

FCC&IC Radio Test Report

FCC ID: OMOTX141-BV2 IC: 5049A-TX141BV2

This report concerns (check one): Original Grant Class I Change

Project No. : 1405C214

Equipment: REMOTE SENSOR TEMPERATURE

Model Name: TX141V2;TX141-BV2

Applicant: La Crosse Technology Ltd.

Address : 2809 Losey Blvd. South La Crosse WI

United States 54601

Tested by: Neutron Engineering Inc. EMC Laboratory

Date of Receipt: May. 28, 2014

Date of Test: May.28 2014 ~ Jun. 06, 2014

Date of Issued: Jun. 09, 2014

Testing Engineer

(David Mao)

Technical Manager

(Leo Huna)

Authorized Signatory:

(Steven Lu)

Neutron Engineering Inc.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.

TEL: 0769-8318-3000 FAX: 0769-8319-6000

Report No.: NEI-FICP-1-1405C214 Page 1 of 49

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: NEI-FICP-1-1405C214 Page 2 of 49

Table of Contents	Page
1 . CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	-
3.4 DESCRIPTION OF SUPPORT UNITS	11
4 . EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD	12
4.1.4 TEST SETUP	13
4.1.5 EUT OPERATING CONDITIONS 4.1.6 EUT TEST CONDITIONS	13 13
4.1.7 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	14
4.2.1. FIELD STRENGTH OF FUNDAMENTAL EMISSIONS MEASUREMEN	
4.2.2. MEASURING INSTRUMENTS AND SETTING (FIELD STRENGTH O	
FUNDAMENTAL FMISSIONS)	14
EMISSIONS) 4.2.3 RADIATED EMISSIONS MEASUREMENT	14 15
4.2.4. DWELL TIME OF PERIODIC OPERATION MEASUREMENT	16
4.2.5. TEST PROCEDURE	19
4.2.6. DEVIATION FROM TEST STANDARD	19
4.2.7. TEST SETUP	19
4.2.8. EUT OPERATING CONDITIONS	20
4.2.9. EUT TEST CONDITIONS 4.2.7 TEST RESULTS (9KHz to 30MHz)	20 21
4.2.8 TEST RESULTS (30MHZ to 1000MHZ)	21
4.2.8 TEST RESULTS (Above 1000 MHz)	21
5. 20dB SPECTRUM BANDWIDTH MEASUREMENT	22
5.1.MEASURING INSTRUMENTS AND SETTING	22
5.2.TEST PROCEDURES	22
5.3. TEST SETUP LAYOUT	22
5.4. TEST DEVIATION	22

Report No.: NEI-FICP-1-1405C214 Page 3 of 49

Neutron Engineering inc.	
Table of Contents	Page
5.5. EUT OPERATION DURING TEST	23
5.6. EUT TEST CONDITIONS	23
5.7. TEST RESULTS	23
6. TIMING TESTING Limit	24 24
6.1.MEASURING INSTRUMENTS AND SETTING	24
6.2.TEST PROCEDURES	24
6.3. TEST SETUP LAYOUT	24
6.4. TEST DEVIATION	24
6.5. EUT OPERATION DURING TEST	24
6.6. EUT OPERATION DURING TEST	25
6.7 TEST RESULTS	25
7. MEASUREMENT INSTRUMENTS LIST AND SETTING	26
8. EUT TEST PHOTO	27
ATTACHMENT A - CONDUCTED EMISSION	30
ATTACHMENT B - RADIATED EMISSION (9KHz to 30MHZ)	31
ATTACHMENT C - RADIATED EMISSION (30MHZ to 1000MHZ)	33
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)	39
ATTACHMENT E - 20dB SPECTRUM BANDWIDTH	44

47

ATTACHMENT F - TIMING TESTING

Report No.: NEI-FICP-1-1405C214 Page 4 of 49

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
NEI-FICP-1-1405C214	Original Issue.	Jun. 09, 2014

Report No.: NEI-FICP-1-1405C214 Page 5 of 49

1. CERTIFICATION

Equipment : REMOTE SENSOR TEMPERATURE

Trade Name : La Crosse

Model Name : TX141V2 ;TX141-BV2
Applicant : La Crosse Technology Ltd.
Manufacturer : La Crosse Technology

Address : 2809 Losey BLVD,so La Crosse WI 54601

Factory : La Crosse Technology

Address : 2809 Losey BLVD,so La Crosse WI 54601

Date of Test : May.28 2014 ~ Jun. 06, 2014 Test Item : ENGINEERING SAMPLE

Standard(s) : FCC Part15, Subpart C(15.231)/ ANSI C63.4-2009

Canada RSS-210:2010

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-1-1405C214) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Report No.: NEI-FICP-1-1405C214 Page 6 of 49

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part15, Subpart C (15.231)					
Standard(s) Section		n Test Item		Remark	
	15.207	Conducted Emission	-	N/A	
RSS-210 A1.1 Table B	15.209 & 15.231(e)	Radiated Spurious Emission	PASS		
RSS-210 A1.1.3	15.231(c)	20dB Occupied Bandwidth Measurement	PASS		

NOTE:

- (1)" N/A" denotes test is not applicable in this test report.
- (2) EUT is used new battery.

Report No.: NEI-FICP-1-1405C214 Page 7 of 49

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792

Neutron's test firm number for FCC 319330

Neutron's test firm number for IC 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

A. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
	30MHz ~ 200MHz	Н	3.60		
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CISER	200MHz ~ 1,000MHz	Н	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

Report No.: NEI-FICP-1-1405C214 Page 8 of 49

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	REMOTE SENSOR TEMPERATURE		
Trade Name	La Crosse		
Model Name	TX141V2 ;TX141-BV2		
Model Difference	Only differ in the short ci	ircuit way, the rest are the same.	
	Product Type	Low Power Communication Device	
	Operation Frequency	433.92 MHz	
	Modulation Type	ASK	
Product Description	Number Of Channel	1CH, please see note 2.	
	Antenna Designation	Integral antenna	
	Field Strength TX141V2: 60.25 dBuV/m (AV Max. TX141-BV2: 62.83 dBuV/m (AV Max.		
Power Source	Supplied from 2*AA size battery.		
Power Rating	DC 3V		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

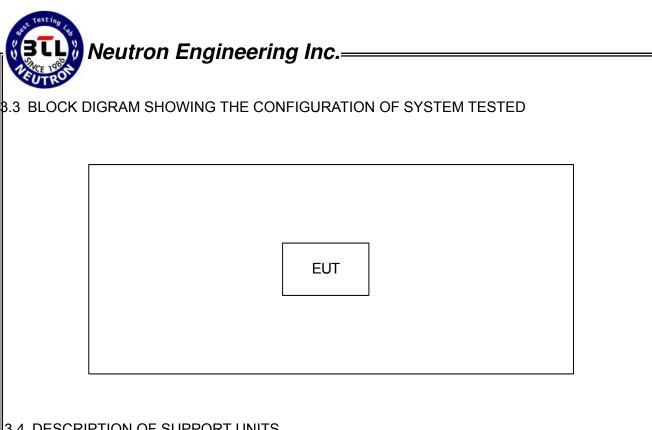
2.

