FCC CERTIFICATION On Behalf of La Crosse Technology

Thermo-hygro sensor Model No.: TX62UTH-IT

FCC ID: OMO-M-10

Prepared for : La Crosse Technology

Address : 2809 Losey Blvd. So. La Crosse WI 54601, USA

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A&D, Changyuan New Material Port, Keyuan

Rd., Science & Industry Park, Nanshan District, Shenzhen

518057, P. R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20110531
Date of Test : March 19-21, 2011
Date of Report : March 30, 2011

TABLE OF CONTENTS

Descri	ption [Page
Test R	eport Certification	
	•	4
	ENERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2. 1.3.	Description of Test Facility	
	· · · · · · · · · · · · · · · · · · ·	
	EASURING DEVICE AND TEST EQUIPMENT	
3. SU	JMMARY OF TEST RESULTS	7
4. FU	UNDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.24	9(A) 8
4.1.	Block Diagram of Test Setup	8
4.2.	The Emission Limit	
4.3.	Configuration of EUT on Measurement	9
4.4.	Operating Condition of EUT	
4.5.	Test Procedure	
4.6.	The Field Strength of Radiation Emission Measurement Results	
5. SP	PURIOUS RADIATED EMISSION FOR SECTION 15.249(D)	14
5.1.	Block Diagram of Test Setup	14
5.2.	The Emission Limit for Section 15.249(d)	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	The Emission Measurement Result	
6. BA	AND EDGES	
6.1.	The Requirement	
6.2.	EUT Configuration on Measurement	
6.3.	Operating Condition of EUT	
6.4.	Test Procedure	
6.5.	The Measurement Result	
7. AN	NTENNA REQUIREMENT	23

APPENDIX I (TEST CURVES) (16 pages)

7.1.

7.2.

Test Report Certification

Applicant : La Crosse Technology EUT Description : Thermo-hygro sensor

(A) MODEL NO.: TX62UTH-IT

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: 3V DC ("AAA" batteries 2×)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO., LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.249 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO., LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO., LTD.

Date of Test :	March 19-21, 2011
Prepared by :	Joe Car
	(Engineer)
Approved & Authorized Signer :	(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Thermo-hygro sensor

Model Number : TX62UTH-IT

Power Supply : 3V DC ("AAA" batteries $2 \times$)

Transmitting Frequency: Channel 1: 903MHz

Channel 2: 915MHz Channel 3: 927MHz

Channel Number : 3 Channels

Applicant : La Crosse Technology

Address : 2809 Losey Blvd. So. La Crosse WI 54601, USA

Date of sample received: March 17, 2011

Date of Test : March 19-21, 2011

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

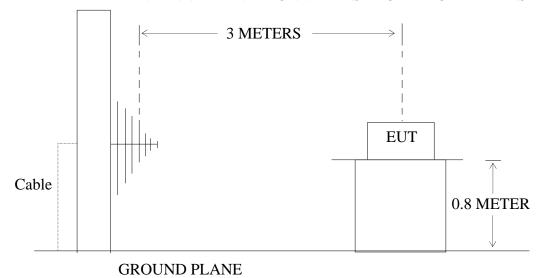
Kind of equipment	Manufacturer	Type	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 15, 2012
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 15, 2012
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 15, 2012
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 15, 2012
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2012
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2012
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2012
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2012
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 15, 2012
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 15, 2012

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.249(a)	Fundamental and Harmonics Radiated Emission	Compliant
Section 15.249(d)	Spurious Radiated Emission	Compliant
Section 15.249(d)	Band Edge	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

4. FUNDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249(A)


- 4.1.Block Diagram of Test Setup
 - 4.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Thermo-hygro sensor)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

(EUT: Thermo-hygro sensor)

4.2. The Emission Limit

4.2.1.For intentional radiators, According to section 15.249(a), Operation within the frequency band of 902 to 928MHz, The fundamental field strength shall not exceed 94 dB μ V/m and the harmonics shall not exceed 54 dB μ V/m.

Fundamental	Field Strength of Fundamental	Field Strength of harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

4.2.2.According to section 15.249(e), as shown in section 15.35(b), the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3. Configuration of EUT on Measurement

The following equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1.Thermo-hygro sensor (EUT)

Model Number : TX62UTH-IT

Serial Number : N/A

Manufacturer : La Crosse Technology

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX mode measure it. The transmit frequency are 903MHz, 915MHz, 927MHz.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz, and set at 1MHz in above 1000MHz.

