

Certification Test Report

FCC ID: ONTJETIDC16US IC: 10491A-JETIDC16US

FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210

ACS Report Number: 12-2095.W06.1A

Manufacturer: Esprit Model Model: JETIDC16US

Test Begin Date: August 6, 2012 Test End Date: October 20, 2012

Report Issue Date: November 12, 2012

FOR THE SCOPE OF ACCREDITATION UNDER CERTIFICATE NUMBER AT-1533

This report must not be used by the client to claim product certification, approval, or endorsement by ACLASS, ANSI, or any agency of the Federal Government.

Project Manager:

Thierry Jean-Charles EMC Engineer

Advanced Compliance Solutions, Inc.

Tom Charles for This

Reviewed by:

Kirby Munroe

Director, Wireless Certifications Advanced Compliance Solutions, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 46 pages

TABLE OF CONTENTS

1	GENERAL3
1.1	Purpose
1.2	Manufacturer Information
1.3	Product description
1.4	Test Methodology and Considerations
2	TEST FACILITIES5
2.1	Location5
2.2	Laboratory Accreditations/Recognitions/Certifications
2.3	Radiated & Conducted Emissions Test Site Description 6
3	APPLICABLE STANDARD REFERENCES7
4	LIST OF TEST EQUIPMENT8
5	SUPPORT EQUIPMENT9
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM9
7	SUMMARY OF TESTS11
7.1	Antenna Requirement – FCC: Section 15.203
7.2	Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4 11
7.3	Peak Output Power - FCC Section 15.247(b)(1) IC: RSS-210 A8.4(2)
7.4	Channel Usage Requirements
7.5	Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 A8.5 31
8	CONCLUSION

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification RSS-210.

1.2 Manufacturer Information

Esprit Model, Inc. 1240 Clearmont St. NW Palm Bay, FL 32905, USA

1.3 Product description

The JETIDC16US is a 2.4 GHz wireless transceiver for remote controlled toys. The remote control consists of two transceiver boards and two antennas which alternate every 10ms. The unit also includes a display, audio speakers and a USB port for data transfer to a computer.

Band of Operation: 2405 MHz - 2475 MHz

Number of Channels: 15

Mode of Operation: FH/DSSS Modulation Format: O-QPSK

Antenna Type/Gain: Coaxial Wire Antenna, 2.1 dBi

Operating Voltage: 12 VDC

Model Number: JETIDC16US

Test Sample Serial Number(s): 122500312

Test Sample Condition: The samples were in good conditions with no observable physical damages.

1.4 Test Methodology and Considerations

The unit was evaluated for RF conducted and radiated emissions for each transceiver board. Where applicable, the data is provided for the worst case configuration.

The preliminary radiated emissions measurements were performed with the unit set in three orthogonal orientations and the final measurements were performed on the orientation leading to the highest emissions.

The RF conducted measurements were performed with a temporary connector at the antenna port. The power settings used for the evaluation are listed below:

2405 MHz: 7 2440 MHz: 7 2475 MHz: 14

The EUT was also evaluated for unintentional emissions when operating as a computer peripheral device. In order to meet the requirements, the following modifications were implemented:

Ferrite on display ribbon cable: LAIRD 28R1102-100 Ferrite on USB cable: Laird 28A0807-0A2 (3 passes) Ferrite on power cable: Laird 28A0807-0A2 (4 passes)

The results are documented separately in a Declaration of conformity/Verification test report.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions, Inc. 3998 FAU Blvd, Suite 310 Boca Raton, Florida 33431 Phone: (561) 961-5585 Fax: (561) 961-5587

Fax: (561) 961-5587 www.acstestlab.com

FCC Test Firm Registration #: 587595 Industry Canada Lab Code: 4175C

2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by ANSI-ASQ National Accreditation Board under their ACLASS program and has been issued certificate number AT-1533 in recognition of this accreditation. Unless otherwise specified, all test methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

2.3 Radiated & Conducted Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The EMC radiated test facility consists of an RF-shielded enclosure. The interior dimensions of the indoor semi-anechoic chamber are approximately 48 feet (14.6 m) long by 36 feet (10.8 m) wide by 24 feet (7.3 m) high and consist of rigid, 1/8 inch (0.32 cm) steel-clad, wood core modular panels with steel framing. In the shielded enclosure, the faces of the panels are galvanized and the chamber is self-supporting. 8-foot RF absorbing cones are installed on 4 walls and the ceiling. The steel-clad ground plane is covered with vinyl floor.

The turntable is driven by pneumatic motor, which is capable of supporting a 2000 lb. load. The turntable is flushed with the chamber floor which it is connected to, around its circumference, with a continuous metallic loaded spring. An EMCO Model 1050 Multi-device Controller controls the turntable position.

A pneumatic motor is used to control antenna polarizations and height relative to the ground. The height information is displayed on the control unit EMCO Model 1050.

The control room is an RF shielded enclosure attached to the semi-anechoic chamber with two bulkhead panels for connecting RF, and control cables. The dimension of the room is $7.3 \text{ m} \times 4.9 \text{ m} \times 3 \text{ m}$ high and the entrance doors of both control and conducted rooms are 3 feet (0.91 m) by 7 feet (2.13 m).