Channel	Frequency (MHz)
01	433.92

Report No.: NEI-FICP-1-1405C214 Page 9 of 49

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


Pretest Mode	Description
Mode 1	TX CH 433.92MHz

For Conducted Test			
Final Test Mode Description			
-	"N/A" denotes test is not applicable in this test report		

For Radiated Test		
Final Test Mode	Description	
Mode 1	TX CH 433.92MHz	

Note: EUT is used new battery.

Report No.: NEI-FICP-1-1405C214 Page 10 of 49

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID/IC	Series No.	Note
-	-	-	-	-	-	

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

Note:

(1) For detachable type I/O cable should be specified the length in m in <code>"Length_"</code> column.

Report No.: NEI-FICP-1-1405C214 Page 11 of 49

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

	Class A (dBuV)		Class B (dBuV)		Ctandard
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	(

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

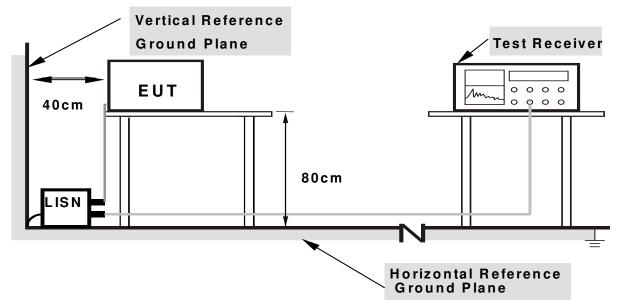
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters Attenuation Start Frequency Stop Frequency IF Bandwidth	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.


4.1.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: NEI-FICP-1-1405C214 Page 12 of 49

Neutron Engineering Inc.

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 EUT TEST CONDITIONS

Temperature: N/A Relative Humidity: N/A Test Voltage: N/A

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note . If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) " N/A" denotes test is not applicable in this test report.

Report No.: NEI-FICP-1-1405C214 Page 13 of 49

4.2 RADIATED EMISSION MEASUREMENT

4.2.1. FIELD STRENGTH OF FUNDAMENTAL EMISSIONS MEASUREMENT LIMIT

Frequency Band (MHz)	Fundamental Emissions Limit (uV/m) at 3m
Frequency Band (MHz) 40.66-40.70 70-130 130-174 174-260 260-470 Above 470	1000
70-130	500
130-174	500-1500(**)
174-260	1500
260-470	1500-5000(**)
Above 470	5000

^{**1.} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

So the field strength of emission limits have been calculated in below table.

Carrier Frequency (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
433.92 MHz	72.87 (Average)
433.92 MHz	92.87 (Peak)

4.2.2. MEASURING INSTRUMENTS AND SETTING (FIELD STRENGTH OF FUNDAMENTAL EMISSIONS)

Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RBW	120 kHz
Receiver Parameter Attenuation Center Frequency RBW Detector	Peak / Average

Report No.: NEI-FICP-1-1405C214 Page 14 of 49

⁽¹⁾ for the band 130 - 174 MHz, μ V/m at 3 meters = 22.72727×(operating frequency, MHz) - 2454.545:

⁽²⁾ for the band 260 - 470 MHz, μ V/m at 3 meters = 16.6667×(operating frequency, MHz) - 2833.3333.

4.2.3 RADIATED EMISSIONS MEASUREMENT

Devices complying with 47 CFR FCC part 15 subpart C, section 15.231(e). The field strength of emissions from intentional radiators at 3 meters operated under this Section shall not exceed the following:

Frequency Band (MHz)	Spurious Emissions Limit (uV/m) at 3m
40.66-40.70	100
70-130	50
130-174	50-150(**)
174-260	150
260-470	150-500(**)
Above 470	500

^{**1.} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130 174 MHz, μ V/m at 3 meters = 22.72727×(operating frequency, MHz) 2454.545;
- (2) for the band 260 470 MHz, μ V/m at 3 meters = 16.6667×(operating frequency, MHz) 2833.3333.
- (3)The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in Section 15.209(a).

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

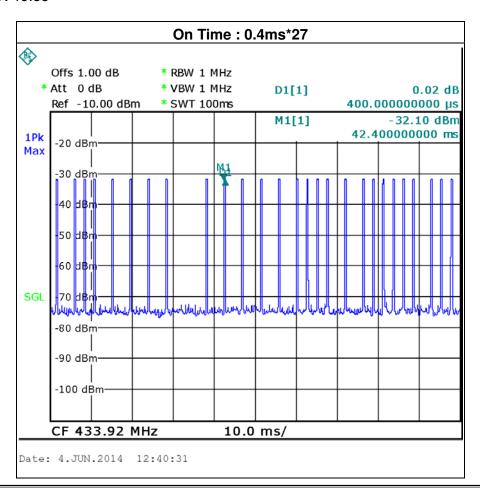
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Report No.: NEI-FICP-1-1405C214 Page 15 of 49

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, AV Mode with Dwell time
RB / VB (other emission)	100KHz / 100KHz for peak

4.2.4. DWELL TIME OF PERIODIC OPERATION MEASUREMENT Model: TX141V2

Duty Cycle = $T_{ON} / (T_{ON} + T_{OFF})$


 T_{ON} : 0.4*27 = 10.80ms

 $T_{ON} + T_{OFF} = (total time) = 100 ms$

Duty Cycle = 10.80/100 ms = 10.80%

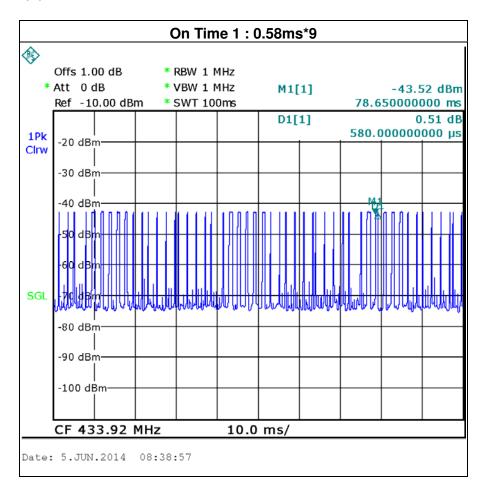
AV=PK+20 log(Duty Cycle)