4.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test: March 19, 2011

EUT: Thermo-hygro sensor

Model No.: TX62UTH-IT

Test Mode: TX 903MHz

Temperature: 21°C

Humidity: 55%

Power Supply: 3V DC ("AAA" batteries 2×)

Test Engineer: Joe

Fundamental Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB)	Result(dBµV/m)	Limit(dBµV/m)	Margin(dB)	Polarization
(MHz)	QP	Corr.	QP	QP	QP	
902.9800	40.29	28.79	69.08	94	-24.92	Vertical
902.9800	41.13	28.79	69.92	94	-24.08	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(c	lBμV/m)	Limit(dI	BμV/m)	Marg	in(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
1805.978	52.36	54.90	-9.99	42.37	44.91	54	74	-11.63	-29.09	
3611.970	44.30	46.78	-2.76	41.54	44.02	54	74	-12.46	-29.98	Vertical
1805.978	45.33	47.87	-9.99	35.34	37.88	54	74	-18.66	-36.123	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:March 19, 2011Temperature:21°CEUT:Thermo-hygro sensorHumidity:55%Model No.:TX62UTH-ITPower Supply:3V DC ("AAA" batteries 2×)Test Mode:TX 915MHzTest Engineer:Joe

Fundamental Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB)	Result(dBµV/m)	Limit(dBµV/m)	Margin(dB)	Polarization
(MHz)	QP	Corr.	QP	QP	QP	
914.9810	37.82	28.92	66.74	94	-27.26	Vertical
914.9810	39.61	28.92	68.53	94	-25.47	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(c	lBμV/m)	Limit(dl	BμV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
1829.982	52.08	53.63	-9.73	42.35	43.90	54	74	-11.65	-30.10	
3659.979	48.74	51.26	-2.56	46.18	48.70	54	74	-7.82	-25.30	Vertical
1829.982	47.06	49.59	-9.73	37.33	39.86	54	74	-16.67	-34.14	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:March 19, 2011Temperature:21°CEUT:Thermo-hygro sensorHumidity:55%Model No.:TX62UTH-ITPower Supply:3V DC ("AAA" batteries 2×)Test Mode:TX 927MHzTest Engineer:Joe

Fundamental Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB)	Result(dBµV/m)	Limit(dBµV/m)	Margin(dB)	Polarization
(MHz)	QP	Corr.	QP	QP	QP	
926.9840	36.69	29.19	65.88	94	-28.12	Vertical
926.9840	36.59	29.19	65.78	94	-28.22	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(c	lBμV/m)	Limit(dI	BμV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
1853.983	50.92	53.45	-9.54	41.38	43.91	54	74	-12.62	-30.09	
3707.980	46.02	48.54	-2.38	43.64	46.16	54	74	-10.36	-27.84	Vertical
1853.983	47.47	49.99	-9.54	37.93	40.45	54	74	-16.07	-33.55	Horizontal

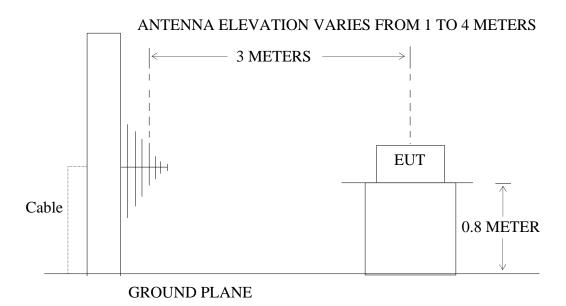
Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

5. SPURIOUS RADIATED EMISSION FOR SECTION 15.249(D)


5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

(EUT: Thermo-hygro sensor)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: Thermo-hygro sensor)

5.2. The Emission Limit for Section 15.249(d)

5.2.1.Emission radiated outside of the specified frequency bands, except for harmonics, shall be comply with the general radiated emission limits in Section 15.209.

Radiation Emission Measurement Limits According to Section 15.209

					
		Limit			
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is		
30 - 88	100	40	performed with Average detector.		
88 - 216	150	43.5	Except those frequency bands mention above, the		
216 - 960	200	46	final measurement for frequencies below		
Above 960	500	54	1000MHz is performed with Quasi Peak detector.		

