

FCC PART 15, SUBPART C TEST METHOD: ANSI C63.4-1992 TEST REPORT

for

WATERHOUND

Model: WCK100

Prepared for

DYNAQUIP CONTROLS 10 HARRIS INDUSTRIAL PARK ST. CLAIR, MISSOURI 63077

Fina Prepared by:

KYLE FUJIMOTO

ti Approved by:

SCOTT McCUTCHAN

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: AUGUST 10, 1999

	REPORT	APPENDICES			TOTAL	
	BODY	A	B	С	D	
PAGES	15	2	2	10	7	36

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

TABLE OF CONTENTS

Sectio	n / Title	PAGE
GENEI	RAL REPORT SUMMARY	4
SUMM	ARY OF TEST RESULTS	4
1.	PURPOSE	5
2. 2.1 2.2 2.3 2.4 2.5	ADMINISTRATIVE DATA Location of Testing Traceability Statement Cognizant Personnel Date Test Sample was Received Disposition of the Test Sample	6 6 6 6 6
2.6 3.	Abbreviations and Acronyms APPLICABLE DOCUMENTS	6 7
4. 4.1 4.1.	Description of Test Configuration Description of Test Configuration - EMI Cable Construction and Termination	8 8 9
5. 5.1 5.2	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List EMI Test Equipment	10 10 11
6. 6.1 6.2	TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding	12 12 12
7. 7.1 7.2	Test Procedures Radiated Emissions (Spurious and Harmonics) Test Bandwidth of the Fundamental	13 13 14
8.	CONCLUSIONS	15

LIST OF APPENDICES

APPENDIX	TITLE		
А	Modifications to the EUT		
В	Additional Models Covered Under This Report		
С	Diagrams, Charts and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
D	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setur
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site

1

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested:	WaterHound Model: WCK100 S/N: N/A
Product Description:	See Expository Statement.
Modifications:	The EUT was not modified during the testing.
Manufacturer:	DynaQuip Controls 10 Harris Industrial Park St. Clair, Missouri 63077
Test Date:	August 5, 1999
Test Specifications:	EMI requirements CFR Title 47, Part 15 Subpart C, Sections 15.205 and 15.23
Test Procedure:	ANSI C63.4: 1992
Test Deviations:	The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz - 30 MHz	This test was not performed because the EUT runs off two "AA" battery only and cannot be powered by any device that runs off of the AC public mains.
2	Radiated RF Emissions, 10 kHz - 4200 MHz	Complies with the limits of CFR Title 47, Part 15, Subpart B and Subpart C, sections 15.205 and 15,231

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the WaterHound Model: WCK100. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined by CFR Title 47, Part 15, Subpart B and Subpart C, sections 15.205 and 15.231.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

DynaQuip Controls

Michael J. Purvis Design Engineer

Compatible Electronics Inc.

Kyle FujimotoTest EngineerScott McCutchanLab Manager

2.4 Date Test Sample was Received

The test sample was received on August 5, 1999.

2.5 Disposition of the Test Sample

The test sample was returned to DynaQuip Controls on August 10, 1999.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

4. **DESCRIPTION OF TEST CONFIGURATION**

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The WaterHound Model: WCK100 (EUT) had a 234 cm cable connected to it. The other end of the cable had two contacts, which were placed in a cup of water. The contacts being placed in a cup of water allowed the EUT to continuously transmit. The final radiated data was taken in the mode above. Please see Appendix D for the data sheets.

4.1.1 Cable Construction and Termination

<u>Cable 1</u> This is a 2.34 meter unshielded cable connecting the EUT to a cup of water. It has two contacts placed in a cup of water and is hard wired at the EUT end. The cable was bundled to a length of 1 meter.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
WATERHOUND (EUT)	DYNAQUIP CONTROLS	WCK100	N/A	ONCWCK100
CUP OF WATER	N/A	N/	N/A	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	3638A08784	Nov. 16, 1998	Nov. 16, 1999
Preamplifier	Com Power	PA-102	1017	Jan. 16, 1998	Jan. 16, 1999
Quasi-Peak Adapter	Hewlett Packard	85650A	3303A01688	June 23, 1998	June 23, 1999
Biconical Antenna	Com Power	AB-100	1548	Oct. 15, 1998	Oct. 15, 1999
Log Periodic Antenna	Com Power	AL-100	1117	Oct. 15, 1998	Oct. 15, 1999
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	HP98561A	2522A05178	N/A	N/A
Printer	Hewlett Packard	2225A	2925\$33268	N/A	N/A
Plotter	Hewlett Packard	7440A	8726K38417	N/A	N/A
Microwave Preamplifier	Hewlett Packard	8449B	3008A008766	Jan. 30, 1999	Jan. 30, 2000
Horn Antenna	Antenna Research	DRG-118/A	1053	Dec. 8, 1995	N/A
Loop Antenna	Com-Power	AL-130	25309	April 13, 1999	April 13, 2000

