#### APPLICATION CERTIFICATION

On Behalf of La Crosse Technology

Temperature transmitter Model No.: TX43U

FCC ID: OMO-M-13

Prepared for : La Crosse Technology

Address : 2809 Losey Blvd. So. La Crosse WI 54601, USA

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20110647
Date of Test : April 20, 2011
Date of Report : April 28, 2011

#### TABLE OF CONTENTS

Description

| 1. GI | ENERAL INFORMATION                                                         |    |
|-------|----------------------------------------------------------------------------|----|
| 1.1.  | Description of Device (EUT)                                                | ∠  |
| 1.2.  | Description of Test Facility                                               |    |
| 1.3.  | Measurement Uncertainty                                                    | 5  |
| 2. M  | EASURING DEVICE AND TEST EQUIPMENT                                         | 6  |
| 3. SU | MMARY OF TEST RESULTS                                                      |    |
| 4. TH | IE FIELD STRENGTH OF RADIATION EMISSION                                    | 8  |
| 4.1.  | Block Diagram of Test Setup                                                | 8  |
| 4.2.  | The Field Strength of Radiation Emission Measurement Limits                | 9  |
| 4.3.  | Configuration of EUT on Measurement                                        |    |
| 4.4.  | Operating Condition of EUT                                                 |    |
| 4.5.  | Test Procedure                                                             |    |
| 4.6.  | The Field Strength of Radiation Emission Measurement Results               | 11 |
| 5. 20 | DB OCCUPIED BANDWIDTH                                                      | 13 |
| 5.1.  | Block Diagram of Test Setup                                                | 13 |
| 5.2.  | The Bandwidth of Emission Limit According To FCC Part 15 Section 15.231(c) |    |
| 5.3.  | EUT Configuration on Measurement                                           |    |
| 5.4.  | Operating Condition of EUT                                                 |    |
| 5.5.  | Test Procedure                                                             |    |
| 5.6.  | Measurement Result                                                         |    |
| 6. DU | JRATION TIME AND SILENT PERIOD MEASUREMENT                                 |    |

APPENDIX I (TEST CURVES) (9 pages)

**Test Report Certification** 

6.1.

6.2.

6.3. 6.4.

6.5. 6.6.

7.

### **Test Report Certification**

**Applicant** : La Crosse Technology Manufacturer : La Crosse Technology EUT Description : Temperature transmitter

> (A) Model No.: TX43U (B) Serial No.: N/A

(C) Power Supply: DC 3V ("AA" batteries 2×)

Measurement Procedure Used:

#### FCC Rules and Regulations Part 15 Subpart C Section 15.231 ANSI 63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.231 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

| Date of Test :                | April 20, 2011         |  |
|-------------------------------|------------------------|--|
| Prepared by :                 | Vi wy Chen             |  |
|                               | (Kitty Chen, Engineer) |  |
| Approved & Authorized Signer: | Lemb                   |  |
|                               | (Sean Liu, Manager)    |  |

#### 1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Temperature transmitter

Model Number : TX43U

Operation Frequency : 433.92MHz

Power Supply : DC 3V ("AA" batteries  $2\times$ )

