

Page 1 of 63

Prüfbericht / Test Report

Nr. / No. 69861-04467-1 (Edition 1)

Applicant: IDENTEC Solutions AG

Type of equipment: Active Tag for Shipping Containers

Type designation: i-Q310 CST Order No.: 1230094

Test standards: FCC Code of Federal Regulations,

CFR 47, Part 15,

Sections 15.107, 15.109, 15.205, 15.207, 15.209, 15.215 and 15.240

Industry Canada Radio Standards Specifications RSS-Gen Issue 3, Sections 6, 7.2.2, 7.2.4 and 7.2.5 RSS-210 Issue 8, Section A5 (Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1		Description of the Equipment Under Test (EUT)					
2		Admir	nistrative Data	. 3			
3		Identification of the Test Laboratory5					
4		Summ	nary	. 6			
5		Opera	ation Mode and Configuration of EUT	. 7			
6		Measi	urement Procedures	. 8			
	6.1	1 Ba	andwidth Measurements	. 8			
	6.2	2 P	ulse Train Measurement	. 9			
	6.3	3 R	adiated Emission Measurement 9 kHz to 30 MHz	10			
	6.4	4 R	adiated Emission in Fully or Semi Anechoic Room	12			
	6.5	5 R	adiated Emission at Alternative Test Site	14			
7		Photo	graphs Taken During Testing	16			
8		Test F	Results for Transmitter2	22			
	8.1	1 0	ccupied Bandwidth2	24			
	8.2	2 Ba	andwidth of the Emission2	28			
	8.3	3 D	esignation of Emissions	30			
	8.4	4 P	ulse Train Measurement3	31			
	8.5	5 D	uration of emission	33			
	8.6	6 R	estricted Bands of Operation	35			
	8.7	7 R	adiated Emission Measurement 9 kHz to 30 MHz	37			
	8.8	8 R	adiated Emission Measurement 30 MHz to 1 GHz	38			
	8.9	9 E	xposure of Humans to RF Fields	40			
9		Test F	Results for Receiver	42			
	9.1	1 R	adiated Emission Measurement 30 MHz to 1 GHz	43			
10	Referenced Regulations44						
11	1 Test Equipment List with Calibration Data46						
12	2	Revisi	ion History	47			
Αı	nne	x A	Charts taken during testing	48			

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

1 Description of the Equipment Under Test (EUT)

Type designation¹: i-Q310 CST

Parts²:
Serial number(s): 18717467713013

Manufacturer: IDENTEC Solutions AG

Type of equipment: Active Tag for Shipping Containers

Version: As received

FCC ID: OO4-IQ310CST

Additional parts/accessories:

Technical data of EUT Application frequency range: 433.5 - 434.5 MHz Frequency range: 433.92 MHz Operating frequency: 433.92 MHz Type of modulation: **FSK** Pulse train: 100 ms Pulse width: 10.1 ms Number of RF-channels: Channel spacing: N/A 172F1D Designation of emissions³: Type of antenna: Integrated Size/length of antenna: Not detachable Connection of antenna: detachable Type of power supply: Battery supply Specifications for power supply: 3.6 V nominal voltage:

2 Administrative Data

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

³ Also known as "Class of Emission".

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

Application details

Applicant (full address): IDENTEC Solutions AG

Millennium Park 2 A-6890 Lustenau

Österreich

Contact person: Herr Daniel Egger

Order number: 1230094

Receipt of EUT: February 24, 2012

Date(s) of test: March 7, 2012 to March 22, 2012

Note(s):

Report details

Report number: 69861-04467-1

Edition:

Issue date:

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: TÜV SÜD SENTON GmbH

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

Laboratory accreditation: DAR-Registration No. DAT-PL-171/94-03

FCC test site registration number 90926 Industry Canada test site registration: 3050A-2

Contact person: Mr. Johann Roidt

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

4 Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.107, 15.109, 15.205, 15.207, 15.209, 15.215 and 15.240

of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-GEN Issue 3, Sections 6, 7.2.2, 7.2.4, 7.2.5 and RSS-210 Issue 8, Section A5 (Category I Equipment)

of Industry Canada (IC).

Personnel involved in this report		
Laboratory Manager:		
	The Col	
	Mr. Johann Roidt	
Responsible for testing:		
	Skinell Martin	
	Mr. Martin Steindl	
Responsible for test report:	Mr. Martin Steindl	

5 Operation Mode and Configuration of EUT

Operation Mode(s)

The EUT was tested in continuous transmitting and receiving mode.

Configuration(s) of EUT

For transmitting mode the EUT was configured as reader triggered active transponder. The transponder is triggered manually. The receiving mode was tested in stand-alone-mode. For radiated emission tests the EUT was set to a special test mode to ease tests.

List	List of ports and cables				
Port	Description	Classification ⁴	Cable type	Cable length	

List o	List of devices connected to EUT				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	

List o	List of support devices			
Item	Description	Type Designation	Serial no. or ID	Manufacturer
1	Laptop PC	DELL dimension		DELL
2	Active Tag Reader	i-Port F310	18721762377786	Identec

Test Report No. 69861-04467-1 (Edition 1)

⁴ Ports shall be classified as ac power, dc power or signal/control port

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

6 Measurement Procedures

6.1 Bandwidth Measurements

Measurement Procedure:	Measurement Procedure:		
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) IC RSS-Gen Issue 3, sections 4.6.1 and 4.6.2 IC RSS-210 Issue 8, section A1.1.3 ANSI C63.4, annex H.6		
Guide:	ANSI C63.4 / IC RSS-Gen Issue 3, sections 4.6.1 and 4.6.2		
Measurement setup:	☐ Conducted: See below ☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.4)		

If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

The analyzer settings are specified by the test description of the appropriate test record(s).

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

6.2 Pulse Train Measurement

replaced by a diode detector connected to an oscilloscope.

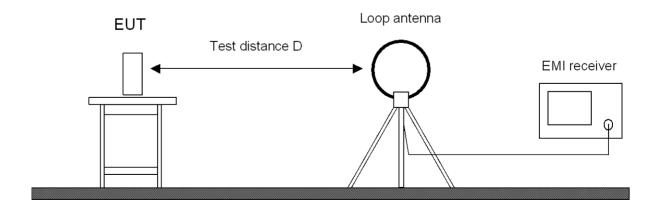
Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, section 15.35(c) IC RSS-Gen Issue 3, section 4.5			
Guide:	ANSI C63.4			
Measurement setup:	☐ Conducted: See below (direct connection or via test fixture)☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.4)			
If antenna is detachable pulse train measurements shall be performed at the antenna connector (conducted measurement). The RF output terminals are connected to a spectrum analyzer or to a diode detector in combination with an oscilloscope. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable. If antenna is not detachable a test fixture may be used instead of direct connection to RF output terminals.				

If radiated measurements are performed similar test setups and instruments are used as with radiated emission measurements for the appropriate frequency range. However, the spectrum analyzer may be

6.3 Radiated Emission Measurement 9 kHz to 30 MHz

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.205 and 15.209 IC RSS-GEN Issue 3, sections 7.2.2 and 7.2.5	
Guide:	ANSI C63.4	

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.


Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Test receiver	ESHS 10	1028	860043/016	Rohde & Schwarz
	Preamplifier Cabin no. 2	CPA9231A	1651	3393	Schaffner
\boxtimes	Loop antenna	HFH2-Z2	1016	882964/1	Rohde & Schwarz
\boxtimes	Fully anechoic room	No. 2	1452		Albatross
	Semi anechoic room	No. 3	1453		Siemens
	Semi anechoic room	No. 8	2057		Albatross

6.4 Radiated Emission in Fully or Semi Anechoic Room

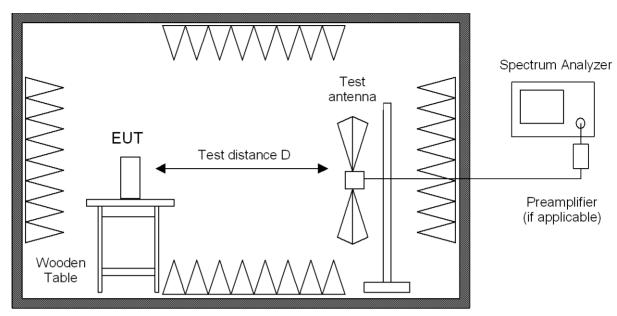
Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.109 and 15.209 IC RSS-GEN Issue 3, sections 6.1 and 7.2.5	
Guide:	ANSI C63.4	

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 8.2 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance may be reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.


If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing. During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables

are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz a semi anechoic room complying with the NSA requirements of ANSI C63.4 for alternative test sites is used (see 6.5). If prescans are recorded in fully anechoic room they are indicated appropriately.

Fully or semi anechoic room

Test instruments used:

	Туре		Designation	Invno.	Serial No. or ID	- Manufacturer
\boxtimes	Spectrum analyzer		FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	Cabin no. 3	ESPI7	2010	101018	Rohde & Schwarz
	EMI test receiver		ESU8	2044	100232	Rohde & Schwarz
	EMI test receiver		ESMI	1569	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Preamplifier	Cabin no. 2	CPA9231A	1651	3393	Schaffner
	Preamplifier		R14601	1142	13120026	Advantest
\boxtimes	Preamplifier (1 - 8 G	iHz)	AFS3-00100800-32-LN	1684	847743	Miteq
	Preamplifier (0.5 - 8	GHz)	AMF-4D-005080-25-13P	1685	860149	Miteq
\boxtimes	Preamplifier (8 - 18	GHz)	ACO/180-3530	1484	32641	CTT
	External Mixer		WM782A	1576	845881/005	Tektronix
	Harmonic Mixer Acc	essories	FS-Z30	1577	624413/003	Rohde & Schwarz
\boxtimes	Trilog antenna	Cabin no. 2	VULB 9163	1722	9163-188	Schwarzbeck
	Trilog antenna	Cabin no. 3	VULB 9163	1802	9163-214	Schwarzbeck
	Trilog antenna	Cabin no. 8	VULB 9163	2058	9163-408	Schwarzbeck
\boxtimes	Horn antenna		3115	1516	9508-4553	EMCO
	Horn antenna		3160-03	1010	9112-1003	EMCO
	Horn antenna		3160-04	1011	9112-1001	EMCO
\boxtimes	Horn antenna		3160-05	1012	9112-1001	EMCO
\boxtimes	Horn antenna		3160-06	1013	9112-1001	EMCO
\boxtimes	Horn antenna		3160-07	1014	9112-1008	EMCO
	Horn antenna		3160-08	1015	9112-1002	EMCO
	Horn antenna		3160-09	1265	9403-1025	EMCO
	Horn antenna		3160-10	1575	399185	EMCO
\boxtimes	Fully anechoic room	l	No. 2	1452		Albatross
	Semi anechoic room	1	No. 3	1453		Siemens
	Semi anechoic room	1	No. 8	2057		Albatross

6.5 Radiated Emission at Alternative Test Site

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.109,15.209 and 15.240 IC RSS-GEN Issue 3, sections 6.1 and 7.2.5 IC RSS-210 Issue 8, section A5	
Guide:	ANSI C63.4	

Radiated emission in the frequency range 30 MHz to 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4 for alternative test sites. A linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used. The measurement bandwidth of the test receiver is set to 120 kHz with guasi-peak detector selected.

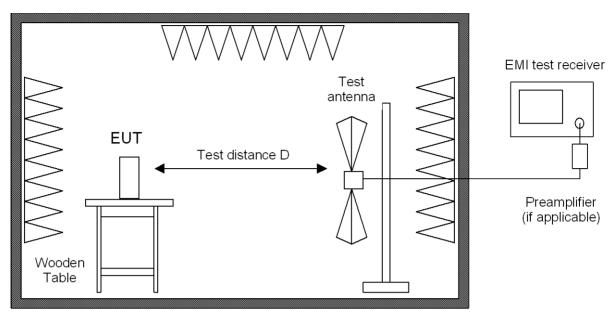
If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in fully anechoic room.

If no prescan in a fully anechoic room is used first a peak scan is performed in four positions to get the whole spectrum of emission caused by EUT with the measuring antenna raised and lowered from 1 to 4 m to find table position, antenna height and antenna polarization for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB to or exceeding the limit using subranges and limited number of maximums. Further maximization is following.

With detector of the test receiver set to quasi-peak final measurements are performed immediately after frequency zoom (for drifting disturbances) and maximum adjustment.


Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

In cases where prescans in a fully anechoic room are taken (e. g. if EUT is operating for a short time only or battery is dircharged quickly) final measurements with quasi-peak detector are performed manually at frequencies indicated by prescan with EUT rotating all around and receiving antenna raising and lowering within 1 meter to 4 meters to find the maximum levels of emission.

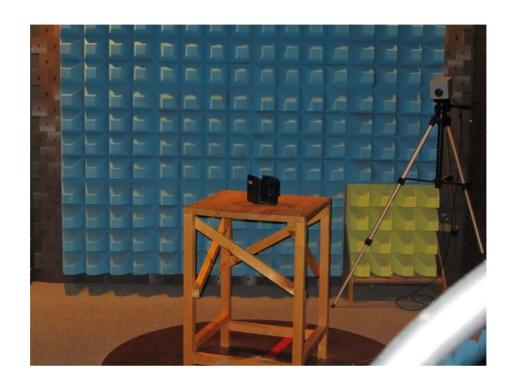
Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Alternate test site (semi anechoic room)

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	EMI test receiver	ESU8	2044	100232	Rohde & Schwarz
\boxtimes	Trilog antenna Cabin no. 8	VULB 9163	2058	9163-408	Schwarzbeck
\boxtimes	Semi anechoic room	No. 8	2057		Albatross