AV=PK-19.33

Report No.: NEI-FICP-1-1405C214

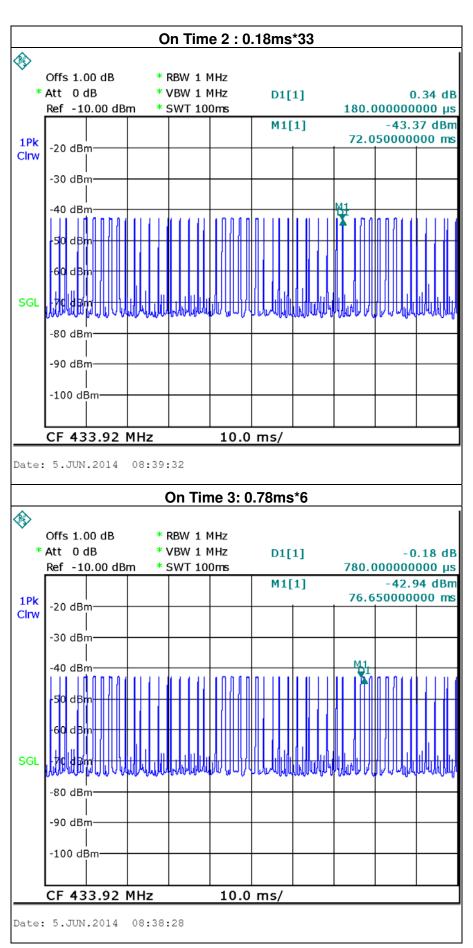
Model: TX141-BV2

Duty Cycle = $T_{ON} / (T_{ON} + T_{OFF})$


 T_{ON} : 0.58*9+0.18*33+0.78*6 = 48.84 ms

 $T_{ON} + T_{OFF} = (total time) = 100 ms$

Duty Cycle = 48.84/100 ms = 48.84%


AV=PK+20 log(Duty Cycle)

AV=PK-16.01

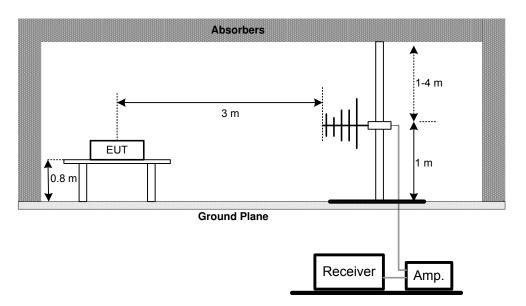
Report No.: NEI-FICP-1-1405C214 Page 17 of 49

Neutron Engineering Inc.

Report No.: NEI-FICP-1-1405C214

Page 18 of 49

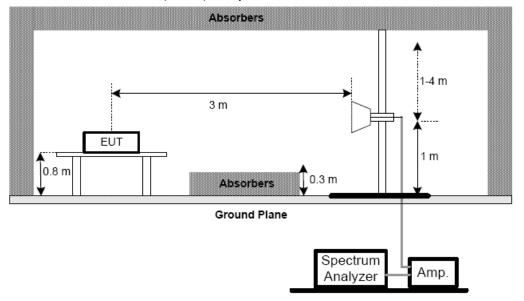
4.2.5. TEST PROCEDURE

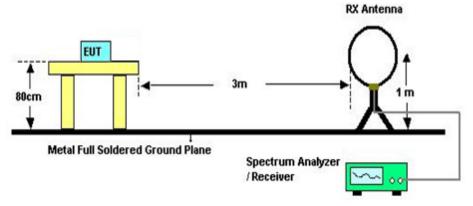

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.2.6. DEVIATION FROM TEST STANDARD

No deviation

4.2.7. TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz


Report No.: NEI-FICP-1-1405C214 Page 19 of 49

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

(C) For radiated emissions below 30MHz

4.2.8. EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.9. EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

Report No.: NEI-FICP-1-1405C214 Page 20 of 49

4.2.7 TEST RESULTS (9KHz to 30MHz)

Please refer to the Attachment B.

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);.
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor..

4.2.8 TEST RESULTS (30MHZ to 1000MHZ)

Please refer to the Attachment C.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

4.2.8 TEST RESULTS (Above 1000 MHz)

Please refer to the Attachment D.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

Report No.: NEI-FICP-1-1405C214 Page 21 of 49

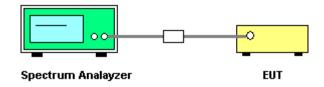
5. 20dB SPECTRUM BANDWIDTH MEASUREMENT

Limit

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calcuated in below table.

Fundamental Frequency	20dB Bandwidth Limits (MHz)
433.92 MHz	1.0848

5.1.MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	10 kHz
VB	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2.TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 10 kHz and the video bandwidth of 10 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

5.3. TEST SETUP LAYOUT

5.4. TEST DEVIATION

There is no deviation with the original standard.

Report No.: NEI-FICP-1-1405C214 Page 22 of 49

5.5. EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6. EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC3V

5.7. TEST RESULTS

Please refer to the Attachment E.

.

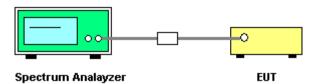
Report No.: NEI-FICP-1-1405C214 Page 23 of 49

6. TIMING TESTING

Limit

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.1.MEASURING INSTRUMENTS AND SETTING

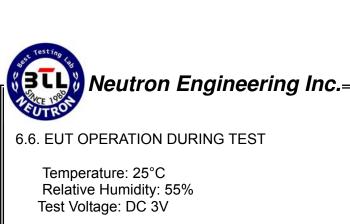

Please refer to section 6 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	Zero Span
RB	1MHz
VB	1MHz
Detector	Peak
Trace	Max Hold
Sweep Time	300 seconds

6.2.TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 1MHz and the video bandwidth of 1MHz were used.

6.3. TEST SETUP LAYOUT


6.4. TEST DEVIATION

There is no deviation with the original standard.

6.5. EUT OPERATION DURING TEST

The EUT was programmed to be in normal mode.