Applicant : La Crosse Technology

Address : 2809 Losey Blvd. So. La Crosse WI 54601, USA

Manufacturer : La Crosse Technology

Address : 2809 Losey Blvd. So. La Crosse WI 54601, USA

Date of sample received: April 18, 2011

Date of Test : April 20, 2011

#### 1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

#### 1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

# 2. MEASURING DEVICE AND TEST EQUIPMENT

**Table 1: List of Test and Measurement Equipment** 

| Kind of equipment | Manufacturer  | Type               | S/N        | Calibrated until |
|-------------------|---------------|--------------------|------------|------------------|
| EMI Test Receiver | Rohde&Schwarz | ESCS30             | 100307     | Jan. 15, 2012    |
| EMI Test Receiver | Rohde&Schwarz | ESPI3              | 101526/003 | Jan. 15, 2012    |
| Spectrum Analyzer | Agilent       | E7405A             | MY45115511 | Jan. 15, 2012    |
| Pre-Amplifier     | Rohde&Schwarz | CBLU118354<br>0-01 | 3791       | Jan. 15, 2012    |
| Loop Antenna      | Schwarzbeck   | FMZB1516           | 1516131    | Jan. 15, 2012    |
| Bilog Antenna     | Schwarzbeck   | VULB9163           | 9163-323   | Jan. 15, 2012    |
| Horn Antenna      | Schwarzbeck   | BBHA9120D          | 9120D-655  | Jan. 15, 2012    |
| Horn Antenna      | Schwarzbeck   | BBHA9170           | 9170-359   | Jan. 15, 2012    |
| LISN              | Rohde&Schwarz | ESH3-Z5            | 100305     | Jan. 15, 2012    |
| LISN              | Schwarzbeck   | NSLK8126           | 8126431    | Jan. 15, 2012    |

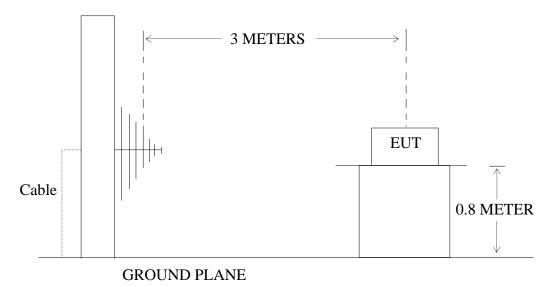
## 3. SUMMARY OF TEST RESULTS

| FCC Rules         | <b>Description of Test</b>                  | Result    |
|-------------------|---------------------------------------------|-----------|
| Section 15.207    | Conducted Emission                          | N/A       |
| Section 15.231(e) | Radiated Emission                           | Compliant |
| Section 15.231(c) | 20dB Bandwidth                              | Compliant |
| Section 15.231(e) | Duration time and silent period measurement | Compliant |

Remark: "N/A" means "Not applicable".

#### 4. THE FIELD STRENGTH OF RADIATION EMISSION

#### 4.1.Block Diagram of Test Setup


4.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Temperature transmitter)

4.1.2.Semi-anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Temperature transmitter)

#### 4.2. The Field Strength of Radiation Emission Measurement Limits

#### 4.2.1.Radiation Emission Measurement Limits According to Section 15.231(e)

| Frequency Range of Fundamental [MHz] | Field Strength of Fundamental Emission [Average] [µV/m] | Field Strength of Spurious Emission [Average] [µV/m] |
|--------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| 40.66-40.70                          | 1000                                                    | 100                                                  |
| 70-130                               | 500                                                     | 50                                                   |
| 130-174                              | 500 - 1500                                              | 50-150                                               |
| 174-260                              | 1500                                                    | 150                                                  |
| 260-470                              | 1500-5000                                               | 150-500                                              |
| Above 470                            | 5000                                                    | 500                                                  |

Where F is the frequency in MHz, The formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174MHz,  $\mu$ V/m at 3 meters=22.72727(F)-2454.545; For the band 260-470MHz,  $\mu$ V/m at 3 meters=16.6667(F)-2833.3333. The maximum permissible unwanted emission level is 20dB below the maximum permitted fundamental level.

4.2.2.Restricted Band Radiation Emission Measurement Limits According to FCC part 15 Section 15.205 and Section15.209.

#### 4.3. Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. Temperature transmitter (EUT)

Model Number : TX43U Serial Number : N/A

Manufacturer : La Crosse Technology

#### 4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2.Turn on the power of all equipment.
- 4.4.3.Let the EUT work in measuring mode (TX) measure it.

#### 4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI 63.4 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz, and 1MHz in 1000-5000MHz.

The frequency range from 30MHz to 5000MHz is checked.