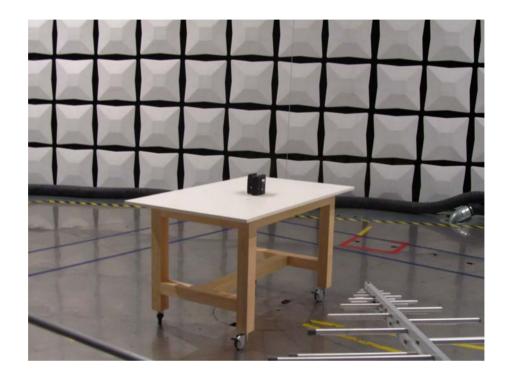

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

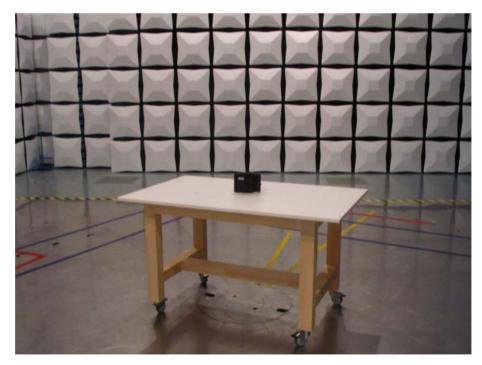
7 Photographs Taken During Testing



Test setup for radiated emission measurement 9 kHz - 30 MHz

Test setup for radiated emission measurement (fully anechoic room)




Test setup for radiated emission measurement (fully anechoic room) - continued -

Test setup for radiated emission measurement (alternate test site)

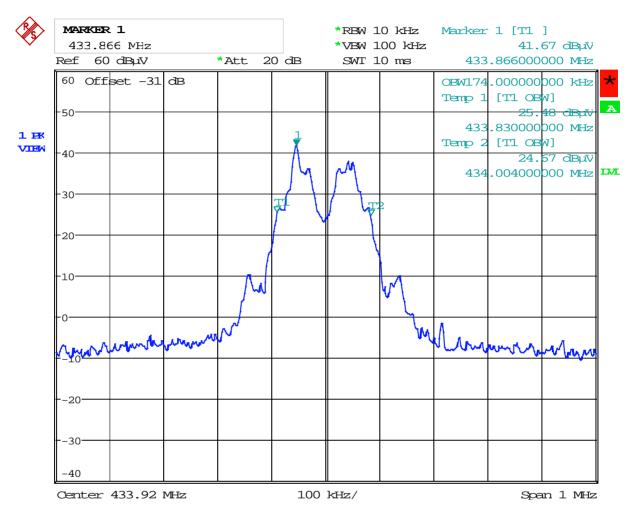
Test setup for radiated emission measurement (alternate test site) - continued -

8 Test Results for Transmitter

FCC CFR 47 Pa	FCC CFR 47 Parts 2 and 15		
Section(s)	Test	Page	Result
2.1046(a)	Conducted output power		Not applicable
2.202(a)	Occupied bandwidth	24	Recorded
2.201, 2.202	Class of emission	30	Calculated
15.35(c)	Pulse train measurement for pulsed operation	31	Recorded
15.240(b)	Duration of emission	33	Test passed
15.205(a)	Restricted bands of operation	35	Test passed
15.207	Conducted AC powerline emission 150 kHz to 30 MHz		Not applicable
15.205(b) 15.209 15.240(c)	Radiated emission 9 kHz to 30 MHz	37	Test passed
15.205(b) 15.209 15.240(b) 15.240(c)	Radiated emission 30 MHz to 1 GHz	38	Test passed

IC RSS-GEN Is	IC RSS-GEN Issue 3		
Section(s)	Test	Page	Result
4.8	Transmitter output power (conducted)		Not applicable
4.6.1	Occupied Bandwidth	24	Recorded
8	Designation of emissions	30	Calculated
4.5	Pulsed operation	31	Recorded
7.2.4	Transmitter AC power lines conducted emissions 150 kHz to 30 MHz		Not applicable
7.2.2	Restricted bands and unwanted emission frequencies	35	Test passed
7.2.2(b)(c) 7.2.5	Unwanted emissions 9 kHz to 30 MHz	37	Test passed
7.2.2(b)(c) 7.2.5	Unwanted emissions 30 MHz to 1 GHz	38	Test passed
5.6	Exposure of Humans to RF Fields	40	Exempted from SAR and RF evaluation

IC RSS-210 Issu	IC RSS-210 Issue 8		
Section(s)	Test	Page	Result
A5(a)	Pulsed operation	31	Test passed
A5(a)	Duration of emission	33	Test passed
A5(b)	Unwanted emissions 9 kHz to 30 MHz	37	Test passed
A5(b)	Unwanted emissions 30 MHz to 1 GHz	38	Test passed


8.1 Occupied Bandwidth

Rules and specifications:	CFR 47 Part 2, section 2.202(a) ANSI C63.4, annex H.6	
Guide :	ANSI C63.4	
Description:	The occupied bandwidth according to CFR 47 Part 2, section 2.202(a), is measured as the 99% emission bandwidth, i.e. below its lower and above i upper frequency limits, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.	
	The occupied bandwidth according to A as the frequency range defined by the the maximum level of the modulated ca	points that are 26 dB down relative to
	The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:	
	Fundamental frequency	Minimum resolution bandwidth
	9 kHz to 30 MHz	1 kHz
	30 MHz to 1000 MHz	
	1000 MHz to 40 GHz	100 kHz
The video bandwidth shall be at least three times greater that bandwidth.		nree times greater than the resolution
Measurement procedure:	Bandwidth Measurements (6.1)	

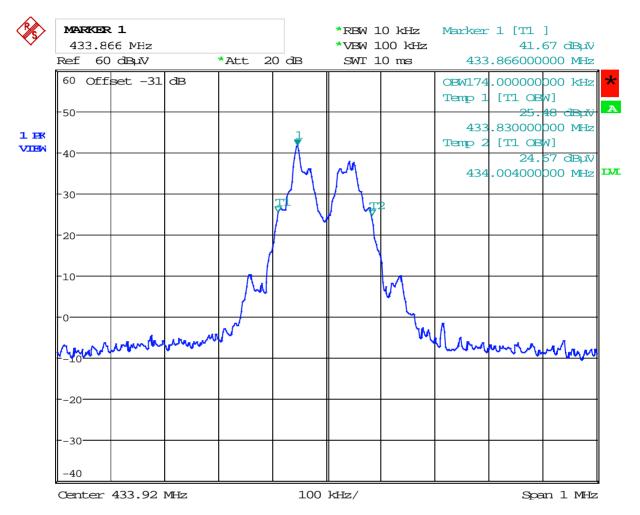
Comment:	
Date of test:	March 15, 2012
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Date: 15.MAR.2012 13:21:58

Occupied Bandwidth (99 %): 174 kHz

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton


Occupied Bandwidth (continued)