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3.1-1 below:

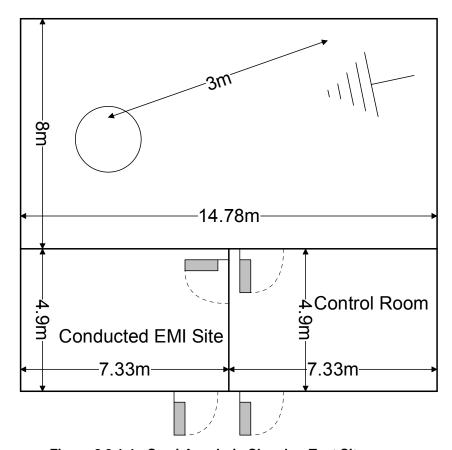


Figure 2.3.1-1: Semi-Anechoic Chamber Test Site

2.3.2 Conducted Emissions Test Site Description

The dimensions of the shielded conducted room are 7.3 x 4.9 x 3 m 3 . As per ANSI C63.4 2003 requirements, the data were taken using two LISNs; a Solar Model 8028-50 50 Ω /50 μ H and an EMCO Model 3825, which are installed as shown in Photograph 3. For 220 V, 50 Hz, a Polarad LISN (S/N 879341/048) is used in conjunction with a 1 kVA, 50 Hz/220 V EDGAR variable frequency generator, Model 1001B, to filter conducted noise from the generator.

A diagram of the room is shown below in figure 2.3.2-1:

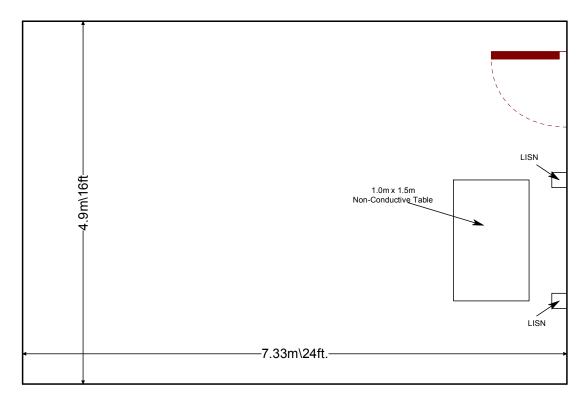


Figure 2.3.2-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2012
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2012
- ❖ FCC Public Notice DA 00-705 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems, March 30, 2000
- ❖ Industry Canada Radio Standards Specification: RSS-210 Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 8 December 2010.
- ❖ Industry Canada Radio Standards Specification: RSS-GEN General Requirements and Information for the Certification of Radiocommunication Equipment, Issue 3, December 2010.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

					Last Calibration	Calibration
AssetID	Manufacturer	Model#	Equipment Type	Serial #	Date	Due Date
523	Agilent	E7405	Spectrum Analyzers	MY45103293	1/5/2011	1/5/2013
524	Chase	CBL6111	Antennas	1138	1/7/2011	1/7/2013
2006	EMCO	3115	Antennas	2573	3/2/2011	3/2/2013
2008	COM-Power	AH-826	Antennas	81009	NCR	NCR
2011	Hewlett-Packard	HP8447D	Amplifiers	2443A03952	1/2/2012	1/2/2013
2022	EMCO	LISN3825/2R	LISN	1095	8/19/2011	8/19/2013
2037	ACS Boca	Chamber EMI Cable Set	Cable Set	2037	1/2/2012	1/2/2013
2044	QM	NA	Cables	2044	1/2/2012	1/2/2013
2045	ACS Boca	Conducted Cable Set	Cable Set	2045	1/2/2012	1/2/2013
2064	CIRQ-TEL.	FHT/22-10K-13/50-3A/3A	Filter	9	12/30/2011	12/30/2012
2070	Mini Circuits	VHF-8400+	Filter	2070	1/19/2012	1/19/2013
2072	Mni Circuits	VHF-3100+	Filter	30737	1/19/2012	1/19/2013
2075	Hewlett Packard	8495B	Attenuators	2626A11012	1/2/2012	1/2/2013
2076	Hewlett Packard	HP5061-5458	Cables	2076	1/2/2012	1/2/2013
2082	Teledyne Storm Products	90-010-048	Cables	2082	5/31/2012	5/31/2013
2086	Merrimac	FAN-6-10K	Attenuators	23148-83-1	12/30/2011	12/30/2012
2089	Agilent Technologies, Inc.	83017A	Amplifiers	3123A00214	12/22/2011	12/22/2012
2091	Agilent Technologies, Inc.	8573A	Spectrum Analyzers	2407A03233	12/12/2011	12/12/2013
2095	ETS Lindgren	TILE4! - Version 4.2.A	Software	85242	NCR	NCR

NCR=No Calibration Required

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment (Stand-alone)

Item	Equipment Type	Manufacturer	Model Number	Serial Number					
	No support equipment was used for the radiated emissions evaluation.								

Table 5-2: Support Equipment (With charger)

Item	Equipment Type	Manufacturer	Model Number	Serial Number
1	12 VDC Power Supply	Jeti Model	SYS1428-2412-W2	G120602007990
2	Ferrite	Laird	28A0807-0A2	N/A

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

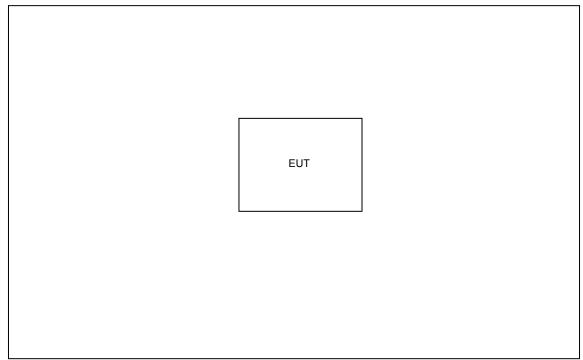


Figure 6-1: Radiated Emissions Setup

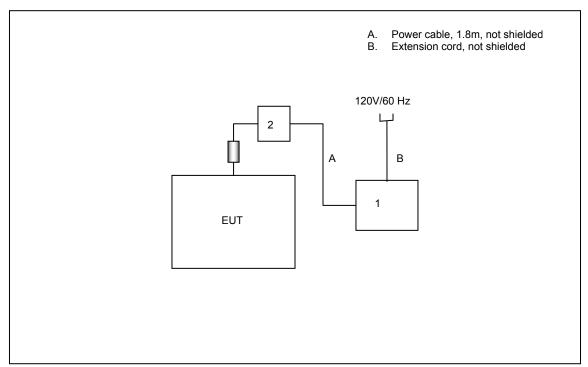


Figure 6-2: Power Line Conducted Emissions Setup

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The JETIDC16US uses a 2.1 dBi antenna for both transceiver boards which are located inside of the overmold. The antennas use a u. FL. connector, thus meeting the requirements of 15.203.