# 4.6. The Field Strength of Radiation Emission Measurement Results **PASS**.

The frequency range 30MHz to 5000MHz is investigated.

| Date of Test: | April 20, 2011          | Temperature:   | 25°C  |
|---------------|-------------------------|----------------|-------|
| EUT:          | Temperature transmitter | Humidity:      | 50%   |
| Model No.:    | TX43U                   | Power Supply:  | DC 3V |
| Test Mode:    | TX                      | Test Engineer: | PEI   |

| Frequency (MHz) | Reading (dBµV/m) | Factor<br>Corr. | Average<br>Factor | Result(c | dBμV/m) | Limit(c | dBμV/m) | Margi  | in(dB) | Polarization |
|-----------------|------------------|-----------------|-------------------|----------|---------|---------|---------|--------|--------|--------------|
|                 | PEAK             | (dB)            | (dB)              | AV       | PEAK    | AV      | PEAK    | AV     | PEAK   |              |
| 433.9379        | 53.74            | 22.95           | -13.31            | 63.38    | 76.69   | 72.8    | 92.8    | -9.42  | -16.11 |              |
| 867.8758        | 20.83            | 28.64           | -13.31            | 36.16    | 49.47   | 52.8    | 72.8    | -16.64 | -23.33 |              |
| *1301.814       | 65.87            | -12.20          | -13.31            | 40.36    | 53.67   | 54.0    | 74.0    | -13.64 | -20.33 |              |
| 1735.752        | 58.36            | -10.39          | -13.31            | 34.66    | 47.97   | 52.8    | 72.8    | -18.14 | -24.83 | Horizontal   |
| 2169.689        | 56.58            | -8.38           | -13.31            | 34.89    | 48.20   | 52.8    | 72.8    | -17.91 | -24.60 |              |
| 2603.627        | 51.37            | -6.72           | -13.31            | 31.34    | 44.65   | 52.8    | 72.8    | -21.46 | -28.15 |              |
| 433.9375        | 55.36            | 22.95           | -13.31            | 65.00    | 78.31   | 72.8    | 92.8    | -7.80  | -14.49 |              |
| 867.8750        | 22.39            | 28.64           | -13.31            | 37.72    | 51.03   | 52.8    | 72.8    | -15.08 | -21.77 |              |
| *1301.813       | 67.97            | -12.20          | -13.31            | 42.46    | 55.77   | 54.0    | 74.0    | -11.54 | -18.23 | X7 .' 1      |
| 1735.750        | 53.47            | -10.39          | -13.31            | 39.77    | 53.08   | 52.8    | 72.8    | -13.03 | -19.72 | Vertical     |
| 2169.688        | 57.24            | -8.38           | -13.31            | 35.55    | 48.86   | 52.8    | 72.8    | -17.25 | -23.94 |              |
| 2603.625        | 51.13            | -6.72           | -13.31            | 31.10    | 44.41   | 52.8    | 72.8    | -21.70 | -28.39 |              |

#### Note:

- 1. The lab use average detector to perform average measurement. The report shows average factor and average results were calculated by using average factor calculation method.
- 2. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 3. \*: Denotes restricted band of operation.

Measurements were made using a peak detector. Average results were calculated by using average factor calculation method. Any emission falling within the restricted bands of FCC Part 15 Section 15.205 were compliance with the emission limit of FCC Part 15 Section 15.209.

4. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

5. FCC Limit for Average Measurement =  $16.6667(433.9)-2833.3333 = 4383.35 \mu V/m = 72.8 dB \mu V/m$ 

6. Pulse Desensitization Correction Factor

Pulse Width (PW) = 25.9 ms

1/PW = 1/25.9ms = 0.0386 kHz

RBW (10 kHz) > 1/PW (0.0386 kHz)

Therefore PDCF is not needed.

7. The report shows average factor and average results were calculated by using average factor calculation method.

#### 5. 20DB OCCUPIED BANDWIDTH

#### 5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Temperature transmitter)

#### 5.1.2.Semi-anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Temperature transmitter)

#### 5.2. The Bandwidth of Emission Limit According To FCC Part 15 Section

15.231(c)

The bandwidth of emission shall be no wider than 0.25% of the center frequency. Therefore, the bandwidth of the emission limit is  $433.9 \text{MHz} \times 0.25\% = 1084.75 \text{kHz}$ . Bandwidth is determined at the two points 20 dB down from the top of modulated carrier.