5.3.EUT Configuration on Measurement

The following equipment is installed on the Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.Thermo-hygro sensor (EUT)

Model Number : TX62UTH-IT

Serial Number : N/A

Manufacturer : La Crosse Technology

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in TX mode measure it. The transmit frequency are 903MHz, 915MHz, 927MHz.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz, and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 10000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

5.6. The Emission Measurement Result

PASS.

Date of Test:	March 19, 2011	Temperature:	21°C
EUT:	Thermo-hygro sensor	Humidity:	55%
Model No.:	TX62UTH-IT	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 903MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

 $Result = Reading + Corrected \ Factor$

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	March 19, 2011	Temperature:	21°C
EUT:	Thermo-hygro sensor	Humidity:	55%
Model No.:	TX62UTH-IT	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 915MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

 $Result = Reading + Corrected \ Factor$

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	March 19, 2011	Temperature:	21°C
EUT:	Thermo-hygro sensor	Humidity:	55%
Model No.:	TX62UTH-IT	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 927MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

 $Result = Reading + Corrected \ Factor$

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

6. BAND EDGES

6.1.The Requirement

6.1.1.Band Edge from 902MHz to 928MHz. Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.2.EUT Configuration on Measurement

The following equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1.Thermo-hygro sensor (EUT)

Model Number : TX62UTH-IT

Serial Number : N/A

Manufacturer : La Crosse Technology

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 4.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3. Let the EUT work in TX mode measure it. The transmit frequency are 903MHz, 915MHz, 927MHz. We select 903MHz, 927MHz TX frequency to transmit.

6.4. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

6.5. The Measurement Result

PASS.

Date of Test:	March 19, 2011	Temperature:	21°C
EUT:	Thermo-hygro sensor	Humidity:	55%
Model No.:	TX60UTH-IT	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 903MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
902.000	7.54	28.78	36.32	46	-9.68	Vertical
902.000	8.84	28.78	37.62	46	-8.38	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

 $Result = Reading + Corrected \ Factor$

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	March 19, 2011	Temperature:	21°C
EUT:	Thermo-hygro sensor	Humidity:	55%
Model No.:	TX62UTH-IT	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 927MHz	Test Engineer:	Joe

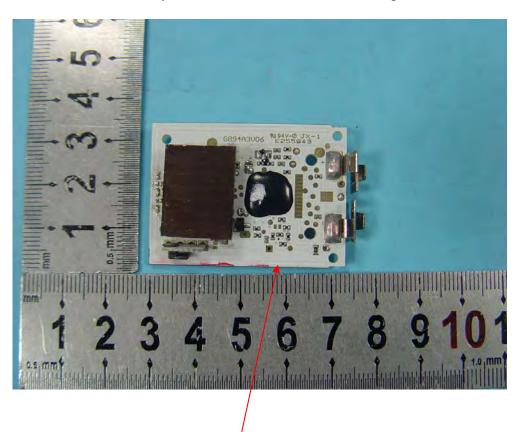
Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
928.000	3.51	29.22	32.73	46	-13.27	Vertical
928.000	4.29	29.22	33.51	46.	-12.49	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain


7. ANTENNA REQUIREMENT

7.1. The Requirement

7.1.1.According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2. Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement.

Antenna

APPENDIX I (Test Curves)

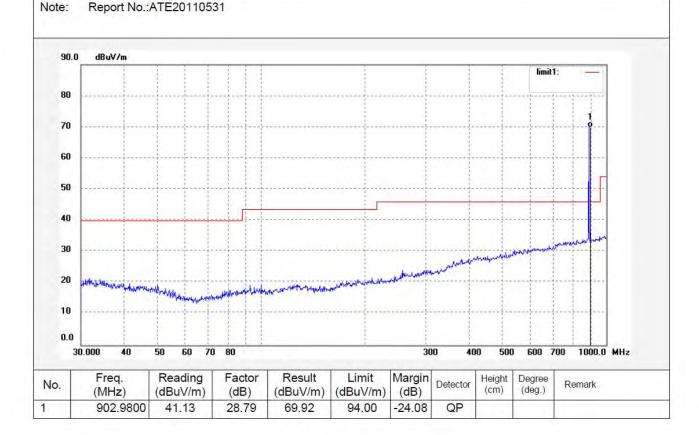
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6458