7.2 Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4

7.2.1 Measurement Procedure

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150 kHz to 30 MHz with the spectrum analyzer's resolution bandwidth set to 9 kHz and the video bandwidth set to 30 kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

7.2.2 Measurement Results

Results are shown below.

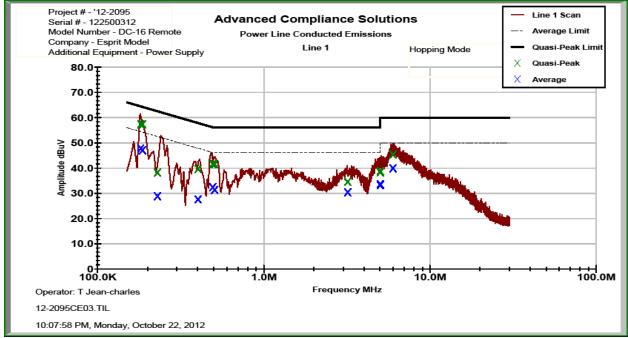


Figure 7.2.2-1: Conducted Emissions Results - Line 1

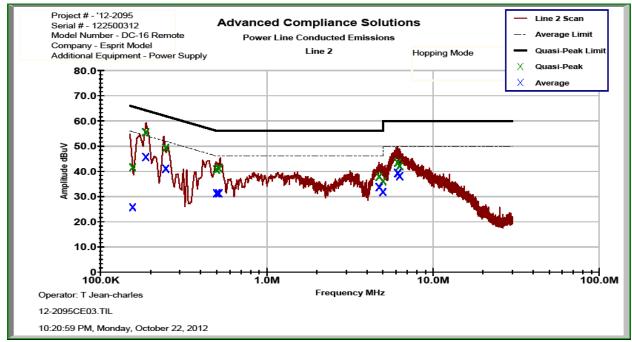


Figure 7.2.2-2: Conducted Emissions Results – Line 2

Table 7.2.2-1: Conducted EMI Results

Line 1 Line 2 Line 3 Line 4 To Ground Floating Telecom Port dBµV dBµA
Plot Number: 12-2095CE03 Power Supply Description: 12 VDC

Frequency (MHz)	Uncorrected Reading		Total Correction Factor (dB)	Correction		Limit		Margin (dB)		
	Quasi- Peak	Average	Factor (dB)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average	
				Liı	ne 1					
0.181625	0.181625 56.124 46.523 1.30 57.43 47.83 64.41 54.41 7.0 6.6									
0.18615	56.131	45.851	1.30	57.43	47.15	64.21	54.21	6.8	7.1	
0.2289	37.155	27.833	1.08	38.23	28.91	62.49	52.49	24.3	23.6	
0.401588	39.059	26.945	0.60	39.66	27.54	57.82	47.82	18.2	20.3	
0.491813	41.014	31.815	0.57	41.59	32.39	56.14	46.14	14.6	13.7	
0.506099	40.983	30.818	0.53	41.51	31.35	56.00	46.00	14.5	14.7	
3.19537	33.994	29.837	0.52	34.51	30.36	56.00	46.00	21.5	15.6	
5.00695	37.686	32.565	0.62	38.31	33.19	60.00	50.00	21.7	16.8	
5.01215	38.125	32.963	0.62	38.75	33.59	60.00	50.00	21.3	16.4	
5.97791	44.62	39.211	0.78	45.40	39.99	60.00	50.00	14.6	10.0	
				Liı	ne 2					
0.155682	40.112	24.257	1.52	41.63	25.78	65.69	55.69	24.1	29.9	
0.186762	54.257	44.431	1.30	55.56	45.74	64.18	54.18	8.6	8.4	
0.2463	48.41	40.114	1.04	49.45	41.16	61.88	51.88	12.4	10.7	
0.49795	40.066	30.661	0.57	40.64	31.23	56.03	46.03	15.4	14.8	
0.513624	40.526	30.638	0.53	41.06	31.17	56.00	46.00	14.9	14.8	
4.74076	37.256	33.042	0.62	37.87	33.66	56.00	46.00	18.1	12.3	
4.9925	35.365	31.164	0.62	35.98	31.78	56.00	46.00	20.0	14.2	
6.12958	42.735	38.536	0.83	43.57	39.37	60.00	50.00	16.4	10.6	
6.148	42.723	38.452	0.84	43.56	39.29	60.00	50.00	16.4	10.7	
6.28857	41.38	37.277	0.86	42.24	38.14	60.00	50.00	17.8	11.9	

^{*} Note: Results are reported for the EUT configuration leading to the worst case emissions.

7.3 Peak Output Power - FCC Section 15.247(b)(1) IC: RSS-210 A8.4(2)

7.3.1 Measurement Procedure (Conducted Method)

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The display values were corrected for cable and external attenuation.

7.3.2 Measurement Results

Results are shown below.

