP-03-600

Report Date: September 30, 1999

ITS Report: J99019097A

Test Site Location: INTERTEK TESTING SERVICES NA INC.

70 Codman Hill Road

Boxborough, Massachusetts 01719

We attest to the accuracy of this report:

Signature
Kouma Sinn

Testing Performed By

Sr. Project Engineer

Title

Peter Boers

ignature

Reviewer

Sr. EMC Staff Engineer

Title/Date

1. Introduction

On August 23 to 28, 31, September 1 and 24 1999, we tested the 28 GHz SONET OC-3 Wireless Consecutive Point Millimeter Wave Transmitter System, Models: TNS-28-SNP-03-100,TNS-28-SNP-03-200,TNS-28-SNP-03-300, TNS-28-SNP-03-400,TNS-28-SNP-03-500, and TNS-28-SNP-03-600 to determine if they were compliant with the FCC Part 101 emission standard. We found that the units met the applicable requirements when tested as received.

2. Product Description

The 28 GHz SONET OC-3 radio is a data-link radio device. A pair of radios, working together, forms a full duplex 155 Mbps data link, in accordance with the SONET OC-3 specification as specified in the Bellcore GR-253-CORE standard. Within the radio network model, the radio link acts as a physical layer link, or bit pipe, similar to a bi-directional optical regenerator. The radio replicates data without regard to content.

The 28 GHz SONET OC-3 radio uses a 100 MHz channel pair (50 MHz transmit, 50 MHz receive) to carry an aggregate data rate of approximately 190 Mbps in each direction across the link. The SONET OC-3 payload accounts for 155 Mbps.

The radios are designed to be installed by operators on building rooftop, towers, or other suitable structures to provide high-bandwidth communication links. Operators can use linked radios to provide broadband fixed wireless technology services to an entire metropolitan service without using fiber optical cable.

2.1. Multiple list/ Family information

Segmented Band - SONET OC-3

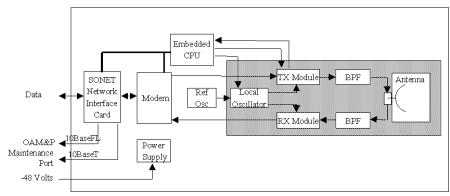
Part number coding					Frequency Band
TNS	FF	PPA	BB	XXX	
TNS	28	SNP	03	100	27.500 GHz to 27.700 GHz
TNS	28	SNP	03	200	27.700 GHz to 27.900 GHz
TNS	28	SNP	03	300	27.950 GHz to 28.150 GHz
TNS	28	SNP	03	400	28.150 GHz to 28.350 GHz

Programmable Offset - SONET OC-3

Part number coding					Frequency Band
TNS	FF	PPA	BB	XXX	
TNS	28	SNP	03	500	27.500 GHz to 27.850 GHz
TNS	28	SNP	03	600	28.000 GHz to 28.350 GHz

2.2. Frequency Availability

The frequencies available for this particular device operating under FCC rules, Part 101.101 as:


Radio Services	Frequency Band (GHz)	Subpart of Service	Note
Common Carrier (Pt 101)	27.5 - 28.35	LMDS	N/A

Description of "Subpart of Service"

Abbreviation	Description
LMDS	Local Multipoint Distribution Service (Part 101 Subpart L)

2.3. Block Diagram of the product

TNS-28 SONET OC3 Radio Block Diagram

3. Summary of Tests and results

Test Performed	Reference	Pass/Fail Criteria
Frequency Availability	101.101	Pass
Frequency Tolerance and Frequency Stability	101.107	Pass
Bandwidth	101.109	Pass
Occupied Bandwidth	2.1049	Pass
Emission Limitations (Mask)	101.111	Pass
Transmitter Power Limitations	101.113	Pass

4. Test plan

4.1. Frequency stability

FCC rules, Part 101, Section 107 requires that the Frequency stability is better than 0.001% over the temperature range from -30 °C to +50 °C and an input voltage range of + or -15% of the nominal.

Since the two versions of this product (the SONET OC-3 with either 16QAM or 32QAM mode of modulation and the fast-ethernet version with 8PSK modulation) use the same frequency determining components for the main transmitter, only one version of the product will be tested for frequency stability.

The whole radio will be placed in a temperature controlled chamber, and measurements of the output frequency will be made each 10 degrees between the lower and upper limits, and at nominal temperature the input voltage will be varied plus and minus 15 % from the nominal 48V dc.

4.2. Output power

FCC rules Part 101, Section 113 requires that the output power of the transmitter does not exceed 55dBW or 42 dBW/MHz, with the additional stipulation that no higher power than necessary to carry out the desired communication shall be allowed.