#### 5.3.EUT Configuration on Measurement

The following equipment are installed on the bandwidth of emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. Temperature transmitter (EUT)

Model Number : TX43U Serial Number : N/A

Manufacturer : La Crosse Technology

#### 5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3.Let the EUT work in measuring mode (TX) measure it.

#### 5.5.Test Procedure

- 5.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 10kHz, VBW = 30kHz, Span = 500kHz.
- 5.5.2.Set SPA Max hold. Mark peak, -20dB

#### 5.6. Measurement Result

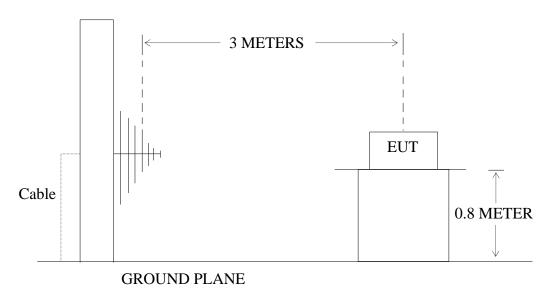
#### The EUT does meet the FCC requirement.

-20dB bandwidth = 10.4 kHz < 1084.75 kHz.

The spectral diagrams in appendix I.

#### 6. DURATION TIME AND SILENT PERIOD MEASUREMENT

#### 6.1.Block Diagram of Test Setup


6.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Temperature transmitter)

6.1.2.Semi-anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Temperature transmitter)

#### 6.2. Duration Time and silent period measurement according to FCC Part 15

Section 15.231(e)

Section 15.231(e) In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

#### 6.3.EUT Configuration on Measurement

The following equipment are installed on duration time and silent period measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.Temperature transmitter (EUT)

Model Number : TX43U Serial Number : N/A

Manufacturer : La Crosse Technology

#### 6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in measuring mode (TX) measure it.

#### 6.5.Test Procedure

6.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 10kHz,

VBW = 30kHz, Span = 0Hz.

- 6.5.2.Set EUT as normal operation.
- 6.5.3.Set SPA View. Delta Mark time.

#### 6.6. Measurement Result

#### The EUT does meet the FCC requirement.

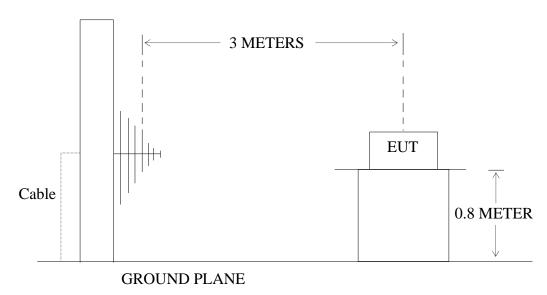
Duration time = 0.956 s < 1 s

Silent period = 55.84 seconds > 30 times the duration of the transmission > 10 seconds

The spectral diagrams in appendix I.

#### 7. AVERAGE FACTOR MEASUREMENT

#### 7.1.Block Diagram of Test Setup


7.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Temperature transmitter)

7.1.2.Semi-anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Temperature transmitter)

#### 7.2. Average factor Measurement according to ANSI 63.4: 2003

ANSI 63.4: 2003 Section 13.1.4.2 Devices transmitting pulsed emissions and subject to a limit requiring an average detector function for radiated emissions shall initially be measured with an instrument that uses a peak detector. A radiated emission measured with a peak detector may then be corrected to a true average using the appropriate factor for emission duty cycle. This correction factor relates the measured peak level to the average limit and is derived by averaging absolute field strength over one complete pulse train that is 0.1 s, or less, in length. If the pulse train is longer than 0.1 s, the average shall be determined from the average absolute field strength during the 0.1 s interval in which the field strength is at a maximum. Instructions on calculating the duty cycle of a transmitter with pulsed emissions are provided in ANSI 63.4 H.4, step j.