Table 7.3.2-1: RF Output Power

Frequency (MHz)	Power (dBm)
2405	17.870
2440	17.860
2475	9.211

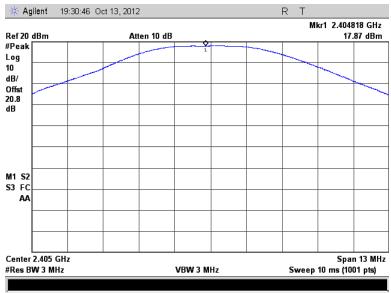


Figure 7.3.2-1: RF Output Power - Low Channel

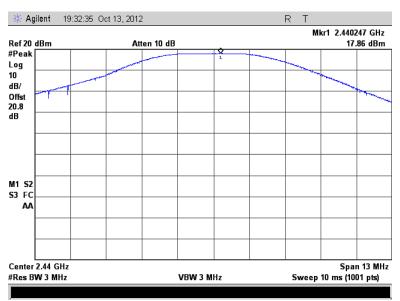


Figure 7.3.2-2: RF Output Power - Middle Channel

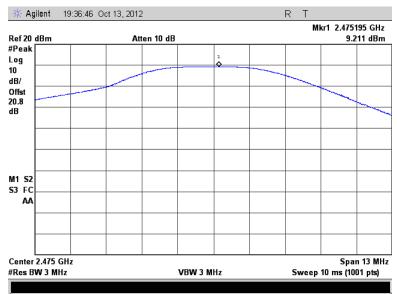


Figure 7.3.2-3: RF Output Power - High Channel

Table 7.3.2-2: RF Output Power

Frequency (MHz)	Power (dBm)
2405	17.800
2440	17.730
2475	9.055

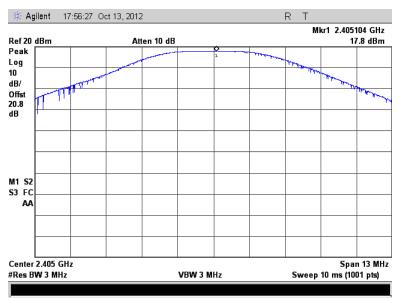


Figure 7.3.2-4: RF Output Power - Low Channel

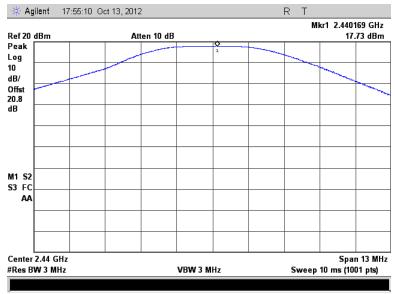


Figure 7.3.2-5: RF Output Power - Middle Channel

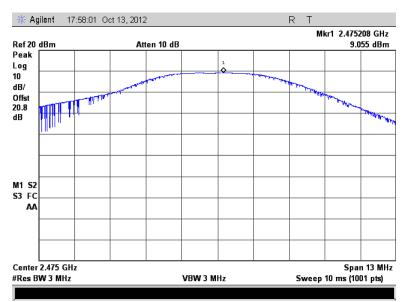


Figure 7.3.2-6: RF Output Power - High Channel

7.4 Channel Usage Requirements

7.4.1 Carrier Frequency Separation – FCC: Section 15.247(a)(1) IC: RSS-210 A8.1(b)

7.4.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The span of the spectrum analyzer was set wide enough to capture two adjacent peaks and the RBW and VBW were set to $\geq 1\%$ of the span.

7.4.1.2 Measurement Results

Results are shown below.

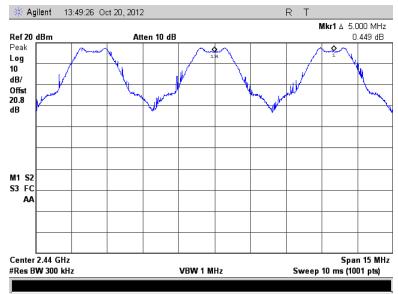


Figure 7.4.1.2-1: Carrier Frequency Separation

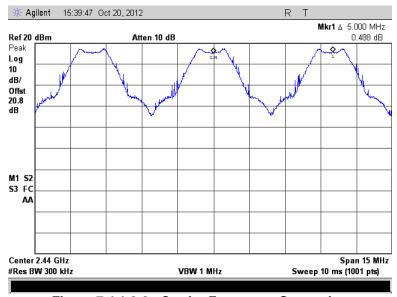


Figure 7.4.1.2-2: Carrier Frequency Separation

7.4.2 Number of Hopping Channels – FCC: Section 15.247(a)(1)(iii) IC: RSS-210 A8.1(d)

7.4.2.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer through suitable attenuation. The span of the spectrum analyzer was set wide enough to capture the number of hopping channels. The peak detector max hold function was enabled for the measurements.

7.4.2.2 Measurement Results

Results are shown below.

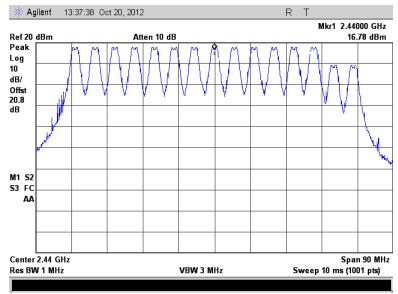


Figure 7.4.2.2-1: Number of Hopping Channels

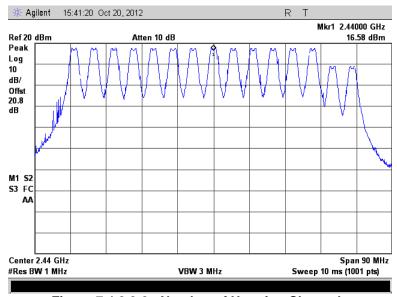


Figure 7.4.2.2-2: Number of Hopping Channels

7.4.3 Channel Dwell Time – FCC: Section 15.247(a)(1)(iii) IC: RSS-210 A8.1(d)

7.4.3.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The span of the spectrum analyzer was set 0 Hz centered on a hopping channel. The RBW was set to 1 MHz and the sweep time adjusted to capture the entire dwell time per channel with peak detector max hold function.

