Certification Test Report - FCC/IC Report No: 155-0509001

HYPER CORP "Wireless That Works" "M

Address: 3000 Danville Blvd., Suite F-387

Alamo, CA 94507-1572

Phone +1.925.462.9105 Fax +1.925.280.7751

EMC Test Report FCC & IC

Applicant: Datalogic SpA Address Via Candini, 2

40012 Lippo di Calderara di Reno

Bologna - Italy

Phone +39 051 3147011 Fax +39 051 3147170

This document may not be reproduced without written consent from HYPER Corporation. Extracts are never permitted. After written consent from HYPER Corporation, the document must be reproduced in its entirety.

Bluetooth is a Trademark owned by Bluetooth SIG, Inc. and licensed to HYPER Corp.
HYPER Corp is a BLUETOOTH Qualification Test Facility (BQTF) and Member of the SIG

Certificate Number 1708-1 HYPER Corp is an Accredited Laboratory by The American Association For Laboratory Accreditation (A2LA) to ISO/IEC 17025-for the scope of BLUETOOTH Testing.

QCD0004 Rev 06 Page 1 of 25

Signature Page

HYPER Corporation personnel listed take responsibility for the content of this test report.

Reviewed		
	/Signed/	12/10/05
	Kurt Fischer	Date

1. List of Revisions

Version	Date	Author(s)	Description
001	10/25/2005	Tim Marquess	Initial Version
002	11/20/2005	Tim Marquess	Editorial Changes
003	12/10/2005	Tim Marquess	Editorial Changes

QCD0004 Page 2 of 25

TABLE OF CONTENTS

1.	List of Revisions	2
2.	Disclaimer Notice	4
3.	Reproduction Clause	4
4.	General Information	4
4.1	Identification of the EUT	4
4.2	Antenna Information	4
5.	Test Summary	5
5.1	Summary of Test Results	5
5.2	Test Specifications	5
5.3	Operation Mode	5
5.4	Documentation of test device	5
5.5	General and Special Conditions	5
5.6	Equipment and Cable Configurations	5
5.7	Test Setup Block Diagram(s)	6
6.	Test Results	6
6.1	AC-Line Conducted Emissions	6
6.1	.1 Measurement Procedure	6
6.1	.2 Test Data:	7
6.2	Carrier Frequency Separation	9
6.2		9
6.2		9
6.2		9
	Number of Hopping Frequencies	12
6.3	· ·	12
6.3	·	12
	Time of Occupancy (Dwell Time)	13
6.4	· · · · · · · · · · · · · · · · · · ·	13
6.4		13
6.4		13
6.5	20 dB Bandwidth	16
6.5	5.1 Operation Environment	16
6.5		16
6.5		16
6.6	Peak Output Power	18
6.6		18
6.6	•	18
6.6	5.3 Test data	18
6.7	Band-Edge Compliance of RF Conducted Emissions	19
6.7	'.1 Operation Environment	19
6.7	7.2 Test procedure	19
6.7	'.3 Test data	19
6.8	Radiated Spurious Emission (15.205, 15.209, 15.247)	21
6.8	3.1 Measurement Procedure	21
6.8	3.2 Test data	22

QCD0004 Page 3 of 25

Disclaimer Notice

This test report applies only to the EUT (Equipment Under Test) and the results of the specifications called out in this report. The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics. This Report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government.

3. Reproduction Clause

This document may not be reproduced without written consent from HYPER Corporation. Extracts are never permitted. After written consent from HYPER Corporation, the document must be reproduced in its entirety.

4. General Information

4.1 Identification of the EUT

Project Number	155-0507002
Manufacturer	Datalogic SpA
EUT/Model Number	Lynx
Date(s) tested	September 26 – October 25, 2005
Description of EUT	Wireless Barcode scanner and docking station
Condition of EUT	Received new production units in good quality
FCC IDs	OMJ0013 - Cradle
	OMJ0014 – Gun
Frequency Range:	2402 MHz ~ 2480 MHz
Number of Channels:	79
Frequency of Each Channel	2402 + k (MHz), k=0~78
Type of Modulation	GFSK
Hardware Version	
Software Version	N/A
Firmware Version	
Test Facilities	HYPER Corporation:
	1735 North First Street, Suite 311
	San Jose, Ca 95112-4511
	BACL Corp.
	230 Commercial Ave.
	Sunnyvale, CA

4.2 Antenna Information

Manufacturer.	Model Number	Freq. (MHz)	Peak Gain (dBi)	VSWR (max)	Z_0
Centurion	CAF95901	2400-2500	>2.0 (0 avg)	2.0	50Ω
Phycom	4311-111-00245	2400-2500	0-1.2	2.0	50Ω

QCD0004 Page 4 of 25

Test Summary

This test report is prepared for Datalogic SpA, Bluetooth Wireless Technology device(s).