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor


Mode: TX 903MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19

Date: 2011/03/19 Time: 17:18:56

Engineer Signature: Joe

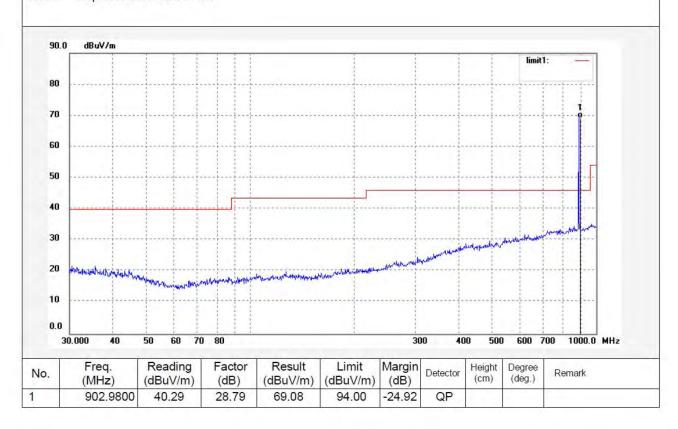
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6459

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor


Mode: TX 903MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Vertical Power Source: DC 3V Date: 2011/03/19 Time: 17:23:02

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

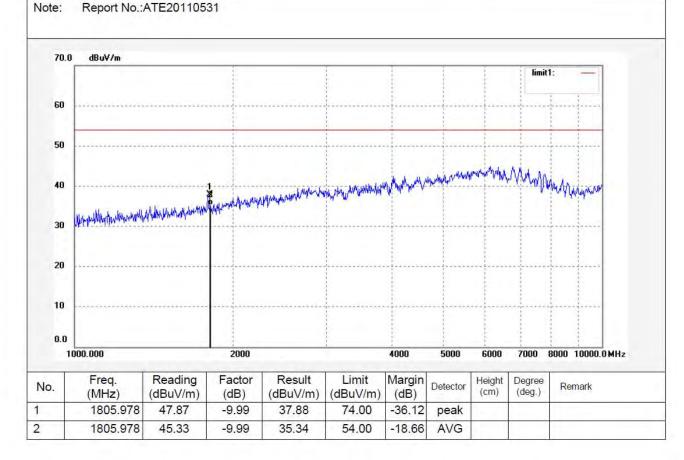
Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % Thermo-hygro sensor

EUT: Mode: TX 903MHz


Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Report No.:ATE20110531

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19 Time: 18:18:41

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

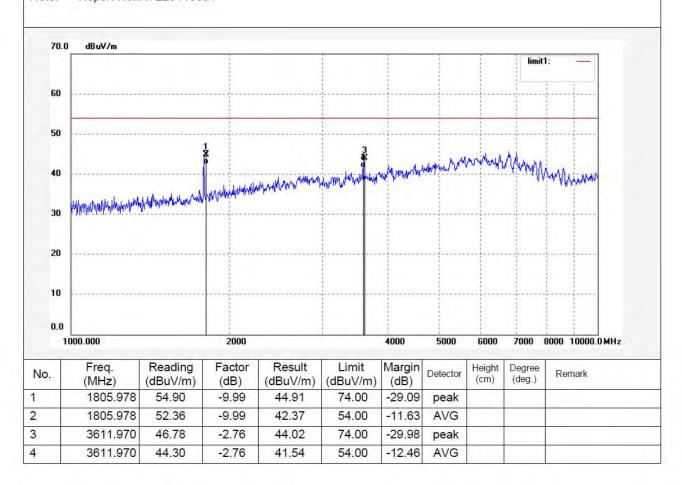
Job No.: RTTE #6468

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor

Mode: TX 903MHz


Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Vertical Power Source: DC 3V Date: 2011/03/19

Time: 18:14:35 Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6461

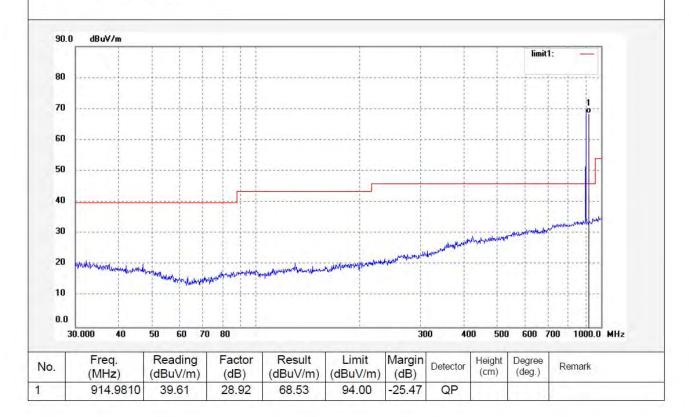
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 %