7.4.3.2 Measurement Results

Results are shown below.

Table 7.4.3.2-1 Dwell Time on a 6 Second Cycle

Transceiver Board	Number of Hops Per Sec. (NHPS)	Number of Hops per Channel Per Sec. (NHPCPS)	Number of hops on a 6 s Cycle (NHPC)	Measured Dwell Times (ms)	Dwell Times on a 6 s Cycle (ms)	Limit (ms)	Status
1	100	6.67	40	2.030	81.20	400	PASS
2	100	6.67	40	2.020	80.80	400	PASS

^{*}Notes:

NHPS = (100 /sec)/ (NT+NR) (where NT and NR are the number of transmit and receive packets, respectively) NHPCPS = NHPS/15

NHPC = NHPCPS * 6s

Dwell Time per Cycle = NHPC* Measured Dwell Time

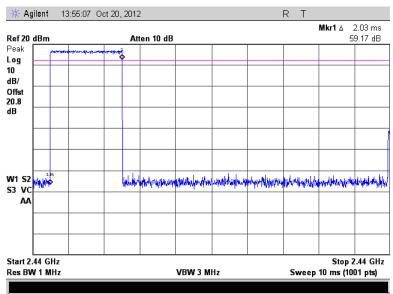


Figure 7.4.3.2-1: Channel Dwell Time

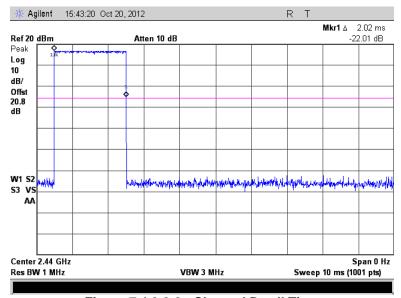


Figure 7.4.3.2-2: Channel Dwell Time

7.4.4 20dB / 99% Bandwidth - FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(a)

7.4.4.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The spectrum analyzer span was set to 2 to 3 times the estimated bandwidth of the emission. The RBW was to $\geq 1\%$ of the estimated emission bandwidth. The trace was set to max hold with a peak detector active. The Delta function of the analyzer was utilized to determine the 20 dB bandwidth of the emission.

The 99% occupied bandwidth was measured with the spectrum analyzer span set to fully display the emission, including the emissions skirts. The RBW was to 1% of the span. The occupied 99% bandwidth was measured by using a delta marker at the lower and upper frequencies leading to 0.5% of the total power.

7.4.4.2 Measurement Results

Results are shown below.

Table 7.4.4.2-1: 20dB / 99% Bandwidth

Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]
2405	2665	2640
2440	2665	2810
2475	2695	2850

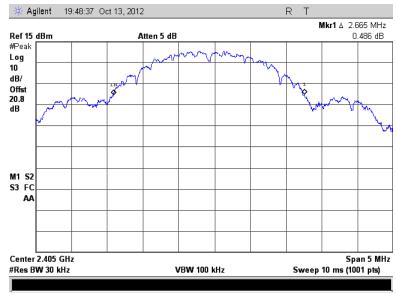


Figure 7.4.4.2-1: 20dB BW Low Channel

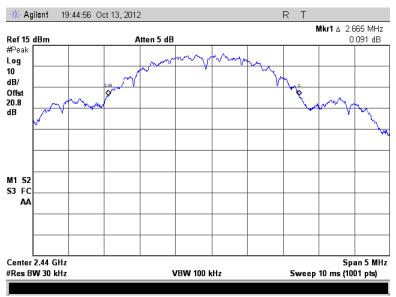


Figure 7.4.4.2-2: 20dB BW Middle Channel

Figure 7.4.4.2-3: 20dB BW High Channel

Figure 7.4.4.2-4: 99% OBW Low Channel

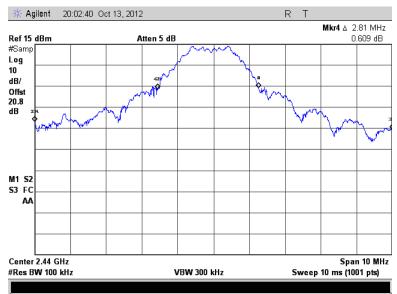


Figure 7.4.4.2-5: 99% OBW Middle Channel

Figure 7.4.4.2-6: 99% OBW High Channel

Table 7.4.4.2-2: 20dB / 99% Bandwidth

Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]
2405	2610	2520
2440	2620	2560
2475	2615	2660