Average factor in  $dB = 20 \log (duty cycle)$ 

#### 7.3.EUT Configuration on Measurement

The following equipment are installed on average factor Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1. Temperature transmitter (EUT)

Model Number : TX43U Serial Number : N/A

Manufacturer : La Crosse Technology

#### 7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in measuring mode (TX) measure it.

#### 7.5.Test Procedure

- 7.5.1.The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation.
- 7.5.2.Set SPA Center Frequency = Fundamental frequency, RBW = 10kHz,

VBW = 30kHz, Span = 0Hz.

- 7.5.3.Set EUT as normal operation.
- 7.5.4.Set SPA View. Delta Mark time.

#### 7.6. Measurement Result

#### The duty cycle is simply the on time divided by the period:

The duration of one cycle = 120ms Effective period of the cycle =  $37 \times 0.7$  ms= 25.9ms

DC = 25.9 ms / 120 ms = 0.216

#### Therefore, the average factor is found by $20\log 0.216 = -13.31dB$

The spectral diagrams in appendix I.

# APPENDIX I (Test Curves)



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

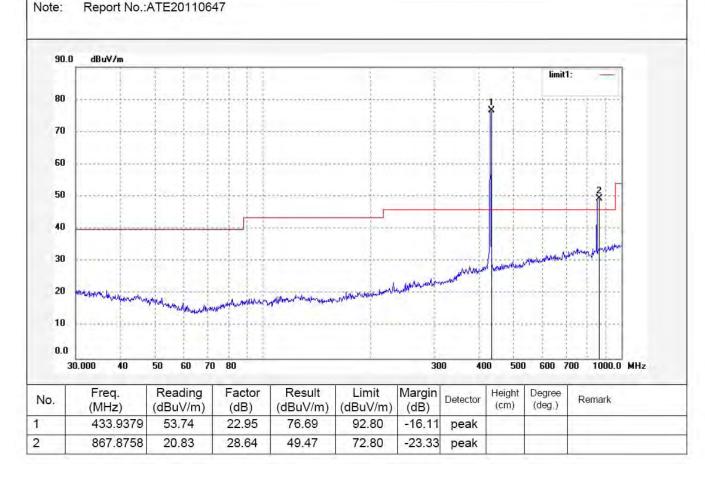
Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: pei #3497

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.( C)/Hum.(%) 25 C / 51 % EUT: Temperature transmitter


Mode: Model: TX43U

Manufacturer: La Crosse Technology

Report No.:ATE20110647

Polarization: Horizontal Power Source: DC 3V Date: 2011/04/20

Time: 12:49:36 Engineer Signature: PEI





F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: pei #3498

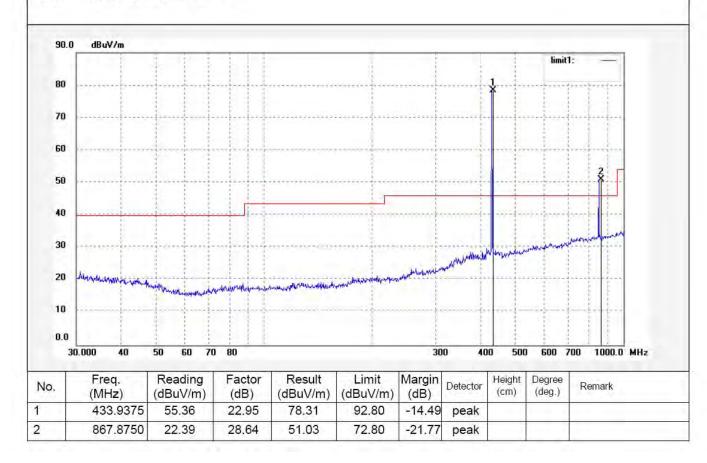
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.( C)/Hum.(%) 25 C / 51 % EUT: Temperature transmitter