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Hewlett Packard Microwave Preamplifier Model: 8449B was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets. The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER	
10 kHz to 150 kHz	200 Hz	Active Loop Antenna	
150 kHz to 30 MHz	9 kHz	Active Loop Antenna	
30 MHz to 300 MHz	120 kHz	Biconical Antenna	
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna	
1 GHz to 4.2 GHz	1 MHz	Horn Antenna	

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data.

7.2 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the transmitter. A plot of the -20 dB bandwidth is in Appendix D.

8. CONCLUSIONS

The WaterHound Model: WCK100 meets all of the specification limits defined in CFR Title 47, Part 15, Subpart C, sections 15.205 and 15.231.

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

APPENDIX A

MODIFICATIONS TO THE EUT

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

Modifications:

No modifications were made to the EUT.

APPENDIX B

ADDITIONAL MODELS COVERED UNDER THIS REPORT

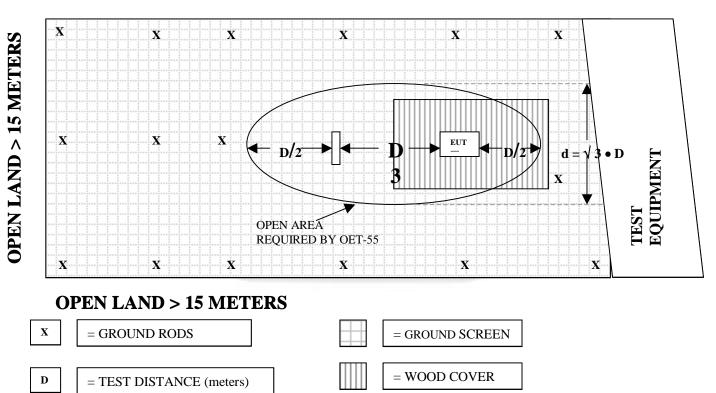
114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

WaterHound Model: WCK100 S/N: N/A

There were no additional models covered under this report.


APPENDIX C

DIAGRAMS, CHARTS AND PHOTOS

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

FRONT VIEW

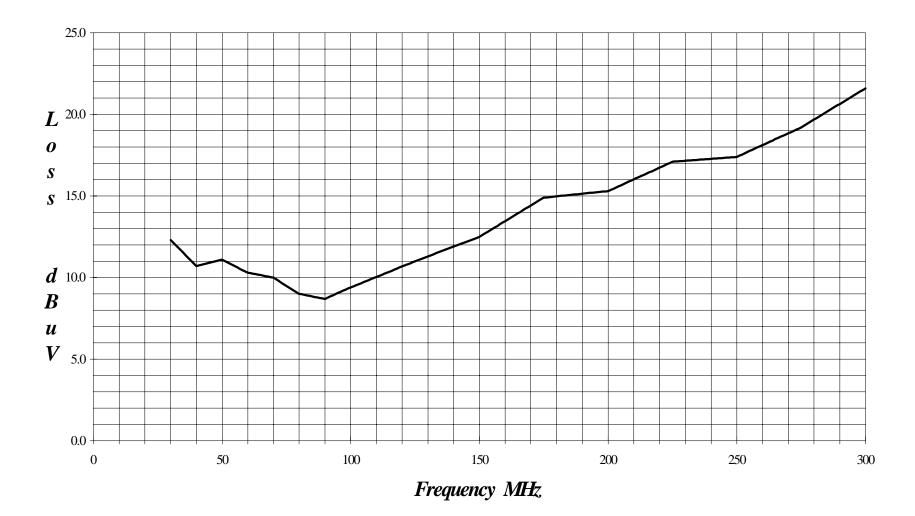
DYNAQUIP CONTROLS WATERHOUND MODEL: WCK100 FCC SUBPART C - RADIATED EMISSIONS – 8-5-99