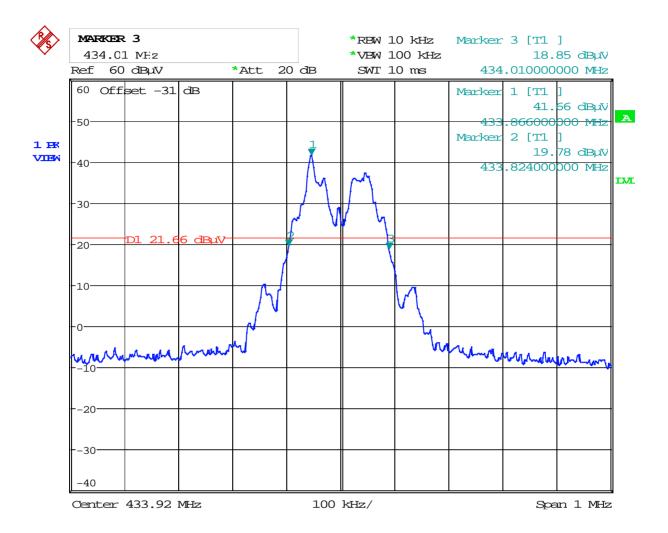
Rules and specifications:	IC RSS-Gen Issue 3, section 4.6.1
Guide:	IC RSS-Gen Issue 3, section 4.6.1
Description:	If not specified in the applicable RSS the occupied bandwidth is measuredas the 99% emission bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is also recorded. The span between the two recorded frequencies is the occupied bandwidth.
Measurement procedure:	Bandwidth Measurements (6.1)

Comment:	
Date of test:	March 15, 2012
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Date: 15.MAR.2012 13:21:58

Occupied Bandwidth (99 %): 174 kHz



8.2 Bandwidth of the Emission

Rules and specifications:	CFR 47 Part 15, section 15.209 IC RSS-GEN Issue 3, section 7.2.5		
Guide:	ANSI C63.4	ANSI C63.4	
Description:	The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier. For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation. The resolution bandwidth of the spectrum analyzer shall be set to a value		
	greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:		
	Fundamental frequency	Minimum resolution bandwidth	
	9 kHz to 30 MHz	1 kHz	
	30 MHz to 1000 MHz	10 kHz	
	1000 MHz to 40 GHz	100 kHz	
	The video bandwidth shall be at least three times greater than the resolution bandwidth.		
Measurement procedure:	Bandwidth Measurements (6.1)		

Comment:	
Date of test:	March 15, 2012
Test site:	Fully anechoic room, cabin no. 2

Date: 15.MAR.2012 13:19:36

Bandwidth of the emission:	186 kHz
----------------------------	---------

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

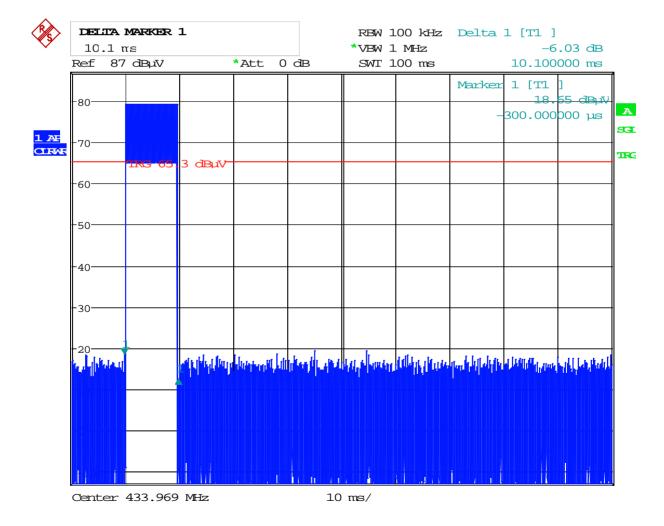
8.3 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202 IC RSS-Gen Issue 3, sections 8
Guide:	ANSI C63.4 / TRC-43

Type of modulation:	Frequency Shift Keying (FSK)
---------------------	------------------------------

B _n = Necessary Bandwidth	$B_n = 2DK + B$
D = Peak deviation	D = 80 kHz
K = Overall numerical factor	K = 1
B = Modulation rate	B = 6 kHz
Calculation:	$B_n = 2 \cdot (80 \text{ kHz}) \cdot 1 + 2 \cdot (6 \text{ kHz}) = 172 \text{ kHz}$

Designation of Emissions:



8.4 Pulse Train Measurement

Rules and specifications:	CFR 47 Part 15, section 15.35(c) IC RSS-Gen Issue 3, section 4.5
Guide:	ANSI C63.4
Measurement procedure:	Pulse Train Measurement (6.2)

Comment:	
Date of test:	March 15, 2012
Test site:	Fully anechoic room, cabin no. 2

Worst case 0.1 second interval:

Date: 15.MAR.2012 14:19:07

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

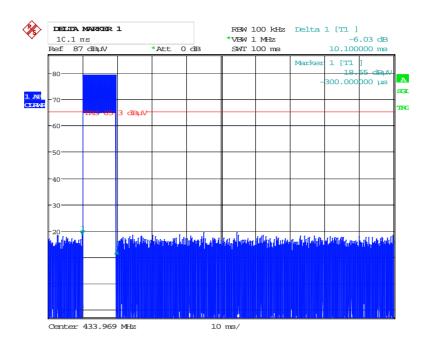
Calculation of pulse train correction:

TX-On-Time (worst case):	T _{on}	=	10.1 ms
Pulse Train Time :	T _{pt}	=	100 ms
Period Time:	T _{period}	=	100 ms
Pulse Train Correction :	C _{pt}	=	20 · Log(T _{on} / T _{period}) dB
		=	19.91 dB

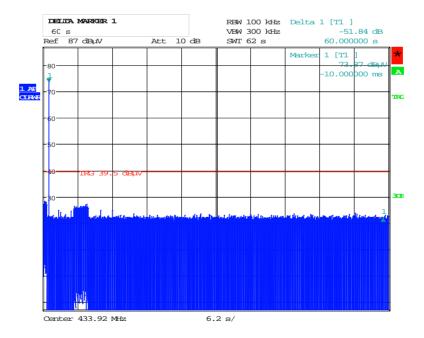
Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

8.5 Duration of emission

Rules and specifications:	CFR 47 Part 15, section 15.240(b) IC RSS-210 Issue 8, section A5(a)
Guide:	ANSI C63.4
Limit :	Devices authorized under these provisions shall be prvided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than 60 seconds and be only permitted to reinitiate an interrogatorion in the case of a transmission error. Absent such a transmission error, the silent period between transmissions shall not be less than 10 secons.
Measurement procedure:	Pulse Train Measurement (6.2)


Comment:	Transmissions of reader (low level emissions) were not evaluated.
Date of test:	March 15, 2012; March 23, 2012
Test site:	Fully anechoic room, cabin no. 2

Duration of emission:

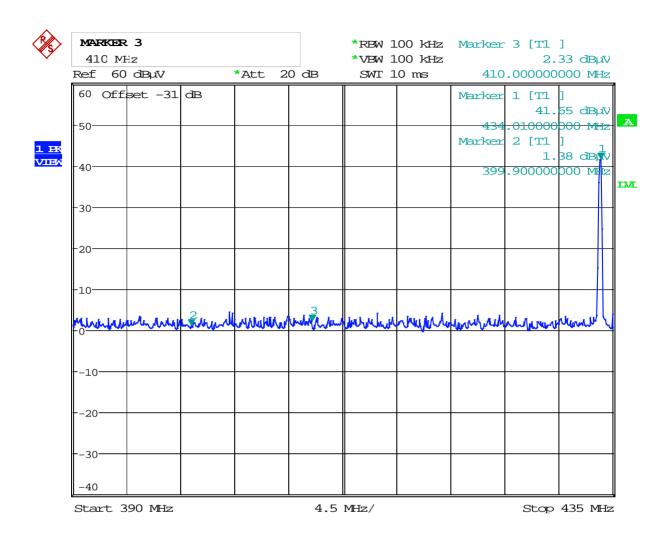

TX-On-Time:	T _{on}	=	10.1 ms
-------------	-----------------	---	---------

Plots:

Date: 15.MAR.2012 14:19:07

Date: 23.MAR.2012 10:51:55

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton



8.6 Restricted Bands of Operation

Rules and specifications:	CFR 47 Part 15, section 15.205(a) IC RSS-210 Issue 8, section 7.2.2(a)
Guide:	ANSI C63.4
Limit:	Only spurious emissions are permitted in any of the frequency bands listed in CFR 47 Part 15, section 15.205(a) or IC RSS-210 Issue 7, section 2.2(a).
Measurement procedure:	Radiated Emission in Fully or Semi Anechoic Room (6.4)

Comment:	
Date of test:	March 15, 2012
Test site:	Fully anechoic room, cabin no. 2
Test distance:	3 meters

Date: 15.MAR.2012 13:24:08

Test Result: Test passed	Test Result:
--------------------------	--------------

8.7 Radiated Emission Measurement 9 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, sections 15.205,15.209 and 15.240(b) IC RSS-GEN Issue 3, sections 7.2.2 and 7.2.5 IC RSS-210 Issue 8, section A5(b)								
Guide:	ANSI C63.4								
Limit:	Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance d (meters)					
	0.009 - 0.490	2400/F(kHz)	67.6 - 20 · log(F(kHz))	300					
	0.490 - 1.705	24000/F(kHz)	87.6 - 20 · log(F(kHz))	30					
	1.705 - 30.000	29.5	30						
	Additionally, the level of any unwanted emissions shall not exceed t the fundamental emission.								
Measurement procedure:	Radiated Emission	Measurement 9 k	Hz to 30 MHz (6.3)	Radiated Emission Measurement 9 kHz to 30 MHz (6.3)					

Comment:	
Date of test:	March 15, 2012
Test site:	Open field test site

Test Result:	Test passed
--------------	-------------

No emissions above noise level detected

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$ Final Value (dB μ V/m) = Reading Value d₁ (dB μ V) + Correction Factor (dB/m) + Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

8.8 Radiated Emission Measurement 30 MHz to 1 GHz

Rules and specifications:	CFR 47 Part 15, sections 15.209, 15.240(a), 15.240(b) IC RSS-GEN Issue 3, section 7.2.5 IC RSS-210 Issue 8, section A5(b)					
Guide:	ANSI C63.4					
Limit:	Frequency of Emission Field Strength Field Strength (MHz) (µV/m) (dBµV/m					
	30 - 88 100		40.0			
	88 - 216	150	43.5			
	216 - 960	200	46.0			
	Above 960	500	54.0			
	Additionally, the level of any unwanted emissions shall not exceed the level the fundamental emission.					
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.4) Radiated Emission at Alternative Test Site (6.5)					

Comment:	
Date of test:	March 15, 2012, March 22, 2012
Test site:	Frequencies ≤ 1 GHz: Semi-anechoic room, cabin no. 8 Frequencies > 1 GHz: Fully anechoic room, cabin no. 2
Test distance:	Frequencies ≤ 8.2 GHz: 3 meters Frequencies > 8.2 GHz: 1 meter

Test Result: Test passed	
--------------------------	--

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
208.010	horizontal	Quasi-Peak	9.2	12.2		21.4	43.5	22.1
433.960	horizontal	Peak	76.4	18.0	0.0	94.4	95.0	0.6
433.960	horizontal	Peak	76.4	18.0	-19.9	74.5	91.0	16.5
867.740	horizontal	Quasi-Peak	9.6	24.6		34.2	46.0	11.8
1296.000	vertical	Peak	21.2	28.9	-19.9	30.2	54.0	23.8
1300.000	horizontal	Peak	15.1	28.9	-19.9	24.1	54.0	29.9
2168.000	vertical	Peak	14.2	32.7	-19.9	27.1	54.0	27.0
2170.000	horizontal	Peak	14.2	32.8	-19.9	27.0	54.0	27.0
2600.000	vertical	Peak	10.6	34.1	-19.9	24.8	54.0	29.2
2602.000	horizontal	Peak	12.1	34.1	-19.9	26.3	54.0	27.7
3040.000	vertical	Peak	11.5	36.1	-19.9	27.6	54.0	26.4
3904.000	vertical	Peak	7.6	39.0	-19.9	26.7	54.0	27.3
3910.000	horizontal	Peak	7.4	39.1	-19.9	26.5	54.0	27.5
4338.500	vertical	Peak	11.5	33.8	-19.9	25.5	54.0	28.5
4773.200	vertical	Peak	18.1	34.2	-19.9	32.4	54.0	21.6

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

8.9 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 3, section 5.6						
Guide:	IC RSS-102 Issue 4, section 2.5						
Expos	Applicable Applicable Applicable Applicable Applicable Application Applicable						
The antenna is							
detachable							
The conducted out connector:	tput power (CP in watts) is measured at the antenna						
	$CP = \dots$ W						
The effective isotro	opic radiated power (EIRP in watts) is calculated using						
the numerical antenna gain: $G = \dots$							
the field streng	gth ⁵ in V/m: $FS = \dots V/m$						
	$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots $						
with:							
Distance betw	ween the antennas in m: $D = \dots $ m			Ш			
	easurement is used to determine the effective isotropic RP in watts) given by ⁵ :						
	$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = 826.3 \mu\text{W}$						
with:							
Field strength in V							
Distance between	the two antennas in m: $D = 3 \text{ m}$			\boxtimes			

 $TP = 826.3 \mu W$

The output power TP is the higher of the conducted or effective isotropic radiated

Selection of output power

power (e.i.r.p.):

⁵ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption		
Separation distance between the user and the transmitting device is						
☐ less than or equal to 20 cm ☐ greater than 20 cm		\boxtimes				
Transmitting device is						
in the vicinity of the human head body-worn		\boxtimes				
SAR evaluation						
SAR evaluation is required if the separation distance between the user and the device is less than or equal to 20 cm.						
The device operates from 3 kHz up to 1 GHz inclusively and with output power (i.e. the higher of the conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 200 mW for general public use and 1000 mW for controlled use.						
 □; □ The device operates above 1 GHz and up to 2.2 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 100 W for general public use and 500 W for controlled use. 						
The device operates above 2.2 GHz and up to 3 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use and 100 mW for controlled use.						
 The device operates above 3 GHz and up to 6 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 10 mW for general public use and 50 mW for controlled use. SAR evaluation is documented in test report no 						
RF exposure evaluation						
RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.						
☐ The device operates below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W.				\boxtimes		
The device operates at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.						
RF exposure evaluation is documented in test report no						