Figure 7.4.4.2-7: 20dB BW Low Channel

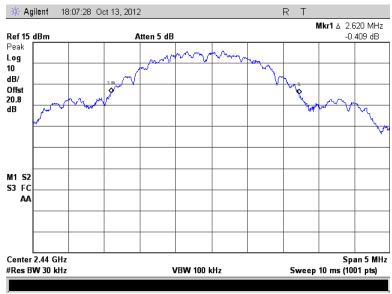


Figure 7.4.4.2-8: 20dB BW Middle Channel

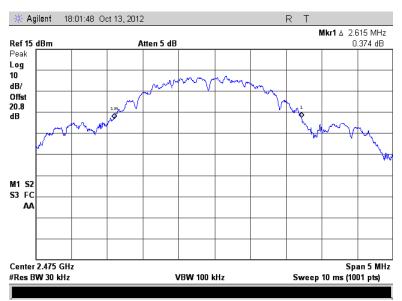


Figure 7.4.4.2-9: 20dB BW High Channel

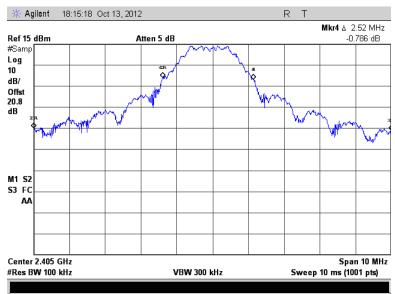


Figure 7.4.4.2-10: 99% OBW Low Channel

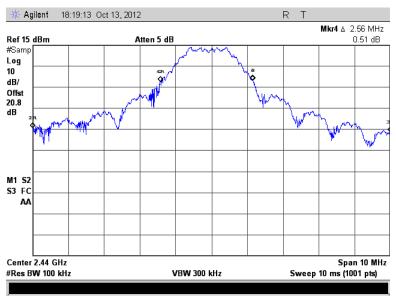


Figure 7.4.4.2-11: 99% OBW Middle Channel



Figure 7.4.4.2-12: 99% OBW High Channel

7.5 Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 A8.5

7.5.1 Band-Edge Compliance of RF Conducted Emissions

7.5.1.1 Measurement Procedure

The RF output port of the EUT was connected to the input of the spectrum analyzer through suitable attenuation. The EUT was investigated at the lowest and highest channel available to determine bandedge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, which is \geq 1% of the span, and the VBW was set to \geq 300 kHz.

7.5.1.2 Measurement Results

Results are shown below.

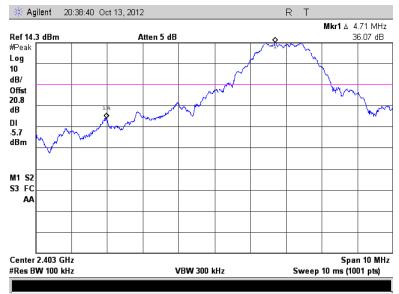


Figure 7.5.1.2-1: Lower Band-edge – Continuous Mode



Figure 7.5.1.2-2: Upper Band-edge – Continuous Mode

Figure 7.5.1.2-3: Lower Band-edge – Hopping Mode

Figure 7.5.1.2-4: Upper Band-edge – Hopping Mode

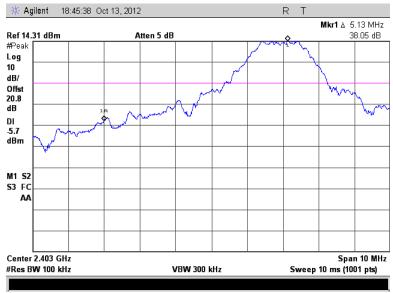


Figure 7.5.1.2-5: Lower Band-edge – Continuous Mode

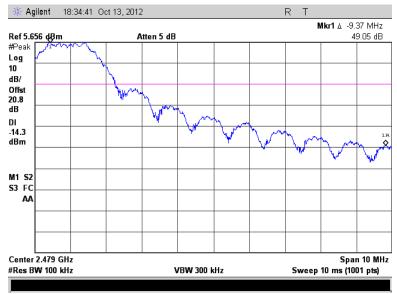


Figure 7.5.1.2-6: Upper Band-edge - Continuous Mode

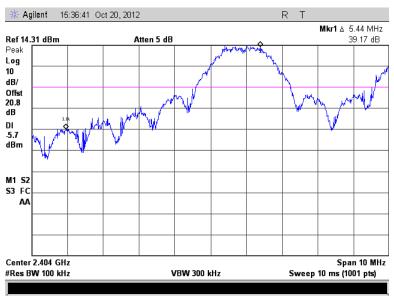


Figure 7.5.1.2-7: Lower Band-edge - Hopping Mode

Figure 7.5.1.2-8: Upper Band-edge – Hopping Mode

7.5.2 RF Conducted Spurious Emissions

7.5.2.1 Measurement Procedure

The RF output port of the EUT was connected to the spectrum analyzer input using a 20 dB attenuator. The EUT was investigated for conducted spurious emissions from 30MHz to 26 GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100 kHz. A peak detector function was used with the trace set to max hold. The levels were corrected for cable and attenuator losses.

7.5.2.2 Measurement Results

Results are shown below.