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

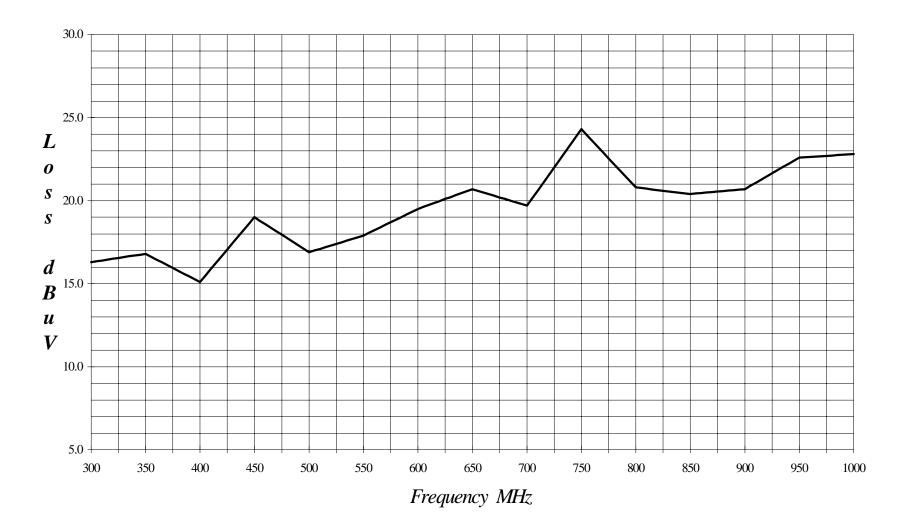
114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

REAR VIEW

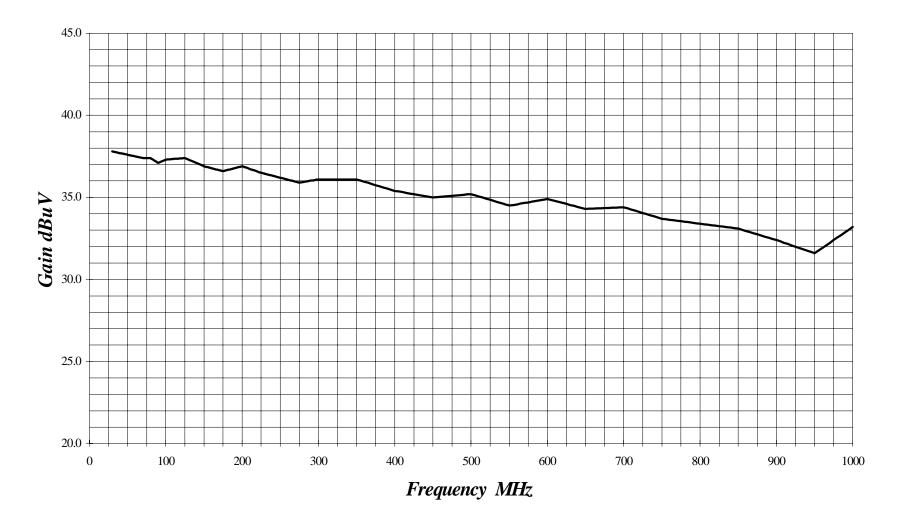
DYNAQUIP CONTROLS WATERHOUND MODEL: WCK100 FCC SUBPART C - RADIATED EMISSIONS – 8-5-99


PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850


Cal: 10/15/98

LAB 'D' BICONICAL ANTENNA AB-100 S/N 01548



Cal: 10/15/98

LAB 'D' LOG PERIODIC ANTENNA AL-100 S/N 01117

PREAMPLIFIER EFFECTIVE GAIN AT 3 METERS PA-102 S/N: 1017

HEWLETT PACKARD 8449B

MICROWAVE PREAMPLIFIER

S/N: 3008A008766

CALIBRATION DATE: JANUARY 30, 1999

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	36.9	9.5	34.3
1.1	36.3	10.0	33.7
1.2	36.4	10.5	34.1
1.3	36.2	11.0	33.7
1.4	36.3	11.5	34.0
1.5	35.7	12.0	33.9
1.6	35.9	12.5	34.4
1.7	35.7	13.0	32.9
1.8	35.6	13.5	31.6
1.9	35.5	14.0	31.8
2.0	35.4	14.5	31.9
2.5	35.6	15.0	32.2
3.0	35.2	15.5	32.8
3.5	35.2	16.0	32.4
4.0	34.3	16.5	32.1
4.5	34.1	17.0	32.3
5.0	34.3	17.5	30.3
5.5	33.0	18.0	31.5
6.0	34.1	18.5	31.2
6.5	34.5	19.0	32.2
7.0	34.3	19.5	32.0
7.5	33.9	20.0	32.0
8.0	34.5	20.5	33.2
8.5	34.5	21.0	30.9
9.0	34.4	22.0	32.1

••

E-FIELD ANTENNA FACTOR CALIBRATION

E(dB V/m) = Vo(dB V) + AFE(dB/m)

Model number : DRG-118/A

Frequency GHz	AFE dB/m	Gain dBi
1	22.3	8.0
2	26.7	9.5
3	29 .7	10.1
4	29.5	12.8
5	32 .3	12.0
6	32.4	13.4
7	36.1	11.0
8	37.4	10.9
9	36.8	12.5
10	39 .5	10.7
11	39 .6	11.5
12	39.8	12.0
13	39.7	12.8
14	41.8	11.3
15	41.9	11.9
16	38.1	16.3
17	41.0	13.9
18	46.5	8.9

	Temperature : Humidity : Traceability : Date :	56 %
		· · ·

Calibrated By

Com-Power Corporation (949) 587-9800

Antenna Calibration

Antenna Type:		Loop Antenna
Model:		AL-130 25309
Serial Number:		4/13/99
Calibration Date:		
Frequency	Magnetic	Electric dB/m
MHz	(dB/m)	CLOVAH
0.01	-40.6	10.9
0.02	-41.5	10.0
0.02	-39.9	11.6
0.04	-40.2	11.3
0.05	-41.5	10.0
0.06	-41.1	10.4
0.07	-41.3	10.2
0.08	-41.6	9.9
0.09	-41.7	9.8
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.4	-41.6	9.9
0.5	-41.7	9.8
0.6	-41.5	10.0
0.7	-41.4	10.1
0.8	-41.5	10.0
0.9	-41.6	9.9
1	-41.2	10.3
2	-40.5	11.0
3	-40.8	10.7
4	-41.0	10.5
5	-40.5	11.0
6	-40.5	11.0
7	-40.7	10.8
8	-40.8	10.7
9	-40.1	11.4
10	-40.4	11.1
12	-41.0	10.5
14	-42.1	9.4
15	-42.3	9.2
16	-42.7	8.8
18	-41.0	10.5
20	-41.1	10.4
25	-43.4	8.1
30	-45.3	6.2

Trans, Antenna Height	
Receiving Antenna Height	

APPENDIX D

DATA SHEETS

COMPATIBLE ELECTRONICS _	
-----------------------------	--

Page: 1 of 1

Test location: Compatible Electronics Customer : DYNAQUIP CONTROLS Date : 8/ 5/1999 Manufacturer : DYNAQUIP CONTROLS Time : 8.21 EUT name : WATER HOUND Model: WCK100 Specification: Fcc_B Test distance: 3.0 mtrs Lab: D Distance correction factor(20*log(test/spec)) : 0.00 Test Mode : SPURIOUS EMISSIONS - TRANSMITTER - 10 kHz TO 4200 MHz TEMPERATURE 75 DEGREES F., RELATIVE HUMIDITY 53% TESTED BY: Multiplication KYLE FUJIMOTO