Report No.: NEI-FICP-1-1405C214 Page 24 of 49

Report No.: NEI-FICP-1-1405C214 Page 25 of 49

7. MEASUREMENT INSTRUMENTS LIST AND SETTING

		Radiated Emis	sion Measu	rement	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 29, 2015
2	Amplifier	HP	8447D	2944A09673	Mar. 29, 2015
3	Receiver	AGILENT	N9038A	MY52130039	Aug. 24, 2014
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2014
5	Antenna	ETS	3115	00075789	Mar. 29, 2015
6	Amplifier	Agilent	8449B	3008A02274	Mar. 29, 2015
7	Receiver	AGILENT	N9038A	MY52130039	Aug. 24, 2014
8	Test Cable	HUBER+SUHNER	C-48	N/A	Apr. 30, 2015
9	Controller	СТ	SC100	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	Mar. 29, 2015
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Feb. 22, 2015
12	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Mar. 29, 2015

	20dB Spectrum Bandwidth Measurement									
Item	tem Kind of Equipment Manufacturer Type No. Serial No. Calibrated until									
1	1 Spectrum Analyzer R&S FSP 40 100185 Nov. 11, 2014									

	Timing Testing									
Item	m Kind of Equipment Manufacturer Type No. Serial No. Calibrated until									
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014					

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

Report No.: NEI-FICP-1-1405C214 Page 26 of 49

8. EUT TEST PHOTO

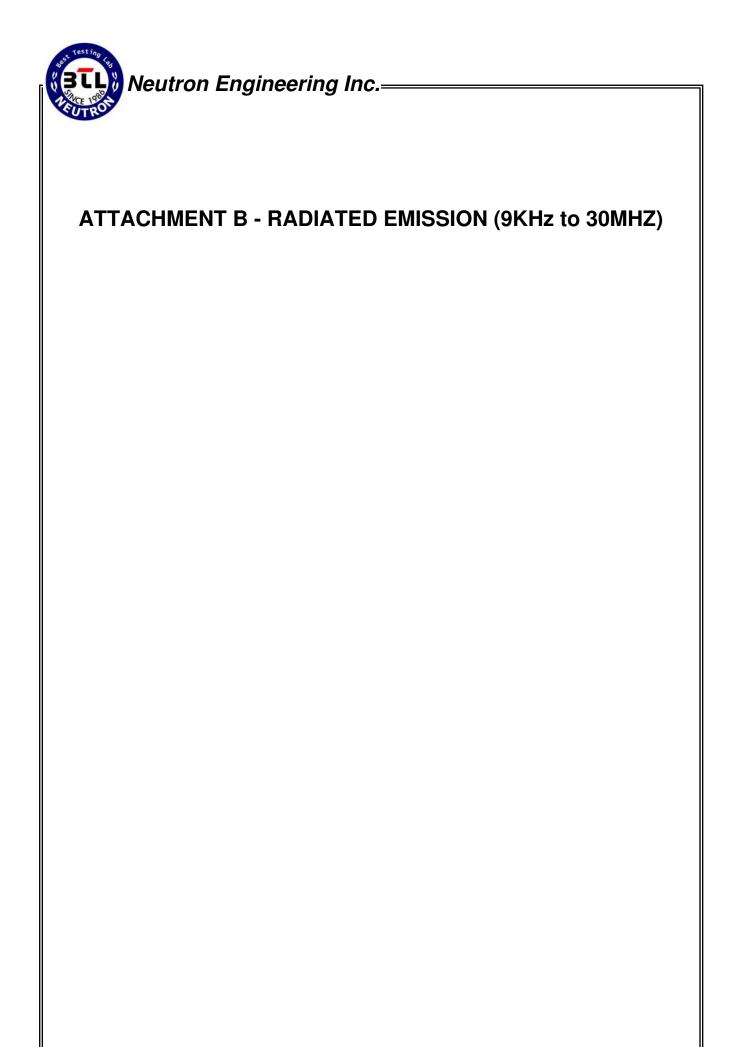
Radiated Measurement Photos 9K~30MHz

Report No.: NEI-FICP-1-1405C214 Page 27 of 49

Radiated Measurement Photos 30~1000MHz

Report No.: NEI-FICP-1-1405C214 Page 28 of 49

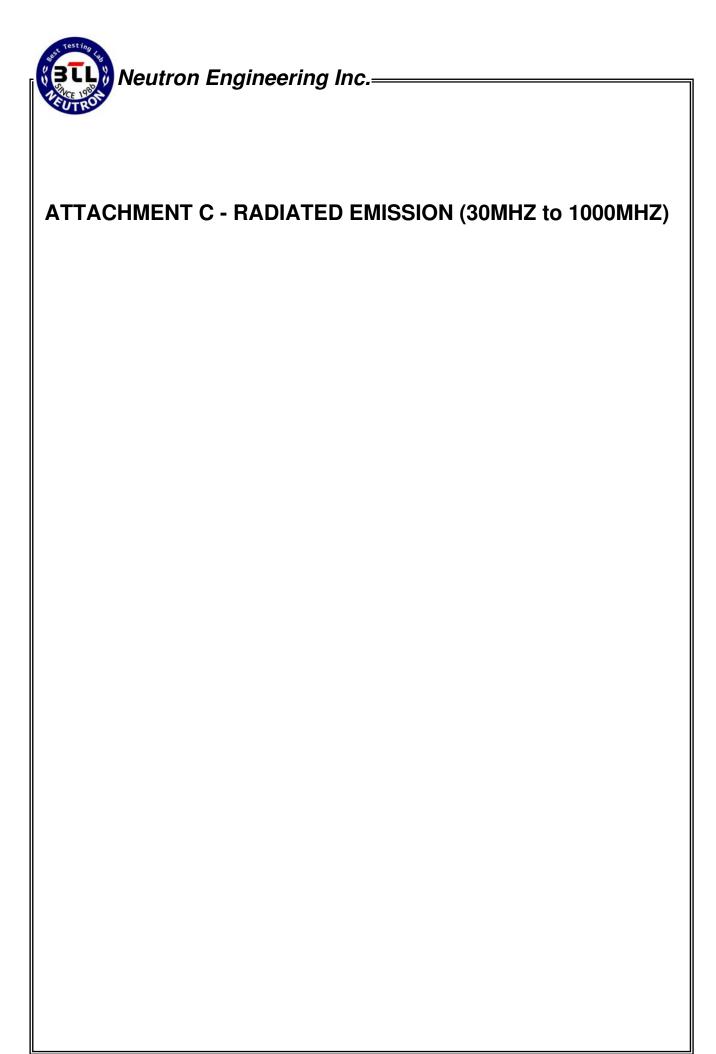
Radiated Measurement Photos Above 1000MHz



Report No.: NEI-FICP-1-1405C214 Page 29 of 49

ATTACHMENT A - CONDUCTED EMISSION Test Mode: N/A Note: "N/A" denotes test is not applicable in this test report.