Mode: TX

Model: TX43U


Manufacturer: La Crosse Technology

Note: Report No.:ATE20110647

Polarization: Vertical Power Source: DC 3V Date: 2011/04/20

Time: 13:02:45

Engineer Signature: PEI





F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

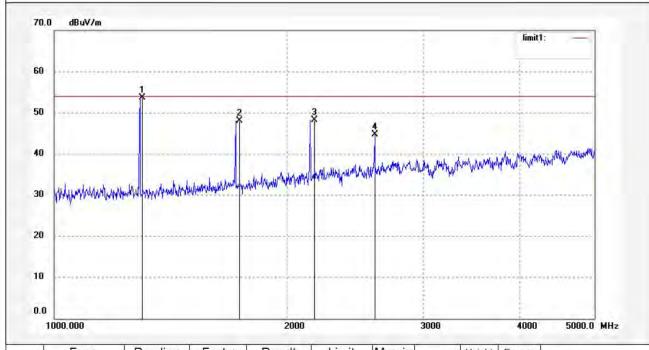
Job No.: pei #3500

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.( C)/Hum.(%) 25 C / 51 % EUT: Temperature transmitter

Mode: TX Model: TX43U


Manufacturer: La Crosse Technology

lote: Report No.:ATE20110647

Polarization: Horizontal Power Source: DC 3V

Date: 2011/04/20 Time: 13:25:25

Engineer Signature: PEI



| No. | Freq.<br>(MHz) | Reading (dBuV/m) | Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height (cm) | Degree<br>(deg.) | Remark |  |
|-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|--|
| 1   | 1301.814       | 65.87            | -12.20         | 53.67              | 74.00             | -20.33         | peak     |             |                  |        |  |
| 2   | 1735.752       | 58.36            | -10.39         | 47.97              | 72.80             | -24.83         | peak     |             |                  |        |  |
| 3   | 2169.689       | 56.58            | -8.38          | 48.20              | 72.80             | -24.60         | peak     |             |                  |        |  |
| 4   | 2603.627       | 51.37            | -6.72          | 44.65              | 72.80             | -28.15         | peak     | 1           |                  |        |  |



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: pei #3499

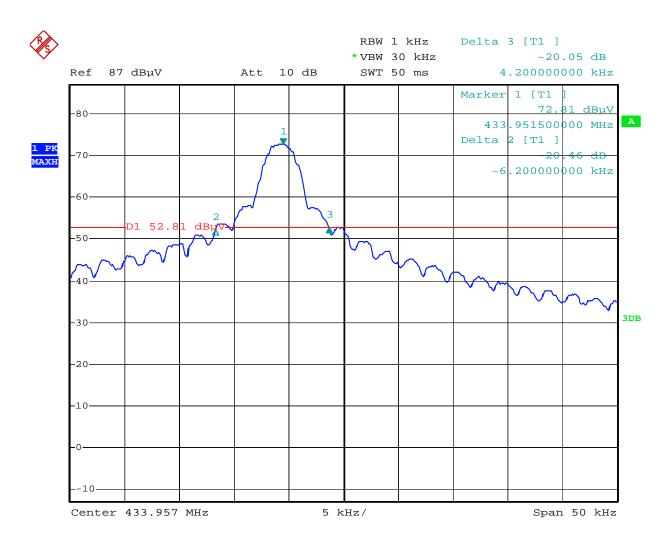
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

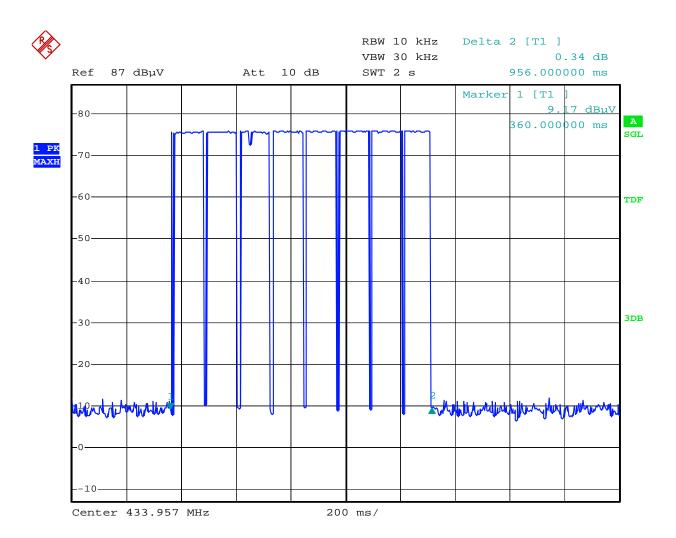
Temp.( C)/Hum.(%) 25 C / 51 % EUT: Temperature transmitter