> NO EMISSIONS FOUND FROM 10 kHz TO 4200 MHz IN EITHER POLARIZATION FOR THE TRANSMITTER

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPANY	unus II astron	DYNAQU	IP CONT	ROLS									DATE		8/5/99					
EUT		WATERI	IOUND										DUTY CY	CLE	48.00	%				
MODEL	s. en Second	WCK100											PEAK TO	AVG	-6.38	dB				
5/N		N/A											TEST DIS	Т.	3 METERS					
FEST ENGINE	ER	James Ro	ss										LAB		D					
Frequency MHz	Peak Reading (dBuV)		91		Azimuth	EUT Axis (X,Y,Z)	EUT Tx Cbannel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)		Comments					
418.0000	60.9	54.6 A	н	1.5	90	x	LOW	16.5	3.1	0.0	74.2	-6.0	80.2							
418.0000	51.1	44.8 A	н	1.5	90	Y	LOW	16.5	3.1	0.0	64.4	-15.8	80.2							
418.0000	60.1	53.8 A	н	1.5	<u>90</u>	Z	LOW	16.5	3.1	0.0	73.4	-6.8	80.2							
418.0000	52.6	46.3 A	A V	1.0	180	x	LOW	16.5	3.1	0.0	65.9	-14.3	80.2							
418.0000	66.2	59.9 A	A V	1.0	180	Y	LOW	16.5	3.1	0.0	79.5	-0.7	80.2		<u></u>					
418.0000	53.7	47.4	A V	1.0	180	Z	LOW	16.5	3.1	0.0	67.0	-13.2	80.2							
															<u></u>					
	-							1		+	-		1							

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RP

<u>2</u> 1

PAGE 1

		D. D. L		CONT										DATE	· 学校 - 学校 · · · · · · · · · · · · · · · · · ·	8/5/99				
OMPANY	6			CONTI	KOLS				<u> </u>					DUTY C	YCLE	48.00	%			
TUT		WATE		UND										PEAK TO AVG -6.38 dB						
MODEL	i usunin Sjanse Ma	WCK1												TEST DIST. 3 METERS						
		N/A James I	Doss											LAB		D				
Frequency MHz	Peak Reading (dBuV)	Average or Qua	e (A) si-	Polar.	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)		Comments				
836.0000	51.2	44.9	A	Н	1.0	0	X	LOW	20.5	4.8	37.5	32.7	-27.5	60.2						
836.0000	54.4	48.1	A	н	1.0	0	Y	LOW	20.5	4.8	37.5	35.9	-24.3	60.2	<u> </u>					
836.0000	53.5	47.2	A	Н	1.0	270	Z	LOW	20.5	4.8	37.5	35.0	-25.2	60.2	<u> </u>					
836.0000	48.8	42.5	A	v	1.5	90	x	LOW	20.5	4.8	37.5	30.3	-29.9	60.2	ļ					
836.0000	52.5	46.2	A	v v	1.5	90	Y	LOW	20.5	4.8	37.5	34.0	-26.2	60.2						
836.0000	49.8	43.5	Α	v	1.5	90	Z	LOW	20.5	4.8	37.5	31.3	-28.9	60.2						
															+					
	 			<u> </u>																
	<u> </u>	+		<u> </u>			<u> </u>					+								
										<u>+</u>										
					<u> </u>								<u> </u>		<u> </u>					
	\top											_ _	<u> </u>							

RP-1

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 2

ELECTRONICS

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPANY		DYNAQU	IP CONT	ROLS									DATE	an a	8/5/99		
EUT		WATERI	IOUND										DUTY C	YCLE	48.00	%	
MODEL	1	WCK100											PEAK T		-6.38	dB	
S/N		N/A											TEST D	utor rain a fail linking a	3 METERS D		
TEST ENGINE	EER	James Ro	SS									_	LAB				
Frequency MHz	Peak Reading (dBuV)	Average (A or Quasi- Peak (QP	Polar.	 Constraints for the second se Second second sec second second sec	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)		Comments		
1254.0000	51.8	45.5 A	л н	1.0	180	X	LOW	22.3	2.7	36.2	34.3	-25.9	60.2				
1254.0000	49.5	43.2 A	х н	1.0	90	Y	LOW	22.3	2.7	36.2	32.0	-28.2	60.2				
1254.0000	49.9	43.6 A	Н	1.0	180	Z	LOW	22.3	2.7	36.2	32.4	-27.8	60.2				
1254.0000	47.8	41.5 A	v v	1.0	270	Х	LOW	22.3	2.7	36.2	30.3	-29.9	60.2				
1254.0000	48.8	42.5 A	v v	1.0	270	Y	LOW	22.3	2.7	36.2	31.3	-28.9	60.2				
1254.0000	47.2	40.9 A		1.0	270	Z	LOW	22.3	2.7	36.2	29.7	-30.5	60.2	······································			
														<u>.</u>			
••••••••																	
	· · ·															<u>-</u>	