5.1 Summary of Test Results

Test	FCC Ref	RSS-210 Ref	FCC
			Results
Line Conducted Emissions	15.207(a)	9.0	Compliant
Carrier Frequency Separation	15.247(a)(1)	6.2.2(o)(a1)	Compliant
Number of Hopping Frequencies	15.247(a)(1)(ii)	6.2.2(o)(a3)	Compliant
Time of Occupancy (Dwell Time)	15.247(a)(1)(ii)	6.2.2(o)(a3)	Compliant
20 dB Bandwidth	15.247(a)(1)(ii)	6.2.2(o)(a1)	Compliant
Peak Output Power	15.247(b)(1)	6.2.2(o)(a3)	Compliant
Band-edge Compliance of RF Conducted Emissions	15.247(c)	6.2.2(o)(d1)	Compliant
Spurious RF Conducted Emissions	15.247(c)	6.2.2(o)(e1)	Compliant
Spurious Emissions Radiated	15.209	6.2.2(o)(e1)	Compliant
RF Exposure	1.1307(b)(1) & 2.1091	(RSS-102)	Compliant ¹

Note:

5.2 Test Specifications

The EUT was tested according to the procedures in FCC Part 15 Subpart C section 15.247 and FCC Public Notice DA 00-705, and also to demonstrate compliance with Industry Canada RSS-210 6.2.2 (O).

5.3 Operation Mode

The EUT module was tested using the reference board as the support test host. The EUT was embedded in and received power and data I/O from the host. A PC connection allowed commands to the module to be issued to put the device into the correct test modes.

5.4 Documentation of test device

Documentation of the tested device has been reviewed by HYPER Corporation engineers and found to be in compliance with applicable test specifications. All documentation is kept in the Job Folder.

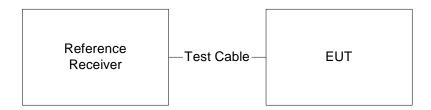
5.5 General and Special Conditions

The EUT received power from the test host, which was powered using an AC adaptor plugged into the ac mains. Testing was done in an indoor controlled environment with an average temperature of 23.3° C and relative humidity of 43%, unless specified otherwise.

5.6 Equipment and Cable Configurations

The EUT was tested using serial connector to enable test-modes. The primary cabling considerations were the cable used to connect the antenna port to the measuring equipment.

Manufacturer	Description	Model Number	Serial Number	CAL Date
Agilent Technology	Spectrum Analyzer	8565EC	3946A00	8/6/2005
Dell	PC	Latitude	N/A	N/A


QCD0004 Page 5 of 25

⁽¹⁾ RF Exposure for IC is documented in a supplement to this report

Certification Test Report – FCC/IC Report No: 155-0509001

Job# 155-0509001 Date 11/25/2005: Rev 003

5.7 Test Setup Block Diagram(s)

6. Test Results

6.1 AC-Line Conducted Emissions

The results below were provided via subcontract by BACL, as dictated by their laboratory quality system.

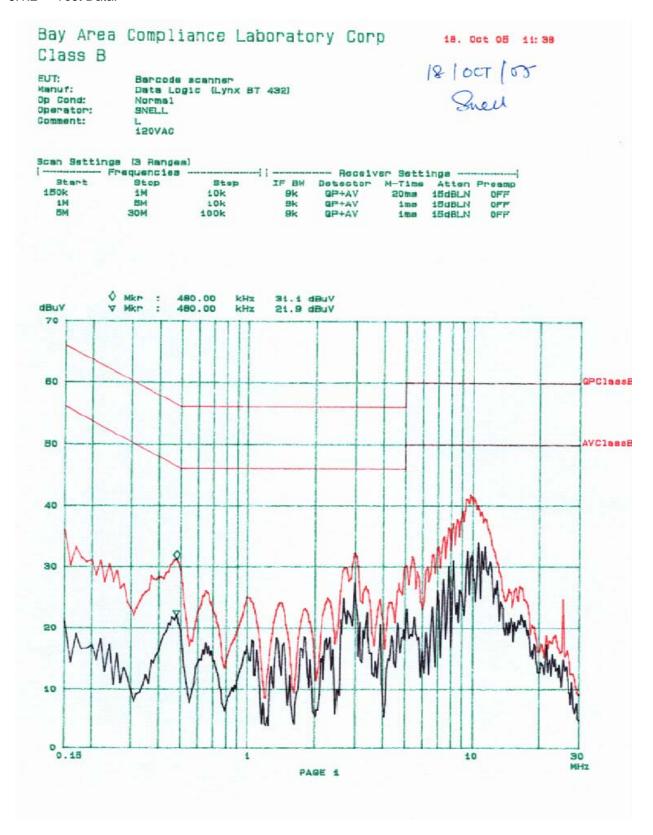
6.1.1 Measurement Procedure

<u>Measurement Uncertainty</u>: All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN. Based on NIS 81, the treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is +2.4dB.