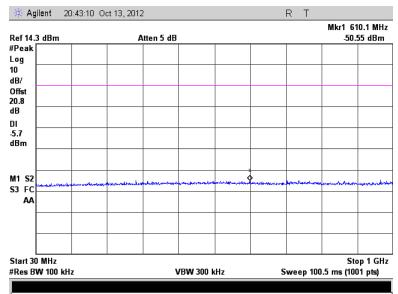


Figure 7.5.2.2-1: 30 MHz - 1 GHz - Low Channel

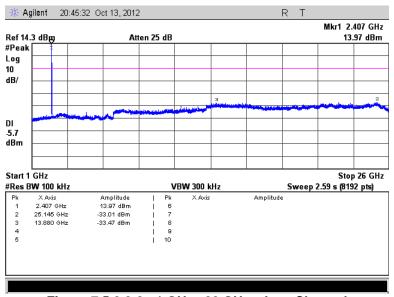


Figure 7.5.2.2-2: 1 GHz -26 GHz - Low Channel

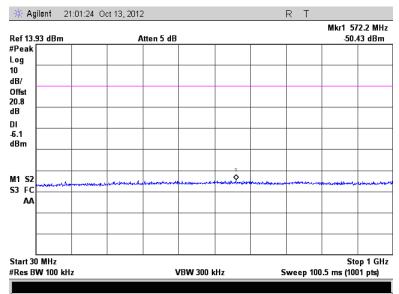


Figure 7.5.2.2-3: 30 MHz - 1 GHz - Middle Channel

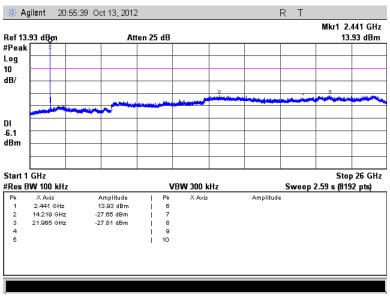


Figure 7.5.2.2-4: 1 GHz -26 GHz - Middle Channel

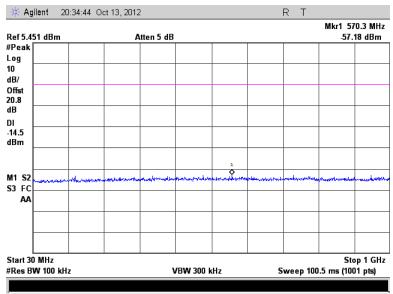


Figure 7.5.2.2-5: 30 MHz - 1 GHz - High Channel

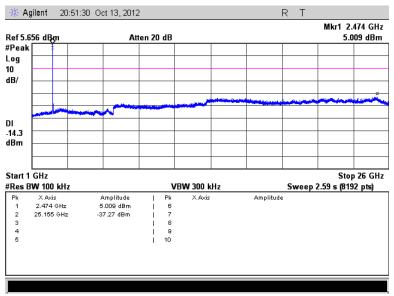


Figure 7.5.2.2-6: 1 GHz –26 GHz – High Channel

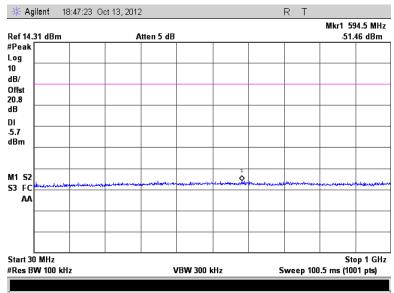


Figure 7.5.2.2-7: 30 MHz - 1 GHz - Low Channel

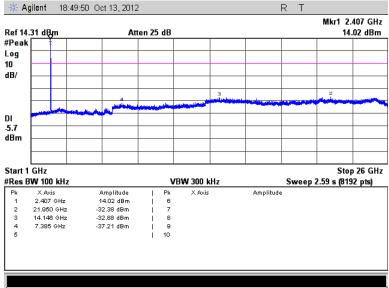


Figure 7.5.2.2-8: 1 GHz -26 GHz - Low Channel

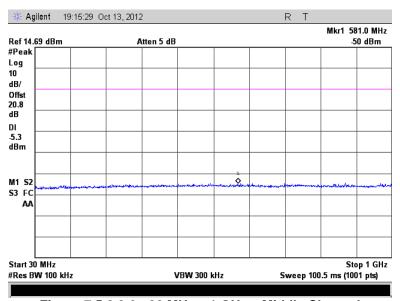


Figure 7.5.2.2-9: 30 MHz - 1 GHz - Middle Channel

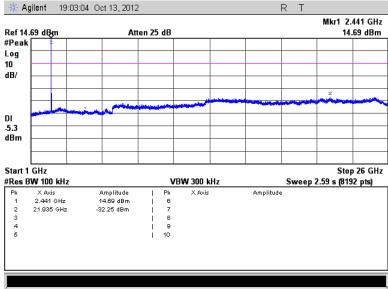


Figure 7.5.2.2-10: 1 GHz -26 GHz - Middle Channel

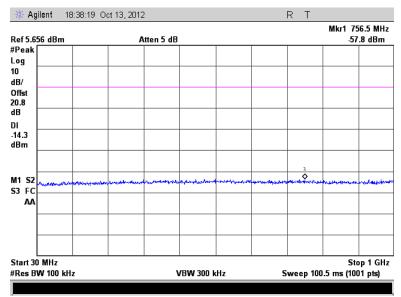


Figure 7.5.2.2-11: 30 MHz - 1 GHz - High Channel

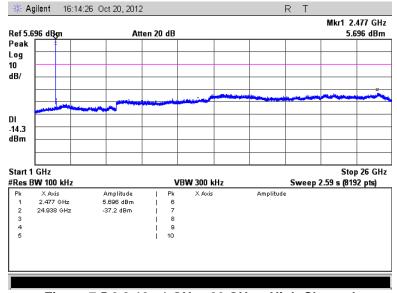


Figure 7.5.2.2-12: 1 GHz -26 GHz - High Channel

7.5.3 Radiated Spurious Emissions - FCC Section 15.205 IC: RSS-Gen 7.2.5

7.5.3.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 30 MHz to 26 GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements made with RBW and VBW of 1 MHz and 3 MHz respectively.

The EUT was caused to generate a continuous carrier signal on the hopping channel. The average measurements were corrected using the logarithm of the dwell time over 100 ms period.

7.5.3.2 Measurement Results

Radiated spurious emissions found in the band of 30MHz to 26 GHz are reported in the tables below.