EUT: Thermo-hygro sensor

Mode: TX 915MHz Model: TX62UTH-IT


Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19

Time: 17:32:36

Engineer Signature: Joe

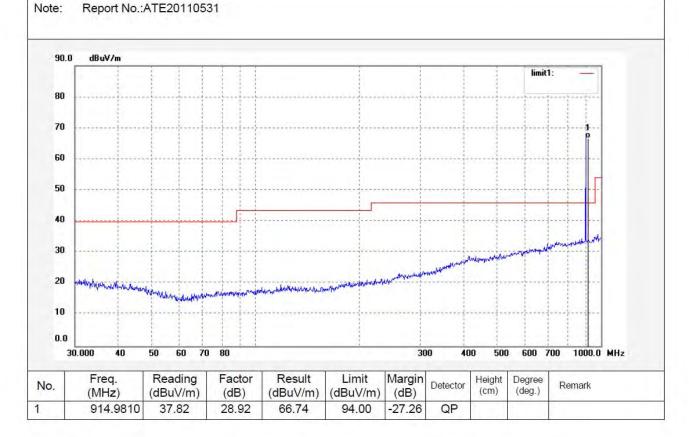
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6460

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor

Mode: TX 915MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Polarization: Vertical Power Source: DC 3V Date: 2011/03/19 Time: 17:28:28

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6470

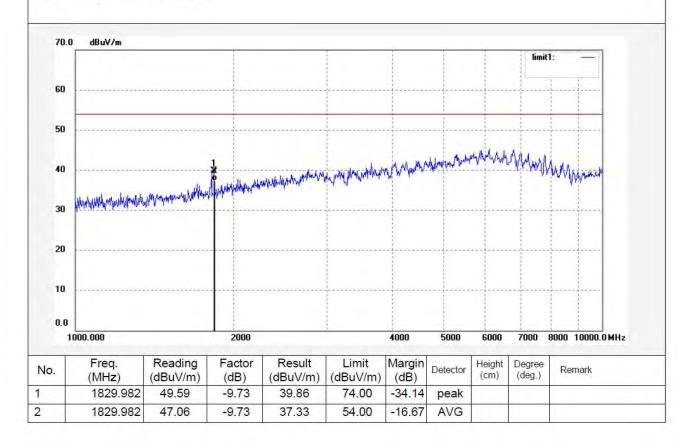
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor

Mode: TX 915MHz Model: TX62UTH-IT

Note:


Manufacturer: La Crosse Technology

Report No.:ATE20110531

Polarization: Horizontal
Power Source: DC 3V

Date: 2011/03/19 Time: 18:24:17

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6471

Standard: FCC Class B 3M Radiated

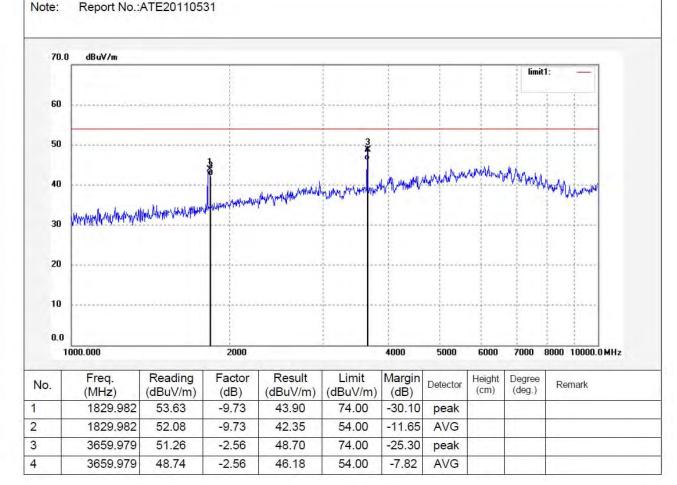
Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 %

EUT:

Thermo-hygro sensor

Mode: TX 915MHz


Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Report No.:ATE20110531

Polarization: Vertical Power Source: DC 3V Date: 2011/03/19 Time: 18:28:14

Engineer Signature: Joe

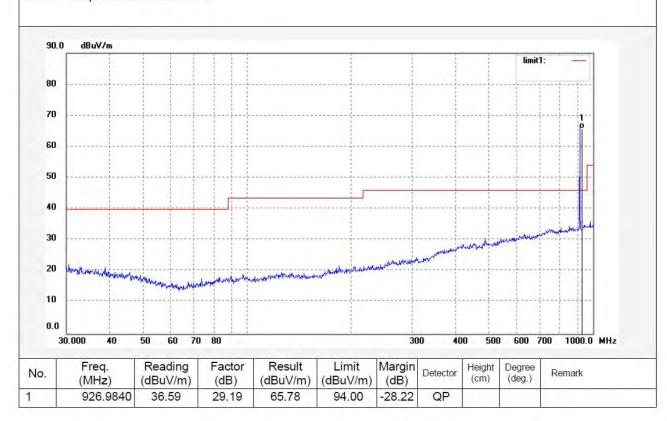
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6462

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor


Mode: TX 927MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19 Time: 17:38:12

Engineer Signature: Joe

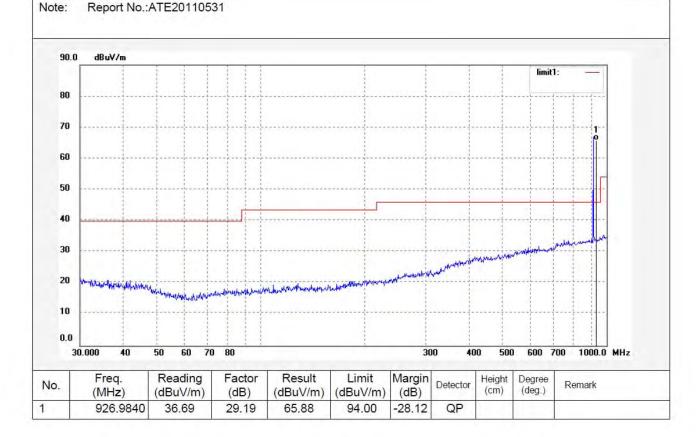
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6463

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor

Mode: TX 927MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Polarization: Vertical Power Source: DC 3V Date: 2011/03/19 Time: 17:42:25

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6473

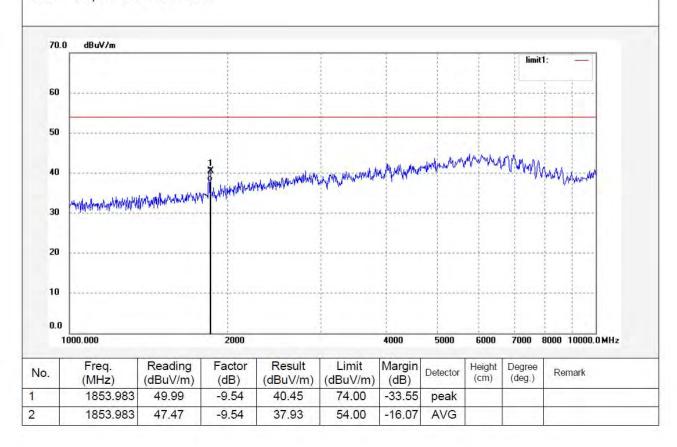
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 %