The output power of this transceiver will be measured over the allocated frequency band from 27500 MHz to 28350 MHz in the low end, the middle and the high end of the band for all operating modes of the transceiver.

4.3. Bandwidth

The spectral output of the transceiver will be measured in the low end of the band, approximately in the middle of the band and at the high end of the band, for each of the different models and/or modulation schemes and at the nominal power rating(s) of the transceiver.

The 99% power bandwidth will be calculated from the spectral display.

4.4. Emission Limitation (Mask)

The spectral output of the transceiver will be measured in the low end of the band, approximately in the middle of the band and at the high end of the band to show that the emissions fall under the mask as defined in FCC rules, part 101.111. The shape of the mask will be calculated based on the rated output power of 1 Watt (30 dBm)

4.5. Spurious emissions

Radiated spurious emissions will be measured at a distance of 3 or 1 meter from the product in the frequency range for 30 MHz to 100 GHz. For the frequency range above 40 GHz, external mixers will be used to down convert the frequency.

4.6. Incidental radiation

Incidental radiation will be measured according to the requirements of FCC Part 15. B and ANSI C63.4:1992.

5. Test results

5.1. Frequency Tolerance and Frequency Stability

The carrier frequency of each transmitter authorized in these services must be maintained within the following percentage of the reference frequency according to FCC rules Part 101.107.

Frequency Range	Frequency Tolerance (Percent)
27500 to 28350 MHz	0.001

Table 1. Measured Frequency Stability versus Input Voltage

Maximum Allowed Frequency Deviation: 283.25 kHz							
Voltage	Reference Frequency	Measured Frequency	Deviation	Pass/Fail			
(VDC)	(Hz)	(Hz)	(Hz)				
40.8	28325037112	28325037064	48	Pass			
48.0	28325037112						
55.2	28325037112	28325037025	87	Pass			

Table 2. Frequency Stability versus Temperature

Maximum Allowed Frequency Deviation: 283.25 kHz								
Temperature	Reference Frequency	Measured Frequency	Deviation	Pass/Fail				
(°C)	(Hz)	(Hz)	(Hz)					
-30	28325037384	28325055900	18516	Pass				
-20	28325037384	28325046953	9569	Pass				
-10	28325037384	28325043148	5764	Pass				
0	28325037384	28325041290	3906	Pass				
10	28325037384	28325039400	2016	Pass				
20	28325037384							
30	28325037384	28325035474	1910	Pass				
40	28325037384	28325033400	3984	Pass				
50	28325037384	28325032257	5127	Pass				

Note: All frequency stability tests were conducted on the Fast Ethernet radio, TNS-28-ETP-FE-600 (related certification), which has the same frequency determining elements as this product.

5.2. Output power

FCC rules Part 101, Section 113 requires that the output power of the transmitter does not exceed 55dBW or 42 dBW/MHz, with the additional stipulation that no higher power than necessary to carry out the desired communication shall be allowed.

Table 3. Transmitter output power

Mode Operation	Frequency (MHz)	Measured Power (dBm)	Pass/Fail
32QAM	27525	+30.5	Pass
32QAM	27825	+30.1	Pass
32QAM	28325	+30.3	Pass
16QAM	27535	+30.3	Pass
16QAM	27825	+30.3	Pass
16QAM	28315	+30.5	Pass

5.3. Bandwidth

Bandwidth (101.109)

Emission Designator:

Part of the application (License or Certification) require the inclusion of an emissions designator as determined by 47 CFR 2.201 and 2.202

The characteristics of the emissions designator are as follows:

	Value
Necessary Bandwidth – This may be calculated using the formulas	850MHz
of 2.202 or if that is not possible with the occupied bandwidth	
First Symbol – Type of modulation of the main carrier	D
Second Symbol – Nature of signal(s) modulating the main carrier	1
Third Symbol – Type of information be transmitted	D

Occupied Bandwidth (2.1049)

Occupied Bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5% of the emitted power. This is also known as the 99% bandwidth.

Table 4. Occupied Bandwidth Summary

Mode	Channel	Authorized	Measured	Detail	Pass/Fail
		BW	Occupied	information	
		(MHz)	Bandwidth		
			(MHz)		
32QAM	Low	850	40.88	Figure 2	Pass
32QAM	Mid	850	40.48	Figure 3	Pass
32QAM	High	850	40.88	Figure 4	Pass
16QAM	Low	850	54.60	Figure 5	Pass
16QAM	Mid	850	53.70	Figure 6	Pass
16QAM	High	850	54.10	Figure 7	Pass

5.4. Emission Limitation (Mask)

The mean power of emissions must be attenuated below the mean output power of the transmitter in accordance with the following schedule (from FCC 101.111):

Table 5. Emission Limitations Mask Schedule

Percentage Shift From Center Frequency	Attenuation Equation From Part 101.111.2(ii)	Attenuation Below Center Frequency Peak (dBc)	Spectrum Analyzer RBW
0 to 50	None	0	1 MHz
50 to 250	11 + 0.4(P-50) + 10 Log B	28 to 56	1 MHz
Greater than 250	$43 + 10 \text{ Log}(P_0)$	43	4 KHz

P = Percent removed from the carrier frequency.