Mode: TX Model: TX43U

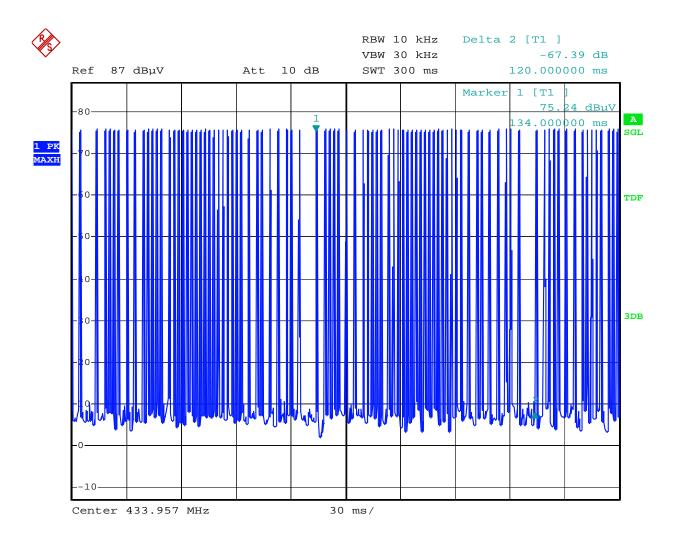
Manufacturer: La Crosse Technology


Note: Report No.:ATE20110647

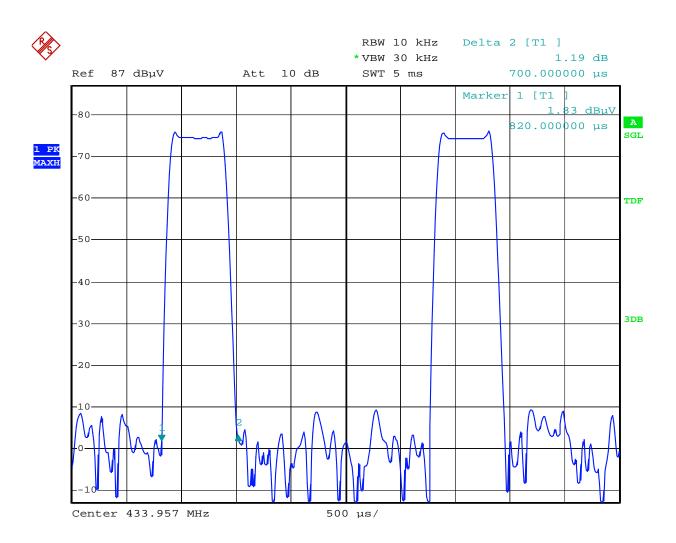
Polarization: Vertical Power Source: DC 3V