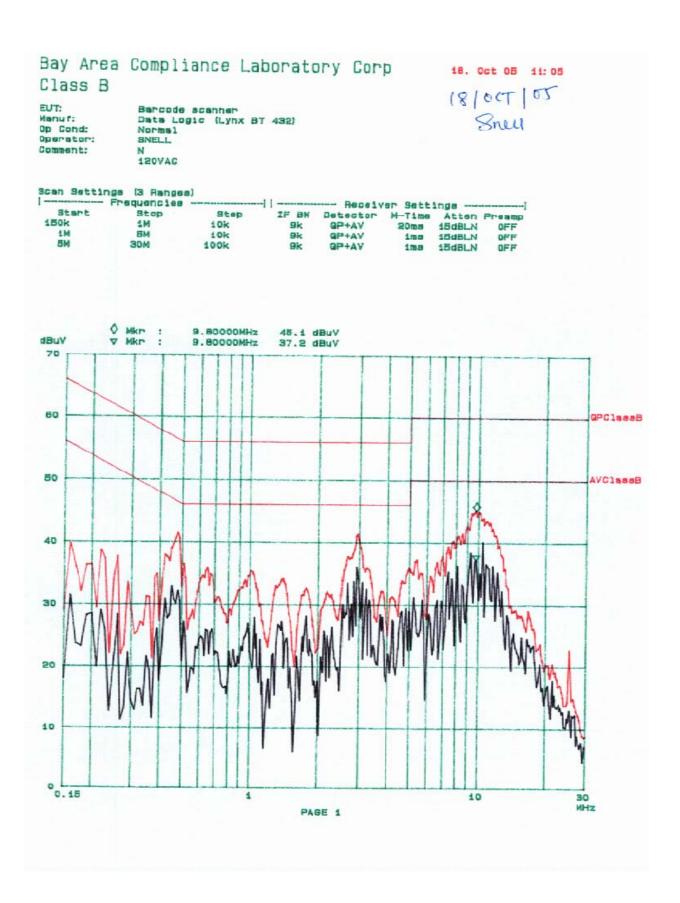
<u>Test Setup</u>: The measurement was performed in shield room, using the same setup per ANSI C63.4-2003 measurement procedure. The specification used was FCC Class B limits. External I/O cables were draped along the edge of the test table and bundled when necessary. The host was connected with LISN-1.

<u>Spectrum Analyzer Setup</u>: The spectrum analyzer was set to investigate the spectrum from 150 kHz to 30 MHz.

Test Equipment List and Details


1001 = 100 100				
Manufacturer	Description	Model	Serial Number	Cal. Date
R&S	Receiver, EMI Test	ESCS30	100176	9/15/2005
R&S	LISN, Artificial Mains	ESH2-75	871884/039	8/16/2005

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


<u>Test Procedure:</u> During the conducted emissions test, the power cord of the host system was connected to the mains outlet of LISN-1. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the following modes: peak detection quasi-peak and average. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".

QCD0004 Page 6 of 25

6.1.2 Test Data:

QCD0004 Page 7 of 25

QCD0004 Page 8 of 25

6.2 Carrier Frequency Separation

6.2.1 Operation Environment

Temperature: 23.3°C Relative Humidity: 43%

6.2.2 Test procedure

The carrier frequency separation per FCC 15.247(a)(1) / IC RSS210 6.2.2(o)(a1) was measured using a spectrum analyzer with the resolution (or IF) bandwidth (RBW) \geq 1% of the span, the span should be wide enough to capture the peaks of two adjacent channels, and the video (or average) bandwidth (VBW) should be \geq RBW. The carrier frequency separation result is described as below:

6.2.3 Test data

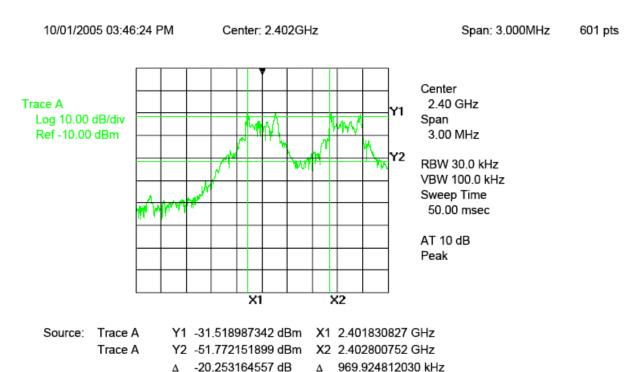
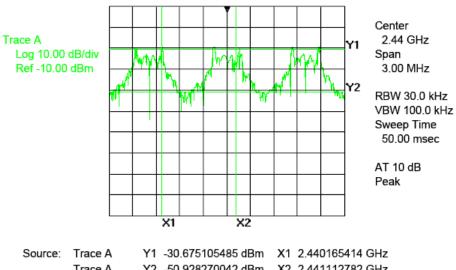



Figure 6.2-1: Carrier Frequency Separation – Low – DH5

QCD0004 Page 9 of 25

Source: Trace A Y1 -30.675105485 dBm X1 2.440165414 GHz

Trace A Y2 -50.928270042 dBm X2 2.441112782 GHz

Δ -20.253164557 dB Δ 947.368421053 kHz

Figure 6.2-2: Carrier Frequency Separation - Mid - DH5

10/01/2005 03:51:56 PM Center: 2.480GHz Span: 3.000MHz 601 pts Center Trace A 2.48 GHz Log 10.00 dB/div Span Ref -10.00 dBm 3.00 MHz RBW 30.0 kHz VBW 100.0 kHz Sweep Time 50.00 msec AT 10 dB Peak X1 X2

Source: Trace A Y1 -30.253164557 dBm X1 2.479830827 GHz
Trace A Y2 -50.928270042 dBm X2 2.480789474 GHz
Δ -20.675105485 dB Δ 958.646616541 kHz

Figure 6.2-3: Carrier Frequency Separation – High – DH5

QCD0004 Page 10 of 25

Summary of Carrier Frequency Separation Data

	Frequency (MHz)	Measurement Frequency Separation (kHz)	Limit (kHz) Min
Low	2402	969	25
Mid	2441	947	25
High	2480	958	25

QCD0004 Page 11 of 25

6.3 Number of Hopping Frequencies

6.3.1 Operation Environment

Temperature: 23.3°C Relative Humidity: 43%

6.3.2 Test procedure

The carrier frequency separation per FCC 15.247(a)(1)(ii)/ IC RSS210 6.2.2(o)(a3) was measured using a spectrum analyzer with RBW \geq 1% of the span. The VBW is \geq RBW and the span shall be equal to the frequency band of operation. The number of hopping frequencies measured data is shown below.

6.3.3 Test data

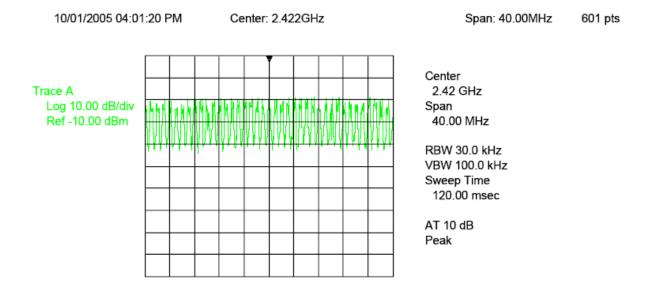
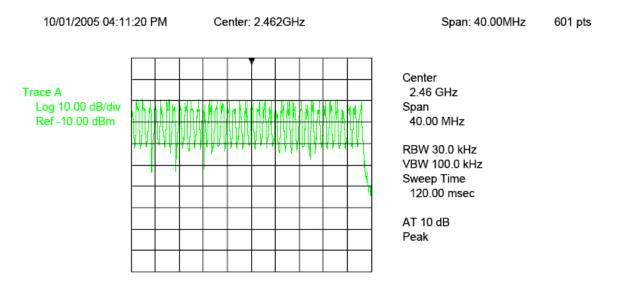



Figure 6.3-1 Channels in the Frequency range 2.400-2.441GHz

QCD0004 Page 12 of 25

Figure 6.3-2 Channels in the Frequency range 2.440-2.4835GHz

Frequency Range (GHz)	Number of hopping frequencies	Total hopping channels
2.400 ~ 2.441	39.5	79
2.441 ~ 2.4835	39.5	