Report No.: NEI-FICP-1-1405C214 Page 30 of 49


Report No.: NEI-FICP-1-1405C214 Page 31 of 49

Test Mode:	TX Mode
------------	---------

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Over	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOIC
0.0095	0°	20.11	24.30	44.41	128.01	-83.60	AVG
0.0094	0°	21.52	24.30	45.82	148.01	-102.19	PEAK
0.0239	0°	19.54	24.06	43.60	120.05	-76.46	AVG
0.0239	0°	21.45	24.06	45.51	140.05	-94.55	PEAK
0.0373	0°	19.44	23.20	42.64	116.17	-73.52	AVG
0.0371	0°	22.34	23.20	45.54	136.17	-90.62	PEAK
0.0659	0°	18.36	22.08	40.44	111.23	-70.78	AVG
0.0626	0°	24.37	22.08	46.45	131.23	-84.77	PEAK
0.2564	0°	24.33	20.38	44.71	99.43	-54.71	AVG
0.2531	0°	24.78	20.38	45.16	119.43	-74.26	PEAK
1.2519	0°	20.32	19.57	39.89	65.65	-25.76	QP

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Over	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOIC
0.0091	90°	17.37	24.30	41.67	128.40	-86.73	AVG
0.0096	90°	21.28	24.30	45.58	148.40	-102.82	PEAK
0.0254	90°	16.27	23.96	40.23	119.52	-79.29	AVG
0.0256	90°	20.42	23.96	44.38	139.52	-95.14	PEAK
0.0345	90°	19.33	23.38	42.71	116.86	-74.15	AVG
0.0346	90°	21.78	23.38	45.16	136.86	-91.70	PEAK
0.0649	90°	21.07	22.10	43.17	111.35	-68.18	AVG
0.0644	90°	23.55	22.10	45.65	131.35	-85.70	PEAK
0.2361	90°	21.65	20.43	42.08	100.14	-58.06	AVG
0.2316	90°	23.75	20.43	44.18	120.14	-75.96	PEAK
1.2597	90°	19.36	19.57	38.94	65.60	-26.66	QP

Report No.: NEI-FICP-1-1405C214 Page 32 of 49

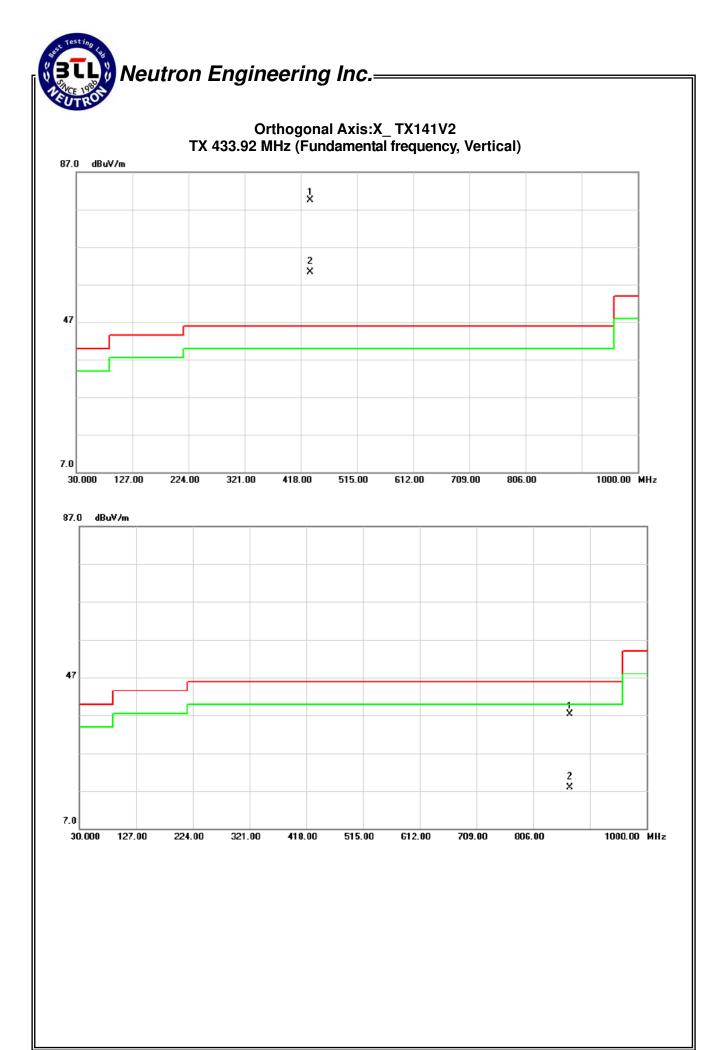
Report No.: NEI-FICP-1-1405C214 Page 33 of 49

