

Maximum power density calculations for **remote dish** using FCC prediction methods (Pages 26-29)

by Jay McCandless 12/28/99

Model	Frequency (f)	Wavelength (λ)	Specified Gain	Gain (G)	Aperture Diameter (D)	Aperture Area (A)	Efficiency (η)	Maximum Specified Transmit Power (4 QAM) (dBm)	Transmit Power (P) (mW)	Worst Case Power Density on Surface ($S_{surface}$) (mW/cm ²)	R-near field
	(GHz)	(cm)	(dB)		(cm)	(cm sq.)		(dBm)	(mW)	(mW/cm ²)	(cm)
PTM 1000	38	0.789473684	38	6309.573445	26.67	558.6463021	0.560179883	13	19.95262315	0.142864085	225.241485

is 10^{dB}
gain/10

is $G^*(\lambda/(\pi D))^2$

is 4P/A

is $D^2/4\lambda$

Worst Case

Power Density in the Near Field (Snf)	Maximum Power Density Allowed	Designation
(mW/cm ²)	(mW/cm ²)	

is $16\eta P/\pi D^2$

0.052143299 1 **Safe anywhere**