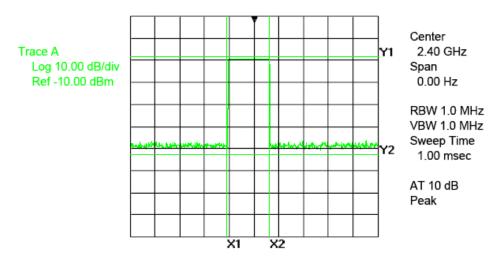
6.4 Time of Occupancy (Dwell Time)

6.4.1 Operation Environment

Temperature: 23.3°C Relative Humidity: 43%

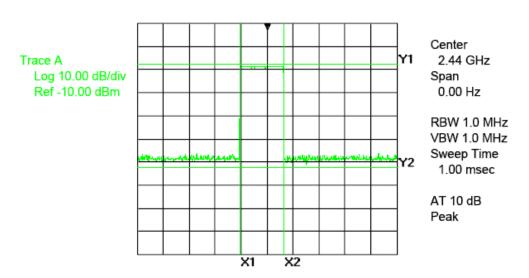
6.4.2 Test Procedure

The Time of Occupancy test case per FCC 15.247(a)(1)(ii)/ IC RSS210 6.2.2(o)(a3) was measured using a spectrum analyzer with RBW = 1 MHz. The VBW \geq RBW and the zero span function of spectrum analyzer were enabled.


6.4.3 Test data

Summary Table

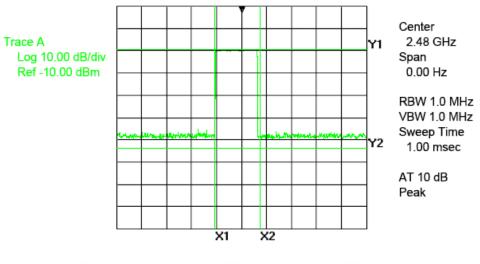
The worst case time of occupancy (Dwell Time) is (DH5 packet) (4 \times 2.933 ms) (dwell time in 1 sec) x 30 seconds= 351.96 ms = 0.35196 sec < 0.4s in 30 sec. – Compliant


Carriery racie			
Frequency	Dwell Time (Sec)	Limit (Sec)	
Low	172.93 usec	0.4	
Mid	169.17 usec	0.4	
High	180.45 usec	0.4	
Packets in 30 seconds	684 msec	0.4	

QCD0004 Page 13 of 25

Source: Trace A Y1 -28.565400844 dBm X1 387.218045113 us Trace A Y2 -72.869198312 dBm X2 560.150375940 us Δ -44.303797468 dB Δ 172.932330827 us

Figure 6.4-1: Dwell Time = 172.93 usec (Low Channel)



Source: Trace A Y1 -27.721518987 dBm X1 394.736842105 us Trace A Y2 -72.447257384 dBm X2 563.909774436 us

Δ -44.725738397 dB Δ 169.172932331 us

Figure 6.4-2: Dwell Time (Mid Channel)

QCD0004 Page 14 of 25

Source: Trace A Y1 -29.409282700 dBm X1 390.977443609 us Trace A Y2 -73.713080169 dBm X2 571.428571429 us

Δ -44.303797468 dB Δ 180.451127820 us

Figure 6.4-3: Dwell Time (High Channel)

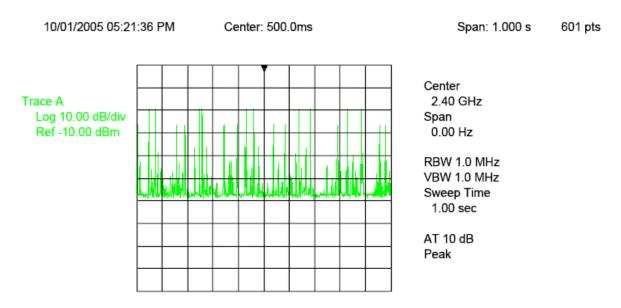


Figure 6.4-4: Plot showing numbers of pulses in 1 second in DH5 Mode

QCD0004 Page 15 of 25

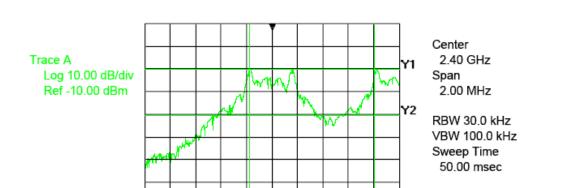
6.5 20 dB Bandwidth

6.5.1 Operation Environment

10/01/2005 04:21:48 PM

Temperature: 23.3°C Relative Humidity: 43%

6.5.2 Test procedure


The 20dB bandwidth per FCC 15.247(a)(1)(ii)/IC RSS210 6.2.2(o)(a1) was measured using spectrum analyzer with the resolution bandwidth > 1% of the 20 dB bandwidth. The VBW shall be \geq RBW, and the span shall equal to approximately 2 to 3 times the 20 dB bandwidth. This test was performed at 3 different channels (low, mid and high), and the maximum 20dB modulation bandwidth is listed below:

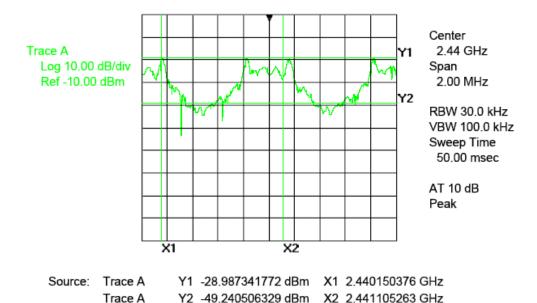
6.5.3 Test data

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit
Low	2402	985	(1000 kHz) 1 MHz
Middle	2441	955	1 MHz
High	2480	895	1 MHz

Span: 2.000MHz

AT 10 dB Peak 601 pts

Center: 2.402GHz


Source: Trace A Y1 -30.253164557 dBm X1 2.401819549 GHz
Trace A Y2 -50.506329114 dBm X2 2.402804511 GHz
Δ -20.253164557 dB Δ 984.962406015 kHz

X1

Figure 6.5-1: Bandwidth of the 2402 MHz channel

QCD0004 Page 16 of 25

Δ 954.887218045 kHz

Δ -20.253164557 dB

Figure 6.5-2: Bandwidth of the 2441 MHz channel

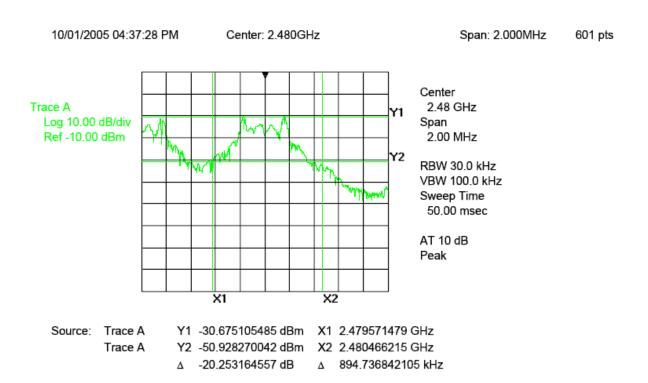


Figure 6.5-3: Bandwidth of the 2480 MHz channel

QCD0004 Page 17 of 25

6.6 Peak Output Power

6.6.1 Operation Environment

Temperature: 23.3°C Relative Humidity: 43%

6.6.2 Test procedure:

Corrected Amplitude & Margin Calculation

The corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor then subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl = Indicated Reading + Antenna Factor = Cable Factor – Amplifier Gain
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of –7dB means the emission is 7dB below the maximum limit for Class B.
The equation for margin calculation is as follows: Margin = Corr. Ampl. – FCC 15.209 Limit.

6.6.3 Test data

Channel	Frequency (MHz)	Transmitter Peak Output Power (dBm)	Limit (dBm)
Low	2402	-8.5087	20.97
Middle	2441	-12.220	20.97
High	2480	-6.608	20.97
			20.97dBm = 0.125 W

Antenna gain : = 1.2 dBi (worst case for eirp) = 1.318 Peak Field strength = 91.7 dBuV/m = 0.03846 V/m

 $P = (F * D)^2 / (30 * ant gain) = (.03846 * 9)^2 / (30 * 1.318)$ =0.3367 mW = -8.5087 dBm

EIRP = -8.5087 dBm

Peak Output Power on 2402 MHz

Middle CH: 88.5 dBuV/m = 0.02661 V/m

power = 0.1612 mW = **-12.22dBm** Peak Output Power on 2441 MHz

High CH: 84.9 dBuV/m = 0.01758 V/m

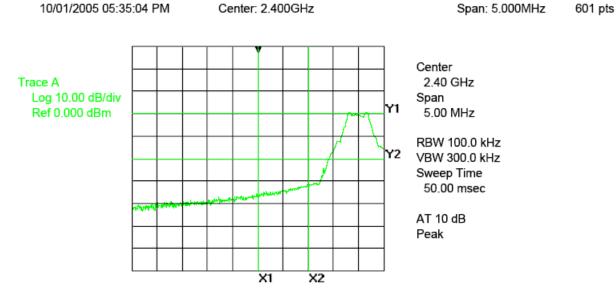
EIRP = 0.0672 mW = -6.608 dBm

Peak Output Power on 2480 MHz

QCD0004 Page 18 of 25

6.7 Band-Edge Compliance of RF Conducted Emissions

6.7.1 Operation Environment


Temperature: 23.3°C Relative Humidity: 43%

6.7.2 Test procedure

The band-edge compliance of RF conducted emissions of the EUT was measured per FCC 15.247(c)/IC RSS210 6.2.2(o)(d1). The EUT was set to operate on the lowest operating frequency and the level at the lower band-edge was measured. The upper band-edge level was then measured with the EUT operating on the highest operating frequency.

6.7.3 Test data

Band-edge Frequency (MHz)	Attenuation (dB) Relative to Peak	Limit (dB) - Minimum
2400 (Hopping Off)	-20.25	-20
2400 (Hopping On)	-22.67	-20
2483.5 (Hopping Off)	-20.67	-20
2483.5 (Hopping On)	-20.67	-20

Source: Trace A Y1 -29.957805907 dBm X1 2.400000000 GHz
Trace A Y2 -50.210970464 dBm X2 2.400996241 GHz
Δ -20.253164557 dB Δ 996.240601504 kHz

Figure 6.7-1: Band-Edge Compliance - Lower Band-Edge (2400MHz) - Hopping Off

QCD0004 Page 19 of 25

10/01/2005 05:31:47 PM Center: 2.400GHz 601 pts Span: 5.000MHz Center Trace A 2.40 GHz Log 10.00 dB/div Span Υ1 Ref 0.000 dBm 5.00 MHz RBW 100.0 kHz VBW 300.0 kHz Sweep Time 50.00 msec AT 10 dB

X2

Peak

Source: Trace A Y1 -29.957805907 dBm X1 2.400000000 GHz Trace A Y2 -52.320675105 dBm X2 2.400977444 GHz

X1

Δ -22.362869198 dB Δ 977.443609023 kHz

Figure 6.7-2: Band-Edge Compliance - Lower Band-Edge (2400MHz) - Hopping On

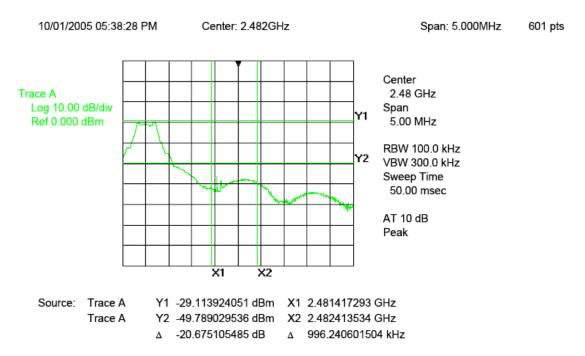


Figure 6.7-3: Band-Edge Compliance - Upper Band-Edge (2483.5MHz) Hopping Off

QCD0004 Page 20 of 25

601 pts

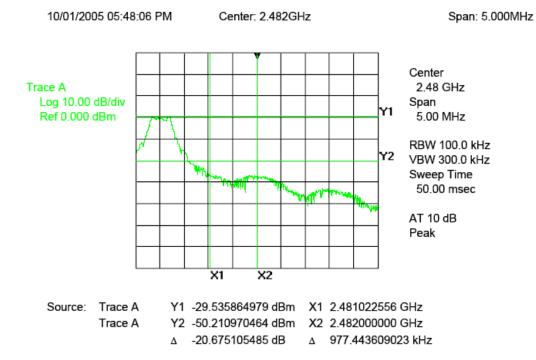


Figure 6.7-4: Band-Edge Compliance - Upper Band-Edge (2483.5MHz) Hopping On

6.8 Radiated Spurious Emission (15.205, 15.209, 15.247)

The results below were provided via subcontract by BACL. The testing was performed as dictated by the laboratory's ISO/IEC 17025-quality system.

6.8.1 Measurement Procedure

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209 limits. The spacing between the peripherals was 10 centimeters. External I/O cables were draped along the edge of the test table and bundled when necessary. The EUT was connected to the power adapter, which was connected with 120 Vac/60Hz power source.

Corrected Amplitude & Margin Calculation

The corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor then subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl = Indicated Reading + Antenna Factor = Cable Factor – Amplifier Gain The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of –7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows: Margin = Corr. Ampl. – FCC 15.209 Limit.

QCD0004 Page 21 of 25

6.8.2 Test data

Bay Area Compliance Laboratory, Corp.

Run#1 Radiated Harmonic and Spur Emission

Run # 1- 1 :Primary scan 1GHz -25GHz , (Lowest channel. : Measured at 1 Meter

2402 MHz)

-6.608787 dBm

OutPut Power (HC) =

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Distance Factor	Correction Factor	15.247	15.247		Testing
MHz	dBuV/m	Degree	Meter	H/V	dB	dB	dB	dB	dBuV/m	Limit (dBuV/m)	Margin	Comment	Condition
2402.0000	103.1	90	1.0	٧	28.7	2.0	35.8	10.0	87.9				Bursting
2402.0000	98.9	180	2.3	h	28.7	2.0	35.8	10.0	83.7				Bursting
2402.0000	85.6	90	1.0	V	28.7	2.0	35.8	10.0	70.4				Bursting
2402.0000	80.6	180	2.3	h	28.7	2.0	35.8	10.0	65.4				Bursting
4804.0000	51.7	90	1.0	v	32.5	3.1	34.8	10.0	42.5	74	-31.5		Bursting
4804.0000	46.9	180	2.3	h	32.5	3.1	34.8	10.0	37.7	74	-36.3		Bursting
4804.0000	42.5	90	1.0	V	32.5	3.1	34.8	10.0	33.3	54	-20.7		Bursting
4804.0000	38.7	180	2.3	h	32.5	3.1	34.8	10.0	29.5	54	-24.5		Bursting
7206.0000	46.3	90	1.0	v	36.7	4.3	34.7	10.0	42.6	74	-31.4		Bursting
7206.0000	42.7	180	2.3	h	36.7	4.3	34.7	10.0	39.0	74	-35.0		Bursting
7206.0000	30.5	90	1.0	V	36.7	4.3	34.7	10.0	26.8	54	-27.2		Bursting
7206.0000	28.6	180	2.3	h	36.7	4.3	34.7	10.0	34.9	54	-19.1		Bursting

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Distance Factor	Correction Factor	15.247	15.247		Testing
MHz		Degree		H/V	dB	dB	dB	dB	dBuV/m	Limit (dBuV/m)		Comment	
2442.0000	104.2	90	1.0	V	28.7	2.0	35.8	10.0	89.0				Bursting
2442.0000	100.6	180	2.3	h	28.7	2.0	35.8	10.0	85.4				Bursting
2442.0000	99.3	90	1.0	V	28.7	2.0	35.8	10.0	84.1				Bursting
2442.0000	96.4	180	2.3	h	28.7	2.0	35.8	10.0	81.2				Bursting
4884.0000	52.0	90	1.0	V	32.5	3.1	34.8	10.0	42.8	74	-31.2		Bursting
4884.0000	47.0	180	2.3	h	32.5	3.1	34.8	10.0	37.8	74	-36.2		Bursting
4884.0000	42.7	90	1.0	v	32.5	3.1	34.8	10.0	33.5	54	-20.5		Bursting
4884.0000	38.9	180	2.3	h	32.5	3.1	34.8	10.0	29.7	54	-24.3		Bursting
7326.0000	44.0	90	1.0	V	36.7	4.3	34.7	10.0	40.3	74	-33.7		Bursting
7326.0000	43.8	180	2.3	h	36.7	4.3	34.7	10.0	40.2	74	-33.8		Bursting
7326.0000	30.1	90	1.0	v	36.7	4.3	34.7	10.0	26.4	54	-27.6		Bursting
7326.0000	29.8	180	2.3	h	38.7	4.3	34.7	10.0	36.1	54	-17.9		Burstin

QCD0004 Page 22 of 25

Distance Factor

10.0

10.0

10.0

10.0

10.0

10.0

10.0 10.0

10.0

10.0

26.8

Amplifie dB

35.8

35.8

35.8

35.8

34.8

34.8

34.8 34.8

34.7 34.7

34.7 34.7

Cable loss dB

2.0

2.0

2.0 3.1 3.1

3.1

4.3 4.3

4.3

Antenna Los

dΒ

28.7

28.7

32.5 32.5

32.5

36.7 36.7

36.7

144.20 45.9 250 1.0 V 13.3 2.4 28.1 10.0 23.5

Run # 1- 1 :Primary scan 1GHz -25GHz , (Highest channel.

Height Meter

1.0

2.3

2.3

2.3

1.0

1.0

1.0

V

h

v

h

٧

h

v

h

٧

h

٧

h

Direction

Degre 90

180

90

180

90

180

90 180

90 180

90 180

2480	MHz)			
Correction Factor	15.247	15.247		Testing
dBuV/m	Limit (dBuV/m)	Margin	Comment	Condition
89.8