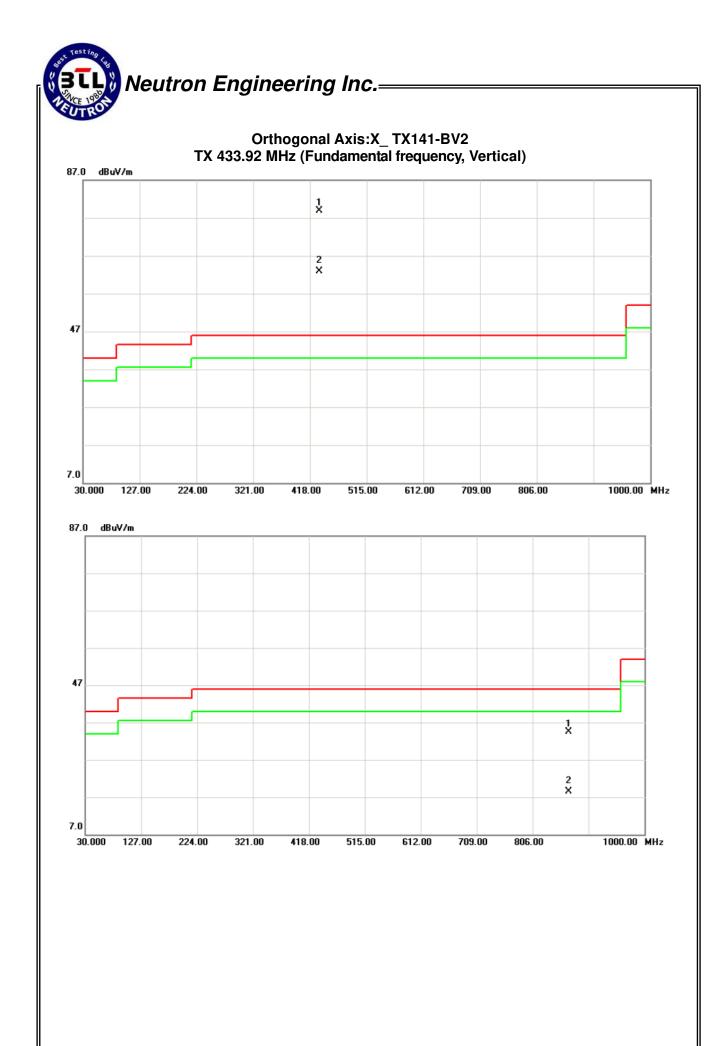
Test Mode : TX Mode_ TX141V2

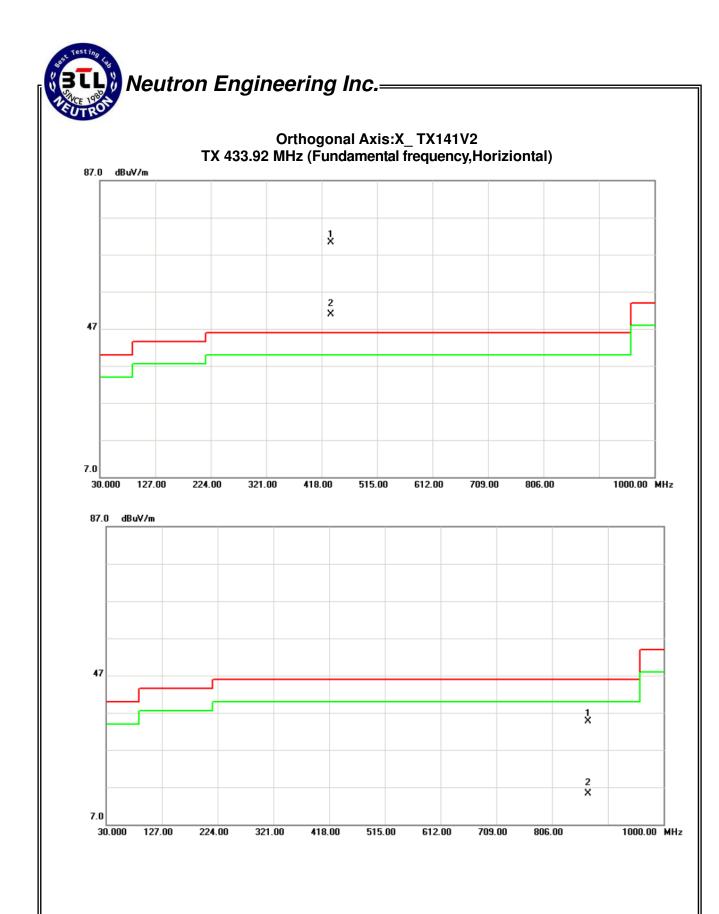
About the duty cycle correction factor calculated, please refer to the page 16~18

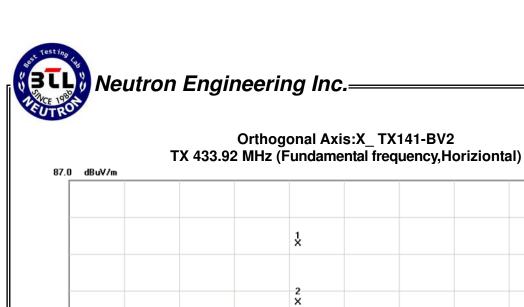
Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Limit		
		Peak	AV		Peak	AV	Peak	AV	Result
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
433.52	٧	88.58	69.25	-9.00	79.58	60.25	92.87	72.87	X/F
868.08	V	39.98	20.65	-2.66	37.32	17.99	72.87	52.87	X/H

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	Act.		Limit	
		Peak	AV		Peak	AV	Peak	AV	Result
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
433.52	Н	79.30	59.97	-9.00	70.30	50.97	92.87	72.87	X/F
868.81	Н	37.34	18.01	-2.63	34.71	15.38	72.87	52.87	X/H

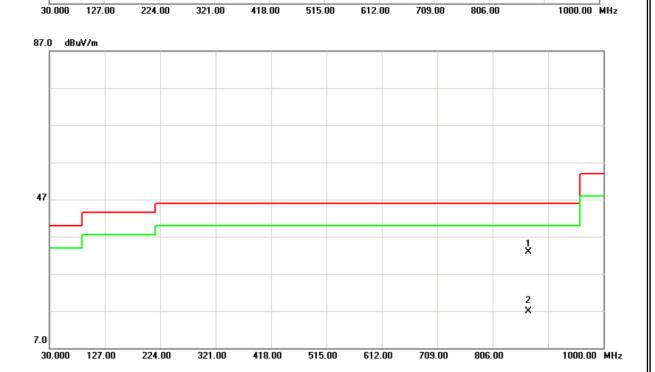

Test Mode : TX Mode_ TX141-BV2

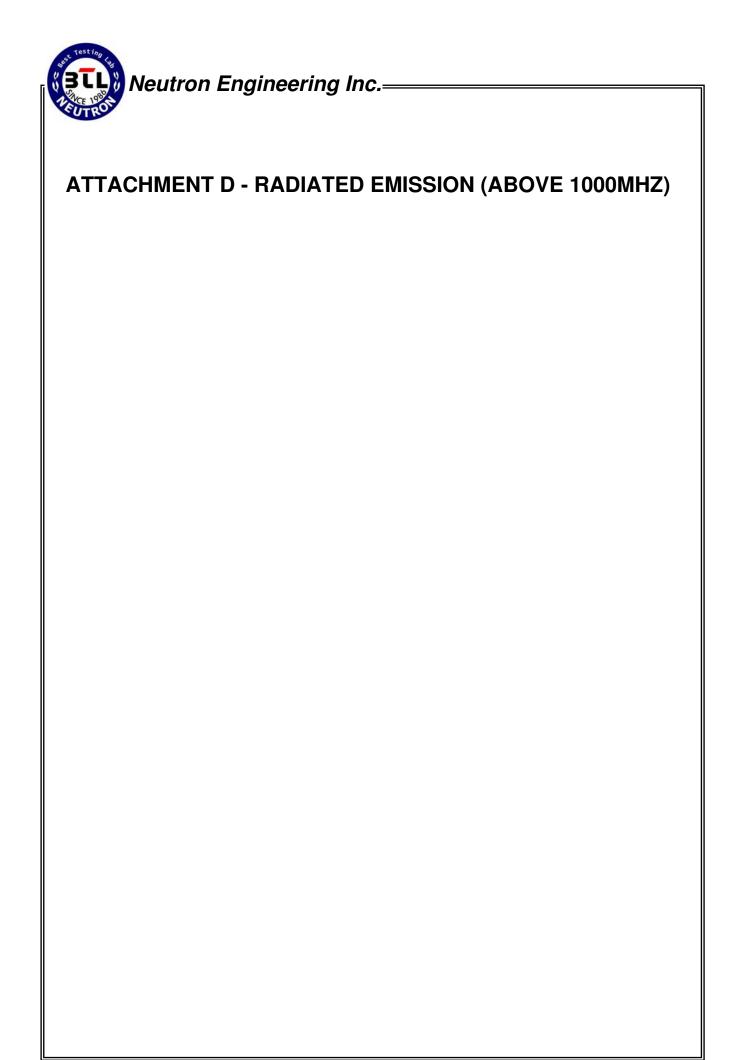

About the duty cycle correction factor calculated, please refer to the page 16~18