Date: 2011/04/20 Time: 13:14:09

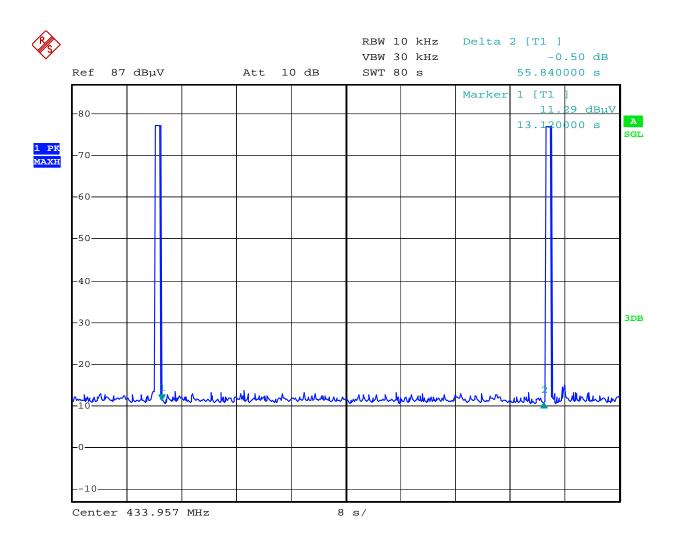
Engineer Signature: PEI


| o. Freq. Reading Factor Result Limit Margin Detector (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m)                                                                                                                                                               |    |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                          |                          |                | limit1         | -                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|--------------------------|--------------------------|----------------|----------------|---------------------|---|
| 30 WAND WAND WAND WAND WAND WAND WAND WAND                                                                                                                                                                                                                                                 | 60 |                                      | į.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                          | ļ                        |                |                |                     |   |
| 20                                                                                                                                                                                                                                                                                         | 50 | 28-24-38-4-4-8-4                     |                        | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | 3                          |                          |                          | ******         |                | ******              |   |
| 20                                                                                                                                                                                                                                                                                         | 40 |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            | in makansa kultan        | duide planten h          | han market his | WAR WEST       | tallical lateralism | , |
| 20                                                                                                                                                                                                                                                                                         | 30 | nloophyalaharah                      | HAVING WAY             | physiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysiophysio | calcined distributions and          | holden bloom hayen a state |                          | K. C. WA                 |                | 1              |                     |   |
| 0.0 2000 3000 4000 5000.00  Freq. Reading (dBuV/m) (dB) Result (dBuV/m) (dB) Detector (cm) Degree (deg.) Remark                                                                                                                                                                            |    |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                          |                          |                |                |                     |   |
| 0.0         1000.000         2000         3000         4000         5000.0           0.         Freq. (MHz)         Reading (dBuV/m)         Factor (dBuV/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Detector (cm)         Degree (deg.)         Remark |    |                                      |                        | ×+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                            |                          | ļ                        |                |                |                     |   |
| 1000.000         2000         3000         4000         5000.0           b.         Freq. (MHz)         Reading (dBuV/m)         Factor (dBuV/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Detector (cm)         Degree (deg.)         Remark         | 20 |                                      | ~***                   | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                            | P*********               | -                        |                |                | **********          |   |
| (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (cm) (deg.)                                                                                                                                                                                                                                     | 20 |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                          |                          |                |                |                     |   |
|                                                                                                                                                                                                                                                                                            | 20 |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                          |                          | ******         |                | 5000.0              |   |
| 155.1515 5.151                                                                                                                                                                                                                                                                             | 20 | 00.000<br>Freq.                      | Reading                | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000<br>Result                      | Limit                      | Margin                   | 3000                     | Height         | 4000<br>Degree | 5000.0              |   |
| 1735.750 63.47 -10.39 53.08 72.80 -19.72 peak                                                                                                                                                                                                                                              | 20 | 00.000<br>Freq.                      | Reading                | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000<br>Result                      | Limit                      | Margin                   | 3000<br>Detector         | Height         | 4000<br>Degree | 5000.0              |   |
| 2169.688 57.24 -8.38 48.86 72.80 -23.94 peak                                                                                                                                                                                                                                               | 20 | 00.000<br>Freq.<br>(MHz)<br>1301.813 | Reading (dBuV/m) 67.97 | Factor<br>(dB)<br>-12.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000<br>Result<br>(dBuV/m)<br>55.77 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-18.23 | 3000<br>Detector<br>peak | Height         | 4000<br>Degree | 5000.0              |   |




-20dB bandwidth is 10.4 kHz.




The graph shows the duration time is 956 ms.



The duration of one cycle is 120 ms; it shows 37 'on' signals.



The graph shows the duration of 'on' signal. From marker 1 to marker 2, duration is 0.7 ms.



Date: 28.MAR.2011 18:36:29

The graphs show the silent period of 'off' signal, silent period is 55.84 s.