B = Authorized bandwidth in MHz.

 P_o = Mean output power in Watts.

Attenuation greater than 56 dB is not required. Equation at 250 % removed

from the center frequency yields 108 dB.

For a 1 Watt system: 43 + 10 Log (1) Watts) = 43 + 0 = 43 dB.

Note: Emission mask plots shown in Figures on the following pages show compliance of the EUT with the emission mask requirements defined in Part 101.111.2 (ii)

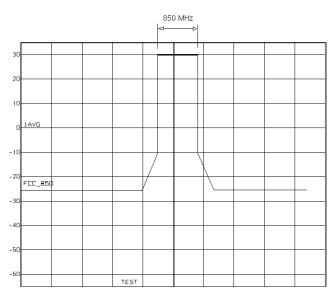
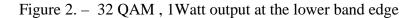
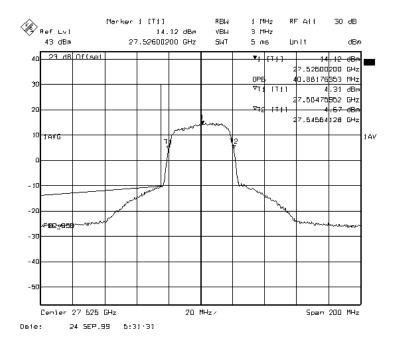
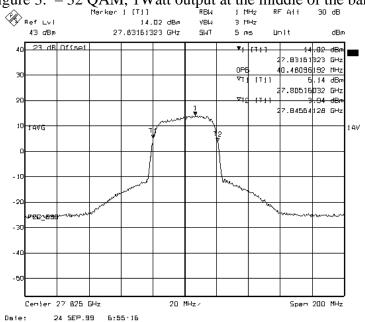
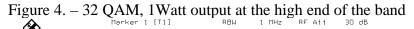
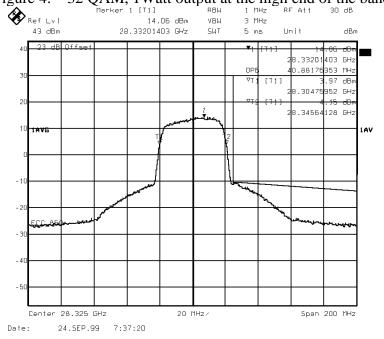
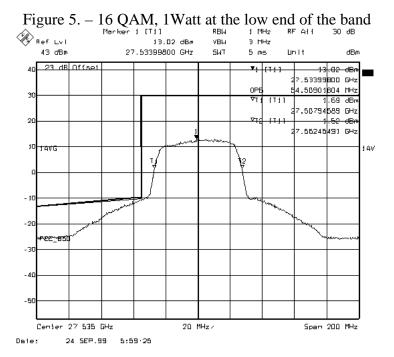
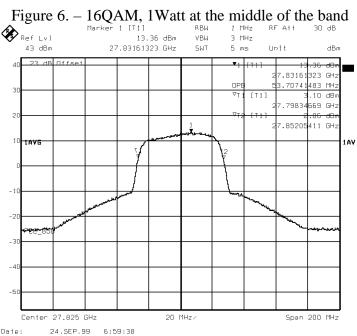
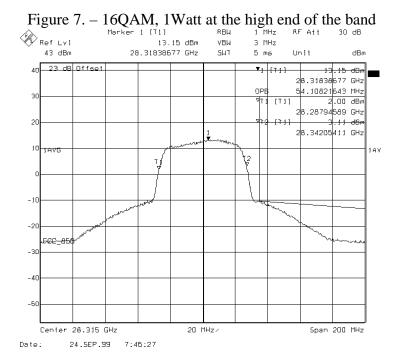




Figure 1. FCC mask for the 28 GHz LMDS band (500MHz/div)


Figure 3. -32 QAM, 1Watt output at the middle of the band

5.5. Spurious emissions

Table 5. Spurious emissions and harmonic scan from 0.030 to 100 GHz

Frequency	Reading	Antenna Factor	Net Reading	Limit	Margin
(GHz)	(dBuv)	(dB)	(dB)	(dB)	(dB)
No spurious emissions were detected within 56 dB from the carrier level.*					

^{*}Measurement sensitivity was such that any signal within –56 dB from the carrier could be detected. Measurements were made both conducted on the antenna terminal and radiated with a EUT to antenna distance of 1 meter. The unit was transmitting in 16QAM mode as a worst case operation mode between the 32QAM and 16QAM modems.