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

뭐

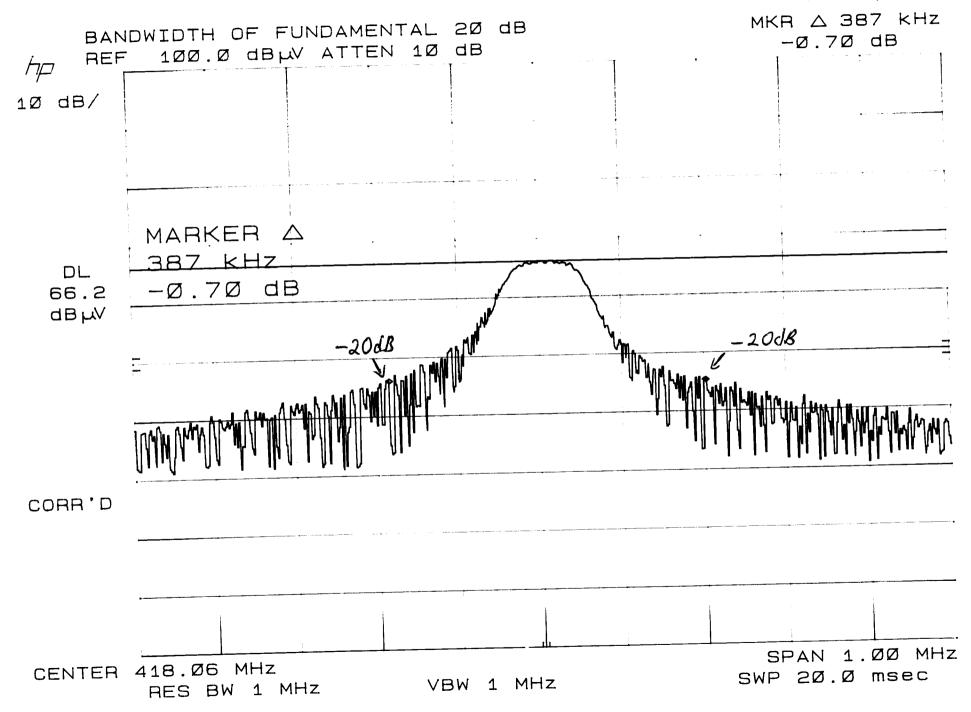
PAGE 3

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

OMPANY	N-1	DYNAC	DUI	P CONTI	ROLS									DATE		8/5/99		
		WATE	_											DUTY C	YCLE	48.00	%	
10DEL		WCK1												PEAK TO AVG		-6.38	dB	
/N		N/A												TEST DI	ST.	3 METERS		
EST ENGINE	ER	James l	Ross											LAB		D		
Frequency MHz	Peak Reading (dBuV)	Average or Qua Peak (0	isi-	Polar.		EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)		Comments		
1672.0000	48.2	41.9	Α	н	1.0	180	x	LOW	24.5	3.2	35.7	33.9	-20.1	54.0				
1672.0000	47.2	40.9	Α	Н	1.0	270	Y	LOW	24.5	3.2	35.7	32.9	-21.1	54.0				
1672.0000	47.5	41.2	Α	н	1.0	180	Z	LOW	24.5	3.2	35.7	33.2	-20.8	54.0				
1672.0000	47.8	41.5	A	v	1.0	270	x	LOW	24.5	3.2	35.7	33.5	-20.5	54.0				
1672.0000	47.1	40.8	A	v	1.0	90	Y	LOW	24.5	3.2	35.7	32.8	-21.2	54.0				
1672.0000	48.4	42.1	A	V	1.0	90	Z	LOW	24.5	3.2	35.7	34.1	-19.9	54.0				
												-		-				
														+				

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

NOTE: NO HARMONICS WERE FOUND AFTER THE 4TH HARMONIC


P

PAGE 4

D

** DELTA = SPEC LIMIT - CORRECTED READING

8-5-99