EUT: Thermo-hygro sensor

Mode: TX 927MHz Model: TX62UTH-IT


Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19

Time: 18:37:51

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

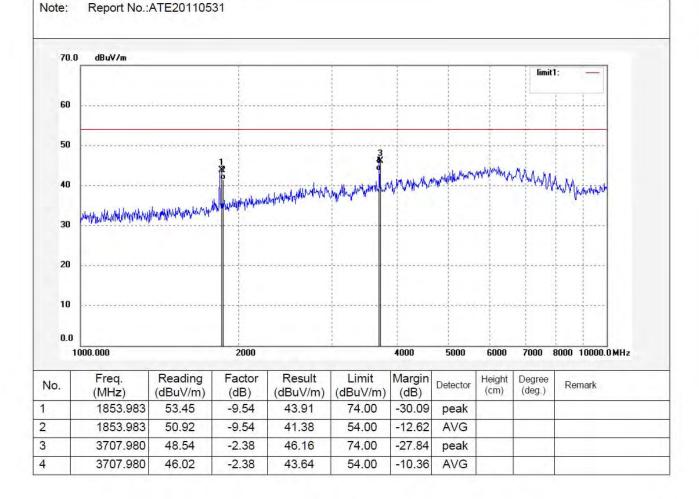
Job No.: RTTE #6472

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor

Mode: TX 927MHz Model: TX62UTH-IT


Manufacturer: La Crosse Technology

Polarization: Vertical Power Source: DC 3V Date: 2011/03/19

Engineer Signature: Joe

Distance: 3m

Time: 18:34:02

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #6466

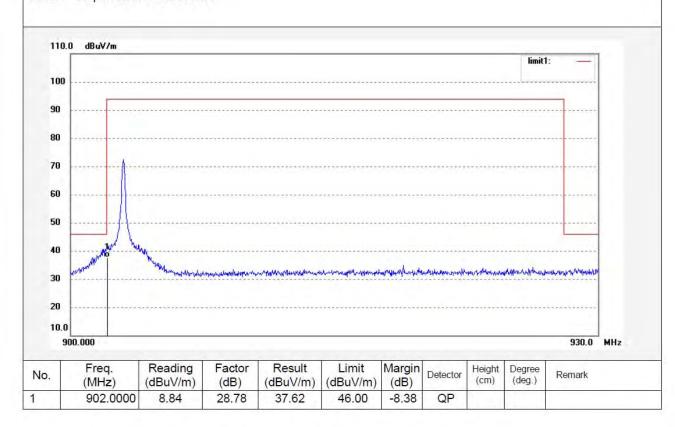
Standard: FCC Part 15 Band Edge

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 %

EUT: Thermo-hygro sensor Mode:

TX 903MHz


Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19 Time: 17:58:54

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Part 15 Band Edge

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 % EUT: Thermo-hygro sensor

Mode: TX 903MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Polarization: Power Source: DC 3V Date: 2011/03/19

Time: 18:02:48 Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

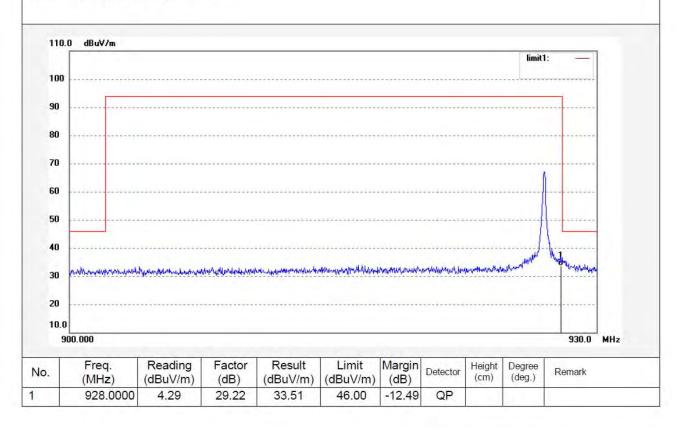
Job No.: RTTE #6465

Standard: FCC Part 15 Band Edge

Test item: Radiation Test

Temp.(C)/Hum.(%) 21 C / 55 %

EUT: Thermo-hygro sensor


Mode: TX 927MHz Model: TX62UTH-IT

Manufacturer: La Crosse Technology

Note: Report No.:ATE20110531

Polarization: Horizontal Power Source: DC 3V Date: 2011/03/19 Time: 17:53:03

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Part 15 Band Edge

Test item: Radiation Test

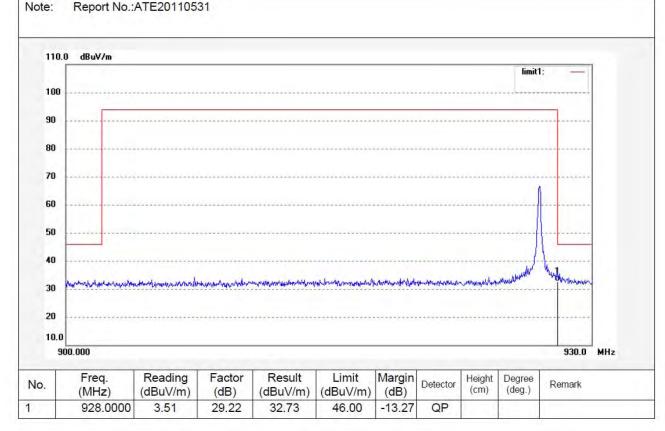
Temp.(C)/Hum.(%) 21 C / 55 %

EUT:

Thermo-hygro sensor

Mode: Model:

TX 927MHz TX62UTH-IT


Manufacturer: La Crosse Technology

Report No.:ATE20110531

Polarization: Power Source: DC 3V Date: 2011/03/19

Time: 17:49:14

Engineer Signature: Joe