The total output power measured with a power meter equals to 30.0 dBm.

Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 6.43 dBm VВW 3 MHz 33 dBm 27.53897395 GHz SWT 37 ms Unit dBm 27.53897395 GH: -2 -40 -5 -60 TEST Center 27 532 GHz 640 MHz/ Span 6.4 GHz 31.AUG.99 13:57:31 Date:

Figure 8. – Wide band view showing absence of spurious

5.6. Incidental radiation

The Triton Network Systems 28 GHz SONET OC-3 meets the requirements of FCC Part, Class B for incidental radiators. A full report substantiating that is available under ITS report J99019097

6. Equipment list

The following equipment was used for radiated and conducted emissions testing in accordance with FCC Part 101.

Table 7. Equipment List

Abbr	Equipment	Manufacturer	Model	Serial	Cal Due
Tek1	Spectrum Analyzer	Tektronix	2784	B010153	02/03/00
PRE8	Pre-Amplifier	MITEQ	NSP4000-NF	507145	10/11/99
HORN2	Horn Antenna	EMCO	3115	9602-4675	10/03/99
HORN3	Horn Antenna	EMCO	3116	2090	03/06/00
MIX1	Harmonic Mixer	MILLITECH	MHB-10-R00W0	015	N/A
MIX2	Harmonic Mixer	MILLITECH	MHB-15-R00W0	019	N/A
MIX3	Harmonic Mixer	MILLITECH	MHB-19-R00W0	011	N/A
MIX4	Harmonic Mixer	MILLITECH	MHB-22-R00W0	013	N/A
	Wattmeter	HP	436A/022	1803A04424	2/12/00
	Attenuator	Weinschel	54-20	09632	
	Temperature chamber	Watlow	Series 1500		
	Spectrum Analyzer	R & S	FSEK	1088.3494.30	05/24/00
	Watt Meter	Anritsu	ML2438A	97400002	01/20/00

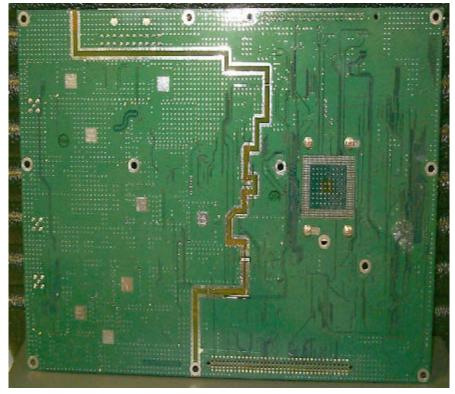
7. Photos of the EUT

Left rear view of the EUT

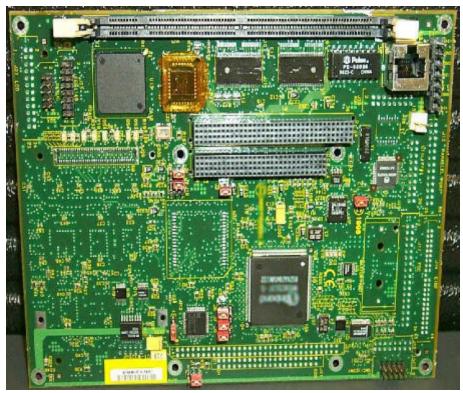
Right rear view of the EUT

Front view of the EUT

Rear cover open



Internal photograph of transmitter, receiver, synthesizer, and filter/attenuator section


Modem board, top and bottom view


Bottom view of CPU board with heat sink attached, top view of CPU board

SONET OC-3 NIC board, top and bottom view

Power supply, top and bottom view

8. Additional Materials

8.1. Bill of Materials

Triton Part Number	Description
3100001-1003/1002/1001	Reference Oscillator
3328500-1019	Transmitter Module
3228550-1019	Receiver Module
2528000-0002	Oscillator, Local, Dual Output
2528001-0001	_
2328000-1000	Antenna Assembly
2600000-0001/0002	IF Filter
3428001-0001	Waveguide Isolator
2628001-0001/2/3/4/5/6	Waveguide Filter
3000000-1002	Power Supply
2400001-2000	CPU Assembly
2900001-1000	Network Interface CCA - SONET
2700000-0001	Modem