9 Test Results for Receiver

FCC CFR 47 Part 15					
Section(s)	Test	Page	Result		
15.107	Conducted AC powerline emission 150 kHz to 30 MHz		Not applicable		
15.109	Radiated emission 30 MHz to 1 GHz	43	Test passed		
15.111(a)	Antenna power conduction emission of receivers 9 kHz to 1 GHz		Not applicable		

IC RSS-Gen Issue 3					
Section(s)	Test	Page	Result		
7.2.4	Conducted AC powerline emission 150 kHz to 30 MHz		Not applicable		
6.1	Receiver spurious emissions (radiated) 30 MHz to 1 GHz	43	Test passed		
6.2	Receiver spurious emissions (antenna conducted) 9 kHz to 1 GHz		Not applicable		

9.1 Radiated Emission Measurement 30 MHz to 1 GHz

Rules and specifications:	CFR 47 Part 15, section 15.109 (Class B) IC RSS-Gen Issue 3, sections 6.1					
Guide:	ANSI C63.4					
Limit:	Frequency of Emission Field Strength Field Strength (MHz) (µV/m) (dBµV/m)					
	30 - 88	100	40.0			
	88 - 216 150 43.					
	216 - 960 200 46.0					
	Above 960 500 54.0					
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.4) Radiated Emission at Alternative Test Site (6.5)					

Comment:	
Date of test:	March 7, 2012, March 21, 2012
Test site:	Frequencies ≤ 1 GHz: Semi-anechoic room, cabin no. 8 Frequencies > 1 GHz: Fully anechoic room, cabin no. 2
Test distance:	3 meters

Test Result: Test passed

Frequency	Antenna	Detector	Receiver	Correction	Final	Limit	Margin
	Polarization		Reading	Factor	Value		
(MHz)			(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
63.800	horizontal	Quasi-Peak	-4.5	13.0	8.5	40.0	31.5
205.770	horizontal	Quasi-Peak	-0.6	12.1	11.5	43.5	32.0
2404.000	vertical	Peak	6.6	36.0	42.6	54.0	11.4
2419.000	horizontal	Peak	6.6	36.1	42.7	54.0	11.3

Sample calculation of field final values:

Final Value $(dB\mu V/m)$ = Reading Value $(dB\mu V)$ + Correction Factor (dB/m)

10 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 1, 2011	
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	October 1, 2011	
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)	
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	June 7, 2009 (published on September 15, 2009)	
RSS-Gen	Radio Standards Specification RSS-Gen Issue 3 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	December 2010	
RSS-210	Radio Standards Specification RSS-210 Issue 8 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	December 2010	
RSS-310	Radio Standards Specification RSS-310 Issue 3 for Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	December 2010	
RSS-102	Radio Standards Specification RSS-102 Issue 4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), published by Industry Canada	March 2010, footnote 13 updated December 2010	
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004	
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997	

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
	CAN/CSA CISPR 22-10 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement (Adopted IEC CISPR 22:2008, sixth edition, 2008-09)	
CAN/CSA CISPR 22-10	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement (Adopted IEC CISPR 22:2008, sixth edition, 2008-09)	2010
TRC-43	Notes Regarding Designation of Emissions (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October, 2008

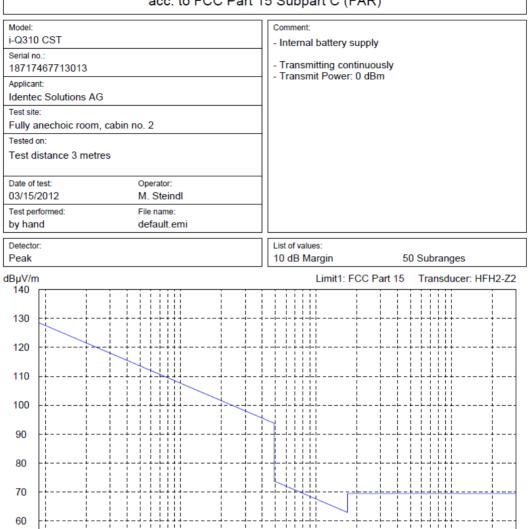
11 Test Equipment List with Calibration Data

Туре	InvNo.	Type Designation	Serial Number	Manufacturer	Calibration Organization	Last Calibration	Next Calibration
EMI test receiver	2044	ESU8	100232	Rohde & Schwarz	Rohde & Schwarz	12/2010	06/2012
Spectrum analyser	1666	FSP30	100063	Rohde & Schwarz	Rohde & Schwarz	05/2011	11/2012
Preamplifier	1484	ACO/180-3530	32641	CTT	TÜV SÜD SENTON	06/2011	12/2012
Preamplifier	1651	CPA9231A	3393	Schaffner Electrotest	TÜV SÜD SENTON	05/2010	05/2012
Preamplifier	1684	AFS3-00100800-32-LN	847743	MITEQ	TÜV SÜD SENTON	10/2011	04/2013
Loop antenna	1016	HFH2-Z2	882964/0001	Rohde & Schwarz	Rohde & Schwarz	05/2011	11/2012
Double ridged waveguide horn antenna	1516	3115	9508-4553	EMCO Elektronik	Seibersdorf Laboratories	10/2010	10/2012
TRILOG Broadband Antenna	2058	VULB 9163	9163-408	Schwarzbeck	Rohde & Schwarz	05/2011	11/2012
Horn antenna	1012	3160-05	9112-1001	EMCO		No calibrati	on required
Horn antenna	1013	3160-06	9112-1001	EMCO		No calibrati	on required
Horn antenna	1014	3160-07	9112-1008	EMCO		No calibrati	on required

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

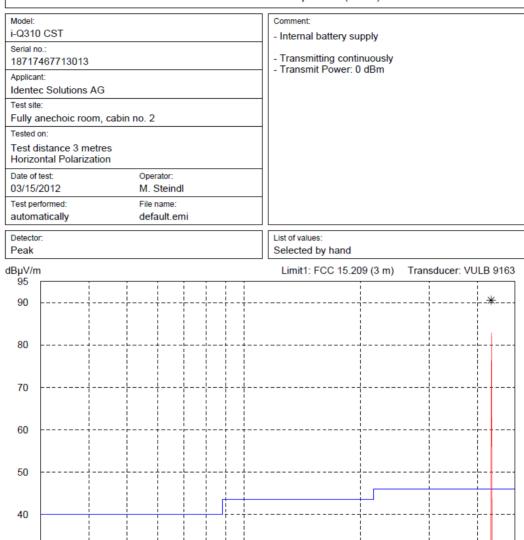
12 Revision History

Revision History				
Edition	Date	Issued by	Modifications	
1	26.03.2012	Martin Steindl (az)	First Edition	


Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

Annex A Charts taken during testing

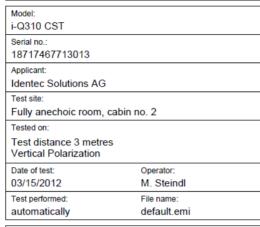
Radiated Emission Test 9 kHz - 30 MHz acc. to FCC Part 15 Subpart C (FAR)


50

40

30

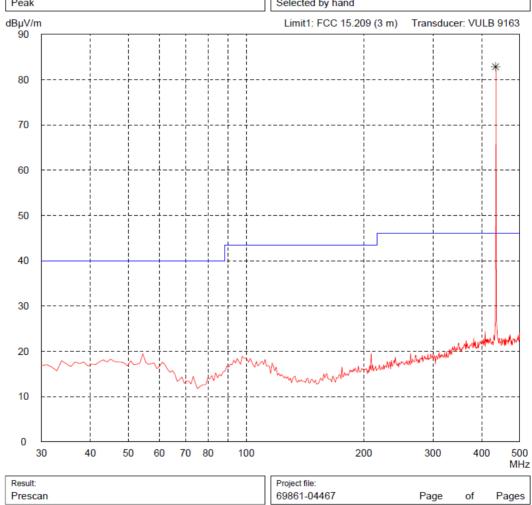
Radiated Emission Test 30 MHz - 500 MHz acc. to FCC Part 15 Subpart C (FAR)


30

20

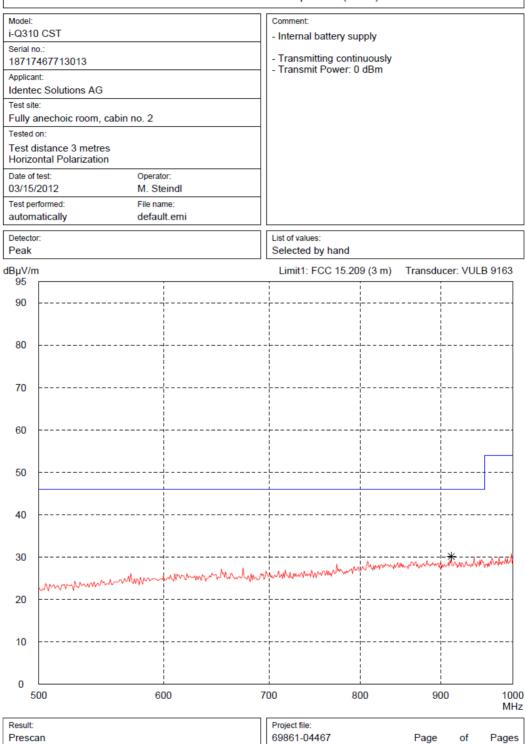
10

Radiated Emission Test 30 MHz - 500 MHz acc. to FCC Part 15 Subpart C (FAR)

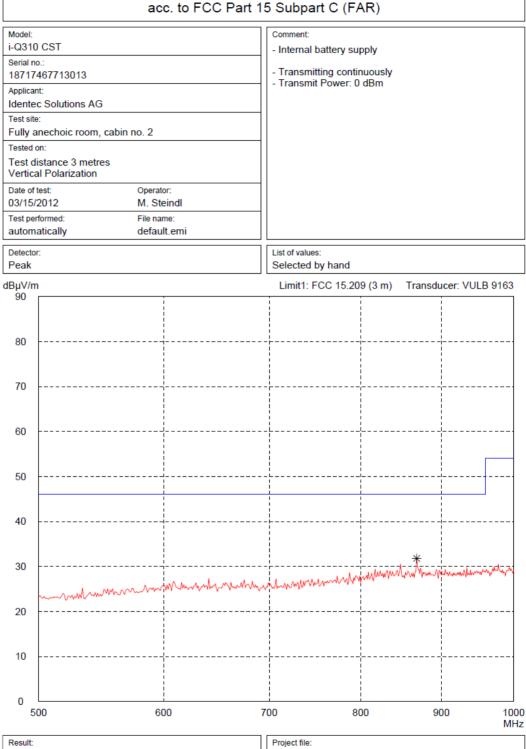


Comment:

- Internal battery supply

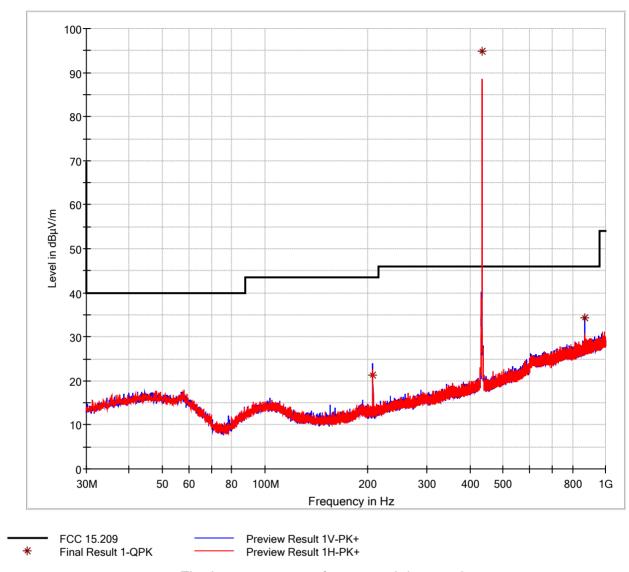

- Transmitting continuously
- Transmit Power: 0 dBm

Detector: Peak List of values: Selected by hand



Radiated Emission Test 500 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Radiated Emission Test 500 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)


69861-04467

Page

Prescan

Pages

Final measurement for transmitting mode

Radiated Emission Test 1 GHz - 4 GHz acc. to FCC Part 15 Subpart C (FAR) Model: i-Q310 CST - Internal battery supply Serial no.: - Transmitting continuously - Transmit Power: 0 dBm 18717467713013 Applicant: Identec Solutions AG Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization 03/15/2012 M. Steindl File name: Test performed: automatically default.emi List of values: Detector Peak Selected by hand dBµV/m 80 Transducer: EMCO 3115 Limit1: FCC 15.209 (3 m) 75 70 65 60 55 50 45 40 35 30

Radiated Emission Test 1 GHz - 4 GHz acc. to FCC Part 15 Subpart C (FAR) Model: i-Q310 CST - Internal battery supply Serial no.: - Transmitting continuously - Transmit Power: 0 dBm 18717467713013 Applicant: Identec Solutions AG Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Operator: 03/15/2012 M. Steindl Test performed: File name automatically default.emi List of values: Detector Peak Selected by hand dBµV/m 80 Limit1: FCC 15.209 (3 m) Transducer: EMCO 3115 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 1000 2000 3000 4000 MHz Result: Project file:

69861-04467

Page

Prescan

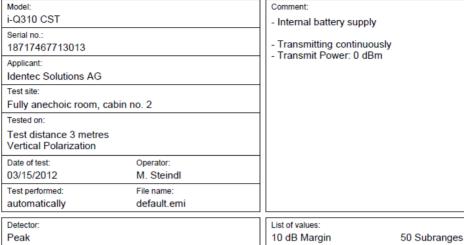
Pages

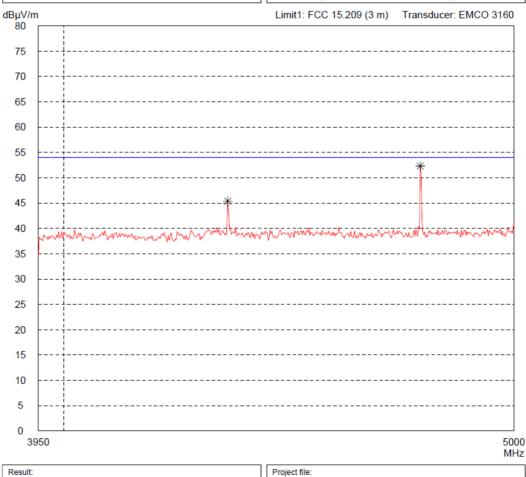
Radiated Emission Test 3.95 GHz - 5 GHz acc. to FCC Part 15 Subpart C (FAR) Comment: Model: i-Q310 CST - Internal battery supply Serial no. - Transmitting continuously 18717467713013 - Transmit Power: 0 dBm Applicant: Identec Solutions AG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 03/15/2012 M. Steindl Test performed: File name: automatically default.emi Detector List of values: Peak Selected by hand dBµV/m 80 Limit1: FCC 15.209 (3 m) Transducer: EMCO 3160 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 3950 5000 MHz

Project file:

69861-04467

Page


Result:


Prescan

Pages

Radiated Emission Test 3.95 GHz - 5 GHz acc. to FCC Part 15 Subpart C (FAR)

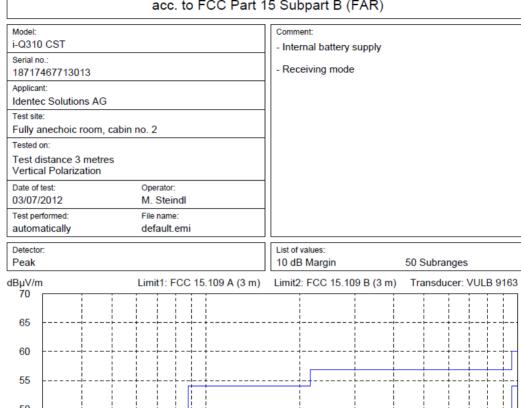
69861-04467

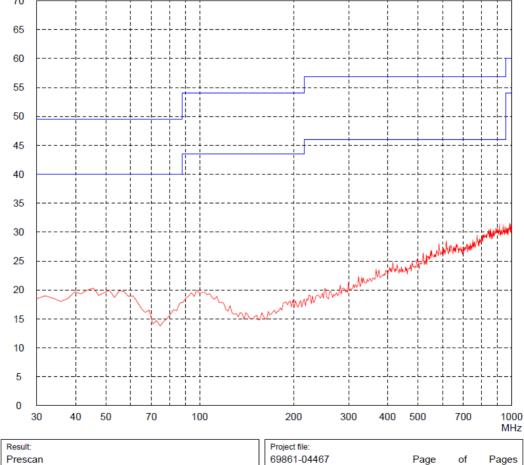
Prescan

Pages

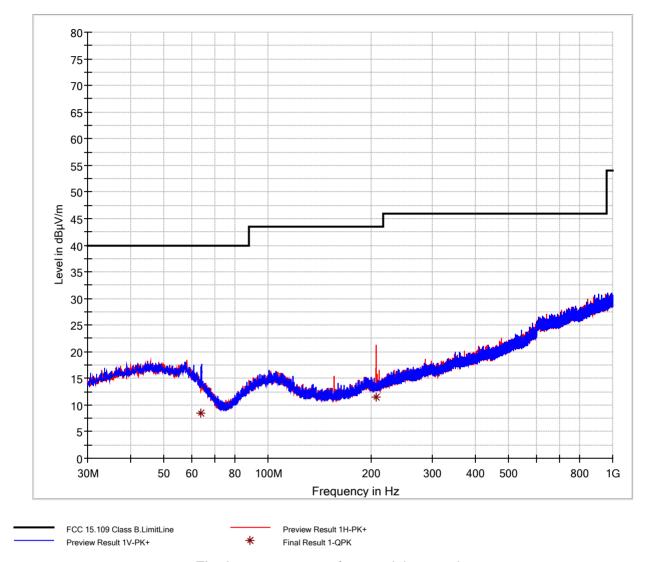
Page

+49 9421 5522-0 Phone: Fax: +49 9421 5522-99 Web: www.tuev-sued.de/senton

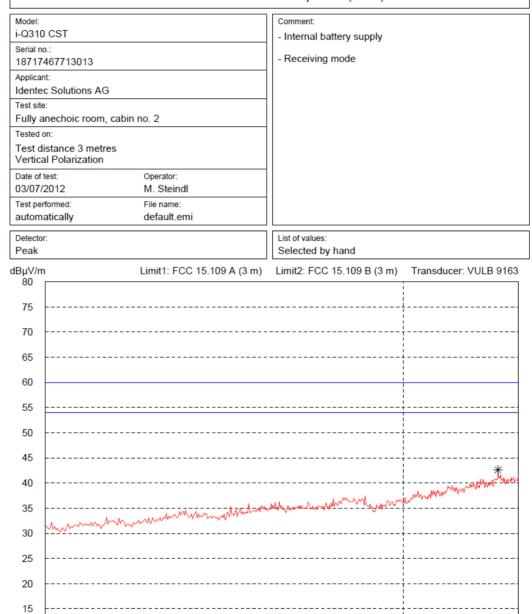



Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart B (FAR) Model: i-Q310 CST - Internal battery supply Serial no. - Receiving mode 18717467713013 Identec Solutions AG Test site: Fully anechoic room, cabin no. 2 Test distance 3 metres Horizontal Polarization Date of test: Operator: 03/07/2012 M. Steindl Test performed: File name: automatically default.emi Detector List of values Peak 10 dB Margin 50 Subranges dBµV/m 70 Limit2: FCC 15.109 B (3 m) Transducer: VULB 9163 Limit1: FCC 15.109 A (3 m) 65 60 55 50 45 40 35 30 25 20 15 10 5 0 30 40 50 70 100 200 400 500 700 1000 MHz Result 69861-04467 Prescan Page Pages

of



Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart B (FAR)


Final measurement for receiving mode

Radiated Emission Test 1 GHz - 2,5 GHz acc. to FCC Part 15 Subpart B (FAR) Model i-Q310 CST - Internal battery supply Serial no. - Receiving mode 18717467713013 Applicant: Identec Solutions AG Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 03/07/2012 M. Steindl Test performed: File name: automatically default.emi Peak Selected by hand dBµV/m Limit1: FCC 15.109 A (3 m) Limit2: FCC 15.109 B (3 m) Transducer: VULB 9163 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 1000 2000 2500 MHz Result: Project file: 69861-04467 Pages Limit kept Page

Radiated Emission Test 1 GHz - 2,5 GHz acc. to FCC Part 15 Subpart B (FAR)

2000

5 ---

2500