	COMOTX232TH-LCD
	5049A-TX232TH check one): ⊠Original Grant ⊡Class II Change
Equipment:WithModel Name:T>Applicant:La	09C318 ireless Professional Weather Station (232TH-LCD Crosse Technology Ltd. 09 Losey Blvd. South La Crosse, WI 54601. U.S A
Issued Date : Oc	ep. 29, 2015 ~ Oct. 16, 2015
Testing Engineer	: <u>Aiklaus Loi</u> (Niklaus Lai)
Technical Manager	David Mas
Authorized Signatory	(David Mao) : <u>Seeren</u> (Steven Lu)
.3, Jinshagang 1s	L I N C . t Road, Shixia, Dalang Town, Donggu Guangdong, China.

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**., or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

3ĨL

Table of Contents Pa	age
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	
3.4 DESCRIPTION OF SUPPORT UNITS	11
4 . EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION	12 12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD	12
4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDITIONS	13 13
4.1.6 EUT TEST CONDITIONS	13
4.1.7 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS	14 14
4.2.2 TEST PROCEDURE	15
4.2.3 DEVIATION FROM TEST STANDARD	15
4.2.4 TEST SETUP 4.2.5 EUT OPERATING CONDITIONS	17 18
4.2.6 EUT TEST CONDITIONS	18
4.2.7 TEST RESULTS (BELOW 30MHz)	18
4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz) 4.2.9 TEST RESULTS (ABOVE 1000 MHz)	18 19
5. BANDWIDTH TEST	20
5.1 TEST PROCEDURE	20
5.2 DEVIATION FROM STANDARD	20
5.3 TEST SETUP 5.4 EUT OPERATION CONDITIONS	20 20
5.5 EUT TEST CONDITIONS	20
5.6 TEST RESULTS	20
6 . MEASUREMENT INSTRUMENTS LIST AND SETTING	21
7 . EUT TEST PHOTO	22

3TL

Table of Contents	Page
ATTACHMENT A - CONDUCTED EMISSION	25
ATTACHMENT B - RADIATED EMISSION (9KHZ to 30MHZ)	26
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)	28
ATTACHMENT D - RADIATED EMISSION	31
(900MHZ to 10000MHz)	31
ATTACHMENT E - BANDWIDTH	36

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICP-1-1509C318	Original Issue.	Oct. 19, 2015

1. CERTIFICATION

Equipment	: Wireless Professional Weather Station
Brand Name	: La Crosse Technology
Model Name	: TX232TH-LCD
Applicant	: La Crosse Technology Ltd.
Manufacturer	: La Crosse Technology Ltd.
Address	: 2809 Losey Blvd. South La Crosse, WI 54601. U.S A
Date of Test	: Sep. 29, 2015 ~ Oct. 16, 2015
Test Sample	: Engineering Sample
Standard(s)	: FCC Part15, Subpart C(15.249)/ ANSI C63.10-2013
	Canada RSS-210:2010
	RSS-GEN Issue 4, November 2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICP-1-1509C318) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	FCC Part15, Subpart C (15.249) / Canada RSS-210:2010 RSS-GEN Issue 4, November 2014				
StandardSection		Test Item	Judgment	Remark	
FCC	IC		ouugmont	Remain	
15.207	RSS-GEN Issue 4 8.8	Conducted Emission	N/A	Note(1)	
15.209 15.249	RSS-210, Issue 8, Annex 8, Section 8.5	Radiated Spurious Emission	PASS		

NOTE:

(1)"N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.523792 BTL's test firm number for FCC: 319330

BTL's test firm number for IC 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2, The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement y \pm U,where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2,providing a level of confidence of approximately 95 %.

A. Radiated Measurement :

Test Site	Method	Measurement Frequency Range		U,(dB)
		9KHz ~ 30MHz	V	3.79
	03 CISPR	9KHz ~ 30MHz	Н	3.57
DG-CB03		30MHz ~ 200MHz	V	3.82
(3m)		30MHz ~ 200MHz	Н	3.78
		200MHz ~ 1,000MHz	V	4.10
		200MHz ~ 1,000MHz	Н	4.06

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		1GHz ~ 18GHz	V	3.12
DG-CB03	CISPR	1GHz ~ 18GHz	Н	3.68
(3m)		18GHz ~ 40GHz	V	4.15
		18GHz ~ 40GHz	Н	4.14

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Professional Weath	er Station
Brand Name	La Crosse Technology	
Model Name	TX232TH-LCD	
Model Difference	N/A	
Product Description	Operation Frequency	915MHz
	Modulation Technology	
	Data rate	FSK(17.2Kbps)
	Field Strength	90.48 dBuV/m(PK Max)
Power Source	Supplied from 2*AA battery	
Power Rating	DC 3V	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Internal	N/A	0

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode

	For Radiated Test
Final Test Mode Description	
Mode 1	TX Mode

Note: New battery is used during whole test.

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
-	-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

Frequency of Emission (MHz)	Conducted Limit (dBµV)			
Frequency of Emission (MHZ)	Quasi-peak	Average		
0.15 -0.5	66 to 56*	56 to 46*		
0.50 -5.0	56	46		
5.0 -30.0	60	50		

Note:

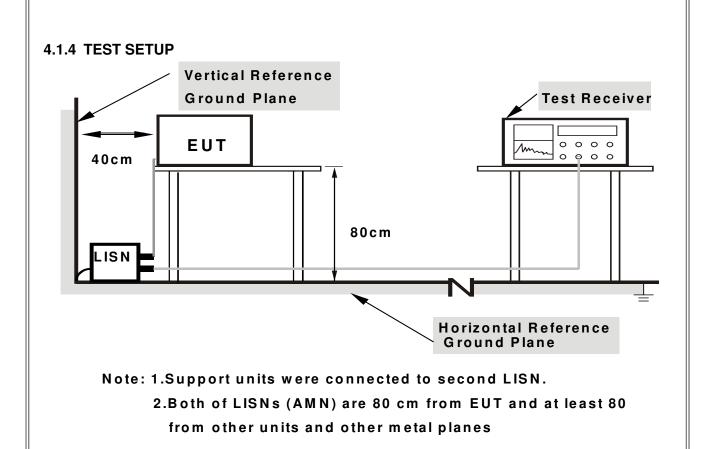
- (1) The limit of " * " decreases with the logarithm of the frequency
- (2) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the


cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: N/A

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (FCC 15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.209)

FREQUENCY (MHz)	(dBuV/m) (at 3m)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC Part 15.249)

FCC Part15 (15.249) , Subpart C					
Limit	Frequency Range(MHz)				
Field strength of fundamental 50000 μV/m (94 dBμV/m) @ 3 m	915				
Field strength of harmonics 500 μ V/m (54 dB μ V/m) @ 3 m	915				

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2.2 TEST PROCEDURE

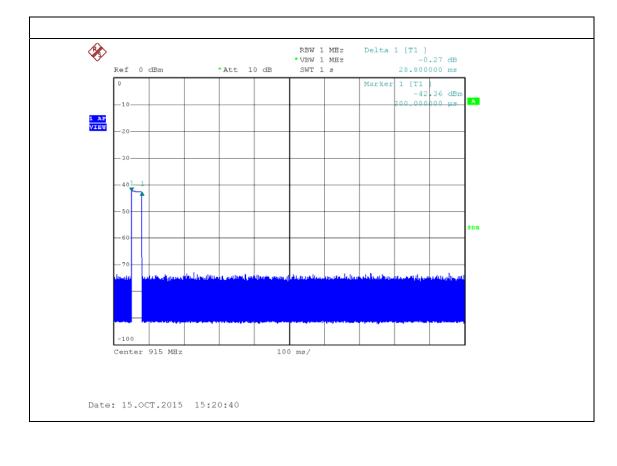
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

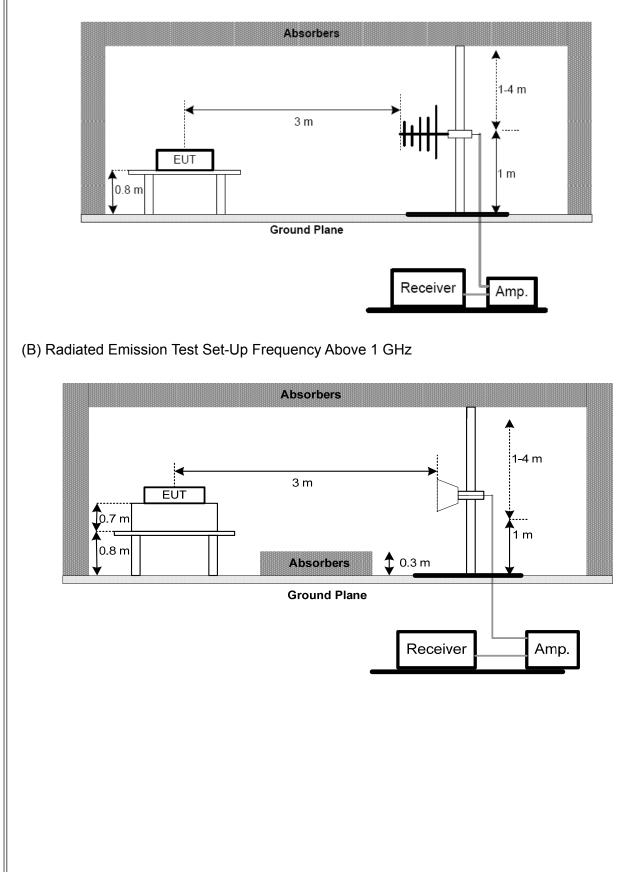
Duty cycle: TX915MHz

Duty cycle = $T_{ON} / (T_{ON} + T_{OFF})$

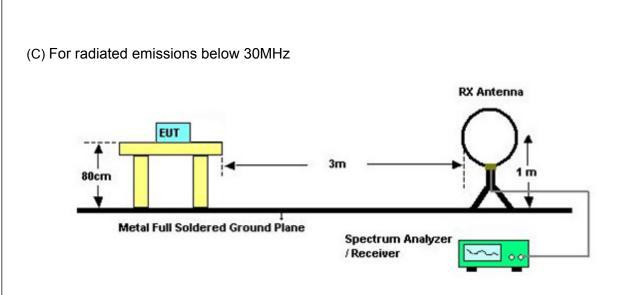

T_{ON}: 28.8/1000ms

T_{ON} + T_{OFF}: (total time):1000ms

Duty cycle: 2.88%


AV=PK+20 log(Duty cycle)

AV=PK-30.81



4.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

4.2.7 TEST RESULTS (BELOW 30MHz)

Please refer to the Attachment B.

Remark

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);.
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz) Please refer to the Attachment C

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode or QP detector mode of the emission .
- (4) RBW 100kHz VBW 300kHz Pk detector.

4.2.9 TEST RESULTS (ABOVE 1000 MHz) Please refer to the Attachment D

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of "Note]. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (3) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (5) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (6) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (7) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH TEST

5.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3kHz, VBW=3kHz, Sweep time = Auto.

5.2 DEVIATION FROM STANDARD

No deviation.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

5.6 TEST RESULTS

Please refer to the Attachment E


		Radiated Emis	sion Measure	ement	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 28, 2016
2	Amplifier	HP	8447D	2944A09673	Nov. 17, 2015
3	Receiver	AGILENT	N9038A	MY52130039	Oct. 11, 2016
4	Test Cable	emci	LMR-400(30MH z-1GHz)	C-01	Jun. 28, 2016
5	Controller	СТ	SC100	N/A	N/A
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
7	Antenna	ETS	3115	00075789	Mar. 28, 2016
8	Amplifier	Agilent	8449B	3008A02274	Nov. 02, 2015
9	Test Cable	emci	EMC104-SM-S M-10000(1GHz - 26.5GHz)	C-68	Jun. 28, 2016
10	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Mar. 28, 2016
11	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 28, 2016
12	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Sep. 07, 2016

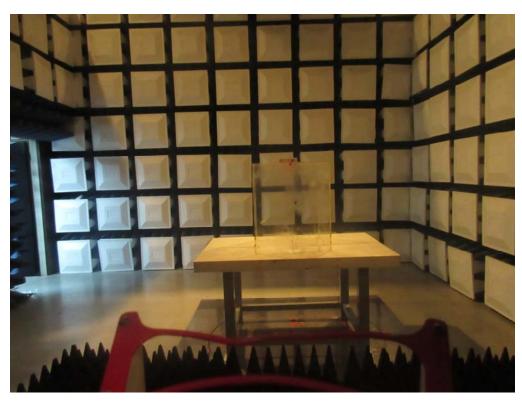
6. MEASUREMENT INSTRUMENTS LIST AND SETTING

Bandwidth

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 10, 2015

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

Radiated Measurement Photos


30MHz to 1000MHz

Radiated Measurement Photos

Above 1000MHz

Report No.: BTL-FICP-1-1509C318

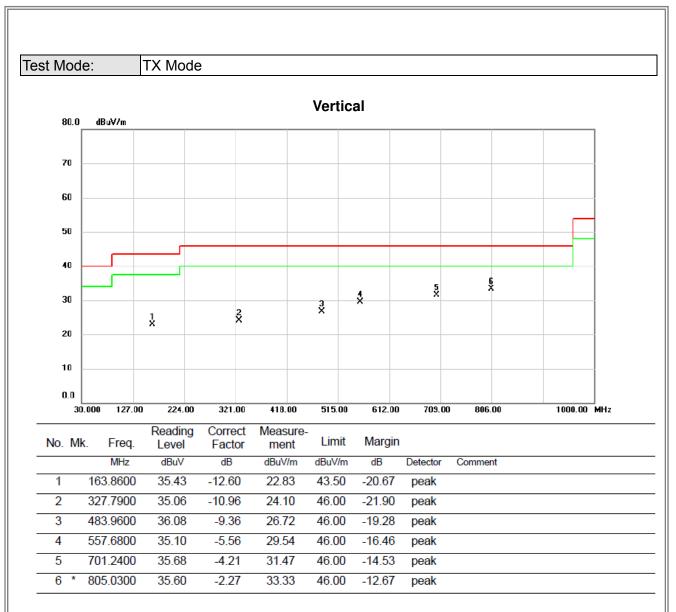
Page 24 of 37

ATTACHMENT A - CONDUCTED EMISSION

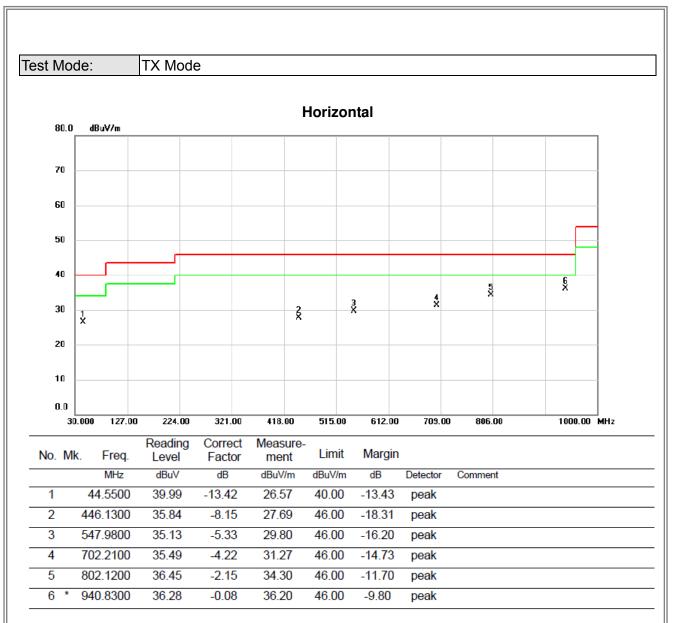
Test Mode: N/A

Note: "N/A" denotes test is not applicable to this device.

ATTACHMENT B - RADIATED EMISSION (9KHZ to 30MHZ)


Test Mode:	TX	Mode					
Frequency	Ant	Read level	Factor	Measured(FS)	Limit(QP)	Margin	Note
(MHz)	0°/90°	dBuV/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.0103	0°	13.47	24.91	38.38	127.35	-88.96	AVG
0.0103	0°	14.61	24.91	39.52	147.35	-107.82	PEAK
0.0255	0°	6.01	23.95	29.96	119.48	-89.52	AVG
0.0255	0°	7.15	23.95	31.10	139.48	-108.38	PEAK
0.0649	0°	4.38	22.10	26.48	111.36	-84.88	AVG
0.0649	0°	5.11	22.10	27.21	131.36	-104.15	PEAK
0.0984	0°	1.97	21.43	23.40	107.74	-84.34	AVG
0.0984	0°	2.22	21.43	23.65	127.74	-104.09	PEAK
0.6326	0°	20.14	0.14 20.22 40.36 71.58		71.58	-31.22	QP
2.6440	0°	21.87	19.11	40.98	69.54	-28.56	QP
				•			
Frequency	Ant	Read level	Factor	Measured(FS)	Limit(QP)	Margin	Note
(MHz)	0°/90°	dBuV/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.0094	90°	13.64	24.30	37.94	128.14	-90.20	AVG
0.0094	90°	14.01	24.30	38.31	148.14	-109.83	PEAK
0.0278	90°	7.95	23.81	31.76	118.72	-86.97	AVG
0.0278	90°	8.14	23.81	31.95	138.72	-106.78	PEAK
0.0405	90°	5.64	23.00	28.64	115.46	-86.81	AVG
0.0405	90°	6.74	23.00	29.74	135.46	-105.71	PEAK
0.1247	90°	1.07	21.00	22.07	105.69	-83.61	AVG
0.1247	90°	2.19	21.00	23.19	125.69	-102.49	PEAK
0.7846	90°	22.38	20.46	42.84	69.71	-26.87	QP
2.5482	90°	24.47	19.17	43.64	69.54	-25.90	QP

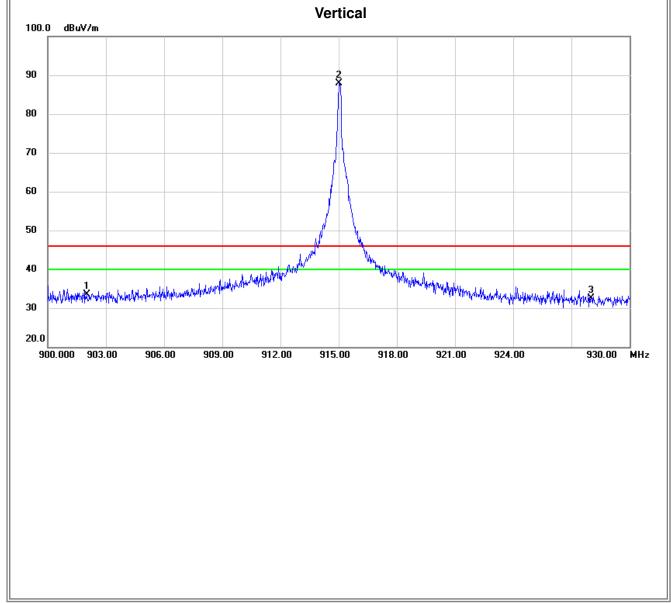
Remark:


- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below (1) The uniplicate of optificate of incorrection which are attendated by more than 25 experimentation of the permissible value has no need to be reported.
 (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
 (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

ATTACHMENT D - RADIATED EMISSION (900MHZ to 10000MHz)

Orthogonal Axis: X


Test Mode : TX Mode

About the duty cycle correction factor calculated, please refer to the page 16

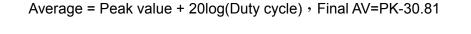
Freq.	Ant.Pol.	Reading		Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Result
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
915.03	V	87.63		0.26	87.89	57.08	114.00	94.00	X/F
902.00	V	33.10		0.42	33.52	2.71	114.00	94.00	X/H
928.00	V	32.49		0.10	32.59	1.78	114.00	94.00	X/H

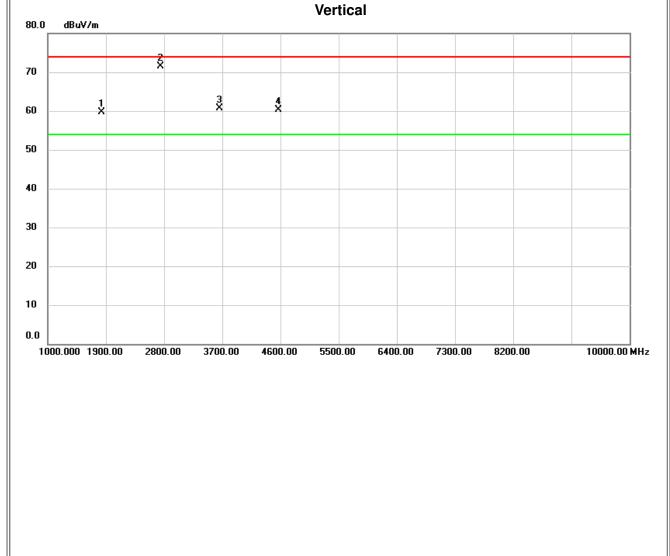
Remark :

- (1) Peak value is much lower than the limit, So AV value isn't shown on this test item.
- (2) The average value of fundamental frequency is:
 - Average = Peak value + 20log(Duty cycle) , Final AV=PK-30.81

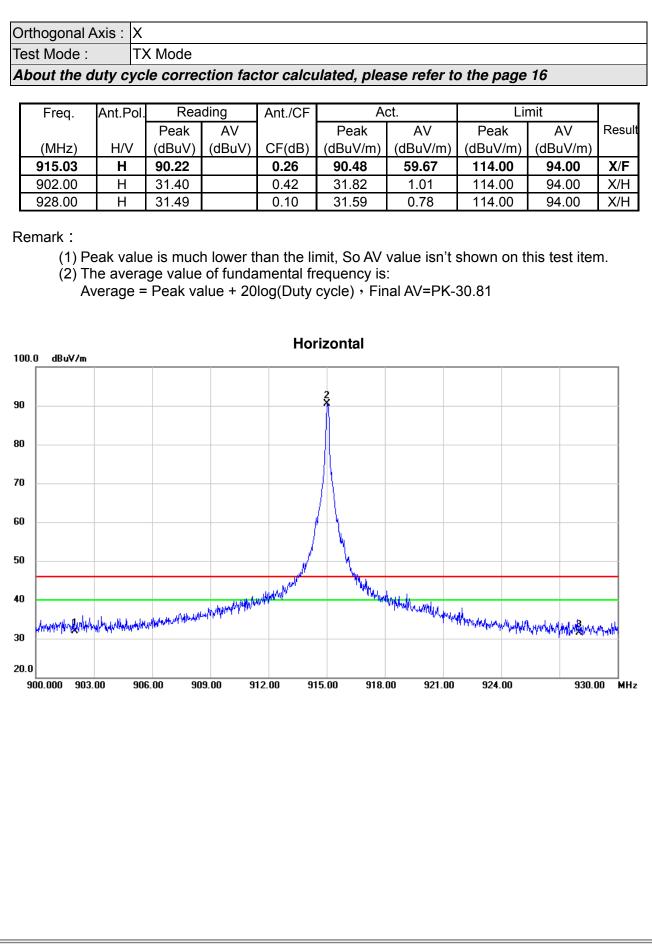
Orthogonal Axis: X

Test Mode : TX Mode

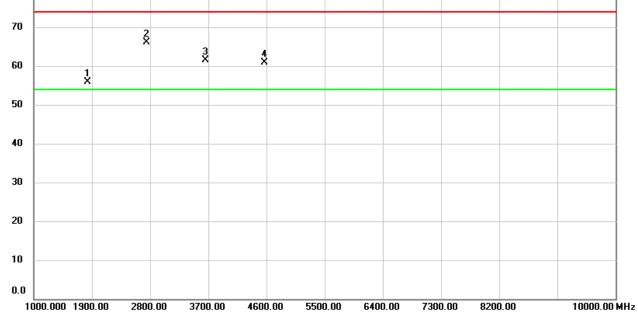

About the duty cycle correction factor calculated, please refer to the page 16

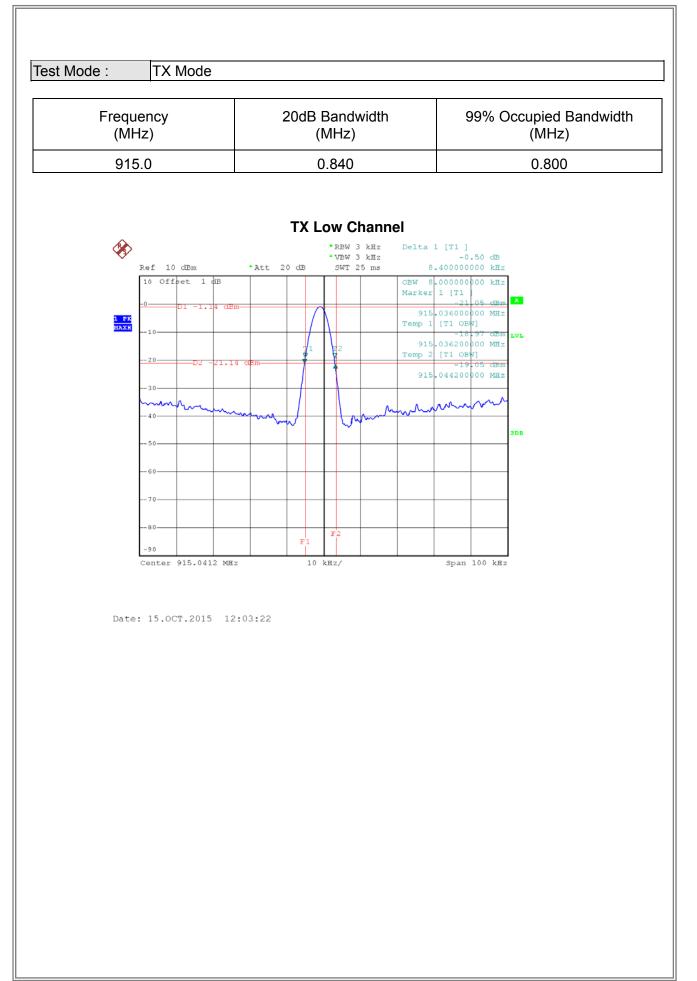

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Result
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
1830.06	V	62.12		-2.43	59.69	28.88	74.00	54.00	X/F
2475.15	V	71.87		-0.31	71.56	40.75	74.00	54.00	X/H
3660.22	V	58.26		2.47	60.73	29.92	74.00	54.00	X/H
4575.10	V	55.04		5.21	60.25	29.44	74.00	54.00	X/H

Remark :


(1) Peak value is much lower than the limit, So AV value isn't shown on this test item.

(2) The average value of fundamental frequency is:





Orthogonal A	Axis : X										
Test Mode :		TX Low Channel									
About the a	luty cyc	le corre	ction fac	tor calcu	lated, plea	ase refer to	o the page	16			
Freq.	Ant.Pol	Reading		Ant./CF	Act.		Limit				
		Peak	AV		Peak	AV	Peak	AV	Resul		
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)			
1830.10	V	58.25		-2.43	55.82	25.01	74.00	54.00	X/H		
2745.11	V	66.39		-0.31	66.08	35.27	74.00	54.00	X/H		
3660.17	V	59.12		2.47	61.59	30.78	74.00	54.00	X/H		
4575.00	1.1			E 04	00.04	00.00	74.00	F4 00	V/I I		
4575.09 Remark :	 	55.60		5.21	60.81	30.00	74.00	54.00	X/H		
Remark : (1) Pe (2) Th	eak valu ne avera	e is mucl ige value	of funda	han the li imental fr log(Duty	mit, So AV equency is	value isn't	shown on t				
Remark : (1) Pe (2) Th Av	eak valu ne avera	e is mucl ige value	of funda	han the li imental fr log(Duty	mit, So AV equency is cycle),Fir	value isn't :	shown on t				
Remark : (1) Pe (2) Th Av	eak valu ne avera verage =	e is mucl ige value	of funda	han the li imental fr log(Duty	mit, So AV equency is cycle),Fir	value isn't :	shown on t				

ATTACHMENT E - BANDWIDTH