Freq.	Ant.Pol.	Rea	Reading		A	ct.	Lir	mit	
		Peak	AV		Peak	AV	Peak	AV	Result
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
433.52	V	87.84	71.83	-9.00	78.84	62.83	92.87	72.87	X/F
868.82	V	37.23	21.22	-2.63	34.60	18.59	72.87	52.87	X/H


Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	mit	
		Peak	AV		Peak	AV	Peak	AV	Result
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
433.52	Н	78.77	62.76	-9.00	69.77	53.76	92.87	72.87	X/F
868.82	Н	35.63	19.62	-2.63	33.00	16.99	72.87	52.87	X/H

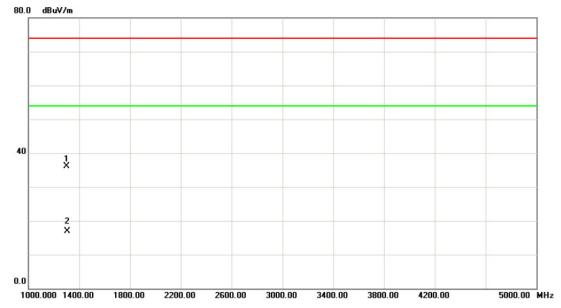
Report No.: NEI-FICP-1-1405C214 Page 34 of 49





7.0

Report No.: NEI-FICP-1-1405C214 Page 38 of 49

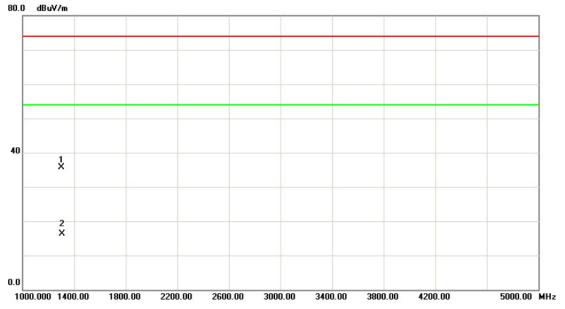


Report No.: NEI-FICP-1-1405C214 Page 39 of 49

Test Mode: TX CH 433.92 MHz_ TX141V2

About the duty cycle correction factor calculated, please refer to the page 16~18

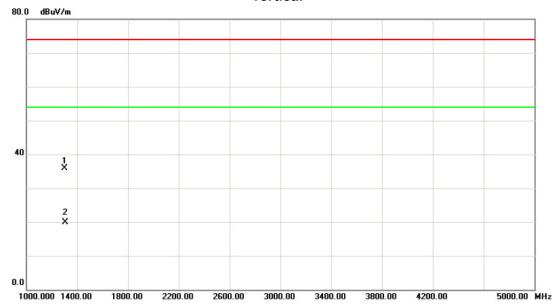
Vertical



No.	M	c. Freq.	Reading Level		Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1301.760	42.39	-6.24	36.15	74.00	-37.85	peak	
2	*	1301.760	23.06	-6.24	16.82	54.00	-37.18	AVG	

Report No.: NEI-FICP-1-1405C214 Page 40 of 49

Neutron Engineering Inc.=

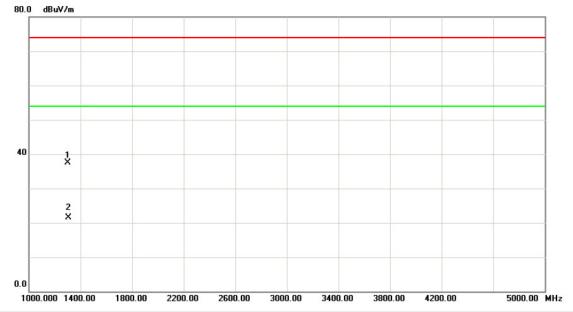

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1301.760	41.97	-6.24	35.73	74.00	-38.27	peak	
2	*	1301.760	22.64	-6.24	16.40	54.00	-37.60	AVG	

Report No.: NEI-FICP-1-1405C214 Page 41 of 49

Test Mode: TX CH 433.92 MHz_ TX141-BV2

About the duty cycle correction factor calculated, please refer to the page 16~18

Vertical

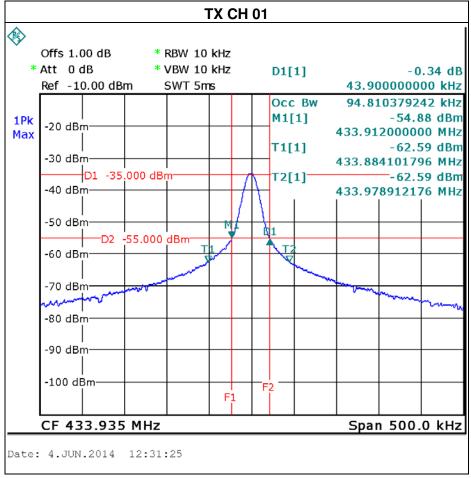


No.	M	k. Fred			Measure- ment		Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1301.76	0 42.16	-6.24	35.92	74.00	-38.08	peak	
2	*	1301.76	0 26.15	-6.24	19.91	54.00	-34.09	AVG	

Report No.: NEI-FICP-1-1405C214 Page 42 of 49

Neutron Engineering Inc.=

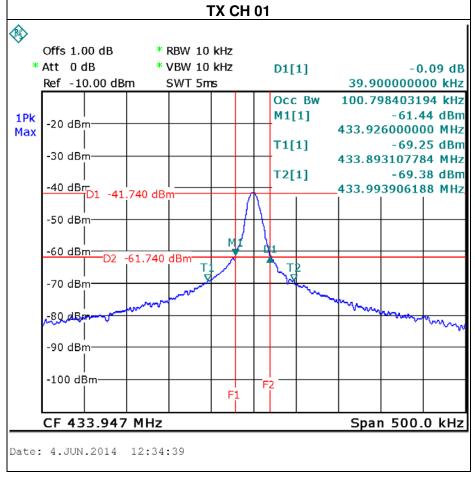
Horiziontal


No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1301.760	43.73	-6.24	37.49	74.00	-36.51	peak	
2	*	1301.760	27.72	-6.24	21.48	54.00	-32.52	AVG	