Transceiver Board 1

Table 7.5.3.2-1: Radiated Spurious Emissions Tabulated Data

Table 7.5.5.2-1. Italiated Optifieds Emissions Tabliated Data											
Frequency		.evel BuV)	Antenna	Correction		ted Level		imit		largin	
(MHz)	(u	buv)	Polarity	Factors	(dB	uV/m)	(dBuV/m)			(dB)	
(pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
	Low Channel 2405 MHz										
2390	82.33	68.06	Н	-8.42	73.91	25.79	74.0	54.0	0.10	28.20	
2390	77.23	54.20	V	-8.42	68.81	11.93	74.0	54.0	5.20	42.10	
4810	63.61	57.03	Н	-1.29	62.32	21.89	74.0	54.0	11.70	32.10	
4810	55.50	47.66	V	-1.29	54.21	12.52	74.0	54.0	19.80	41.50	
12025	50.36	40.41	Н	11.58	61.94	18.14	83.5	63.5	21.60	45.40	
12025	48.16	37.14	V	11.58	59.74	14.87	83.5	63.5	23.80	48.60	
			Middl	e Channel 244	0 MHz						
4880	53.72	45.67	Н	-1.10	52.62	10.72	74.0	54.0	21.40	43.30	
4880	64.33	57.52	V	-1.10	63.23	22.57	74.0	54.0	10.80	31.40	
7320	53.98	44.00	Η	3.54	57.52	13.69	74.0	54.0	16.50	40.30	
7320	51.49	41.47	>	3.54	55.03	11.16	74.0	54.0	19.00	42.80	
12200	49.06	38.42	Н	11.69	60.75	16.26	83.5	63.5	22.70	47.20	
12200	46.98	36.03	V	11.69	58.67	13.87	83.5	63.5	24.80	49.60	
			High	Channel 2475	MHz						
2483.5	76.29	64.82	Н	-8.03	68.26	22.94	74.0	54.0	5.70	31.10	
2483.5	70.10	58.27	V	-8.03	62.07	16.39	74.0	54.0	11.90	37.60	
2491.125	73.02	50.76	V	-8.00	65.02	8.91	74.0	54.0	9.00	45.10	
2491.65	79.60	56.47	Н	-8.00	71.60	14.62	74.0	54.0	2.40	39.40	
4950	47.54	36.45	Н	-0.92	46.62	1.68	74.0	54.0	27.40	52.30	
4950	46.84	33.00	>	-0.92	45.92	-1.77	74.0	54.0	28.10	55.80	

^{*} Notes:

^{1.} A duty cycle correction factor of 20*log(2.03/100) dB \approx -33.85 dB corresponding to the logarithm of the dwell time over 100 ms was added to the average values.

^{2.} The limits above 10 GHz are corrected for 1m measurements using the distance factor of $20*\log(3/1)$ dB ≈ 9.54 dB.

^{3.} All emissions above 12200 MHz were attenuated below the limits and the noise floor of the measurement equipment.

Table 7.5.3.2-2: Radiated Spurious Emissions Tabulated Data

Table 7.0.0.2 2. Reduced Operators Emissions Tableated Date										
Frequency	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(MHz)										
(pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel 2405 MHz										
2390	78.70	58.02	Н	-8.42	70.28	15.75	74.0	54.0	3.70	38.30
2390	73.33	52.54	V	-8.42	64.91	10.27	74.0	54.0	9.10	43.70
4810	57.24	49.78	Н	-1.29	55.95	14.64	74.0	54.0	18.00	39.40
4810	51.71	42.35	V	-1.29	50.42	7.21	74.0	54.0	23.60	46.80
12025	53.88	44.92	Н	11.58	65.46	22.65	83.5	63.5	18.00	40.90
12025	53.05	43.74	V	11.58	64.63	21.47	83.5	63.5	18.90	42.00
Middle Channel 2440 MHz										
4880	57.87	50.23	Н	-1.10	56.77	15.28	74.0	54.0	17.20	38.70
4880	51.59	42.73	V	-1.10	50.49	7.78	74.0	54.0	23.50	46.20
7320	53.99	44.50	Н	3.54	57.53	14.19	74.0	54.0	16.50	39.80
7320	54.36	45.10	>	3.54	57.90	14.79	74.0	54.0	16.10	39.20
12200	52.46	43.12	Н	11.69	64.15	20.96	83.5	63.5	19.30	42.50
12200	55.34	46.77	V	11.69	67.03	24.61	83.5	63.5	16.50	38.90
High Channel 2475 MHz										
2483.5	69.76	58.10	Н	-8.03	61.73	16.22	74.0	54.0	12.30	37.80
2483.5	63.38	52.67	V	-8.03	55.35	10.79	74.0	54.0	18.70	43.20
2491.25	73.17	49.27	Н	-8.00	65.17	7.42	74.0	54.0	8.80	46.60
2491.25	67.86	45.90	V	-8.00	59.86	4.05	74.0	54.0	14.10	50.00
4950	46.60	34.81	Н	-0.92	45.68	0.04	74.0	54.0	28.30	54.00
4950	45.78	32.69	V	-0.92	44.86	-2.08	74.0	54.0	29.10	56.10

^{*} Notes:

- 1. A duty cycle correction factor of $20*\log(2.03/100)$ dB \approx -33.85 dB corresponding to the logarithm of the dwell time over 100ms was added to the average values.
- 2. The limits above 10 GHz are corrected for 1m measurements using the distance factor of $20*\log(3/1)$ dB ≈ 9.54 dB.
- 3. All emissions above 12200 MHz were attenuated below the limits and the noise floor of the measurement equipment.

7.5.3.3 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_U = Uncorrected Reading
R_C = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Duty Cycle Correction Factor DC = 20*log(2.03/100) = -33.85 dB

Example Calculation: Peak

Corrected Level: $82.33 + (-8.42) = 73.91 dB\mu V/m$ Margin: $74 dBuV/m - 73.91 dB\mu V/m = 0.1 dB$

Example Calculation: Average

Corrected Level: $68.06 + (-8.42) - 33.85 = 25.79 dB\mu V/m$

Margin: $54 \text{ dBuV/m} - 25.79 \text{dB}\mu\text{V/m} = 28.2 \text{dB}$

8 CONCLUSION

In the opinion of ACS, Inc., the JETIDC16US manufactured by Esprit Model meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210.

END REPORT