Report No.: NEI-FICP-1-1405C214 Page 43 of 49

Report No.: NEI-FICP-1-1405C214 Page 44 of 49

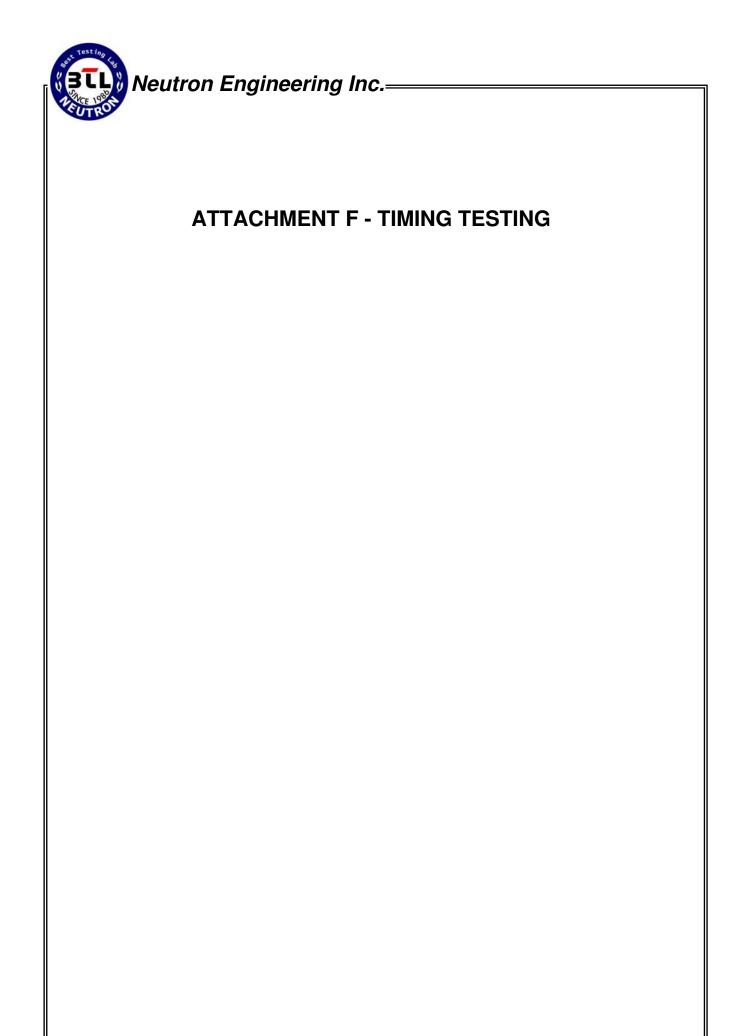
Test Mode: TX CH 01_ TX141V2


Result: 20dB Bandwidth 43.90kHz<1.0848MHz Pass

99% bandwidth is 94.81kHz

Report No.: NEI-FICP-1-1405C214 Page 45 of 49

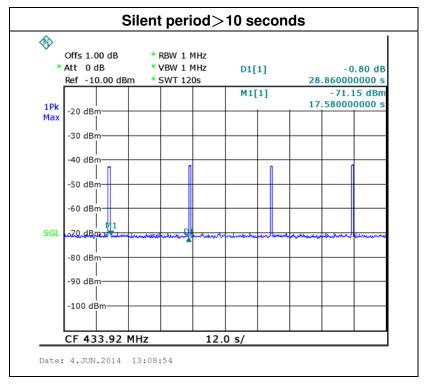
Neutron Engineering Inc.

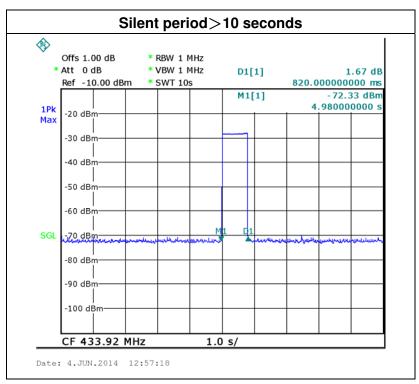

Test Mode: TX CH 01_ TX141-BV2

Result: 20dB Bandwidth 39.90kHz<1.0848MHz Pass

99% bandwidth is 100.79kHz

Report No.: NEI-FICP-1-1405C214 Page 46 of 49

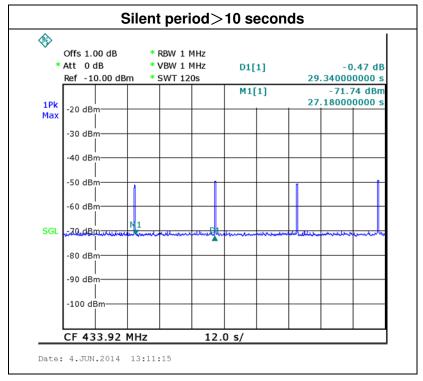

Report No.: NEI-FICP-1-1405C214 Page 47 of 49

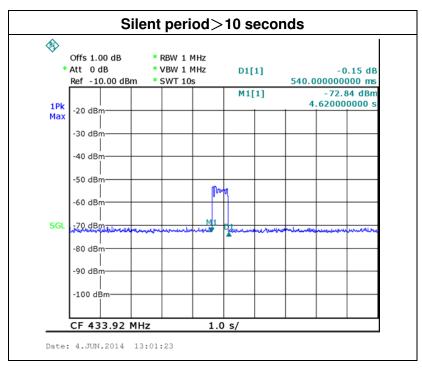


Test Mode :	TX Mode	TX141V2

Test	Frequency	Silent period	Silent period limit	Dogult
Channel	(MHz)	(seconds)	(seconds)	Result
CH01	433.92	28.86	>10	PASS

Silent period =28.86 s > 30* 0.82 s = 24.6 s




Neutron Engineering Inc.

de_ TX141-BV2
(

Test	Frequency	Silent period	Silent period limit	Dogult
Channel	(MHz)	(seconds)	(seconds)	Result
CH01	433.92	29.34	>10	PASS

Silent period =29.34 s > 30* 0.54 s = 16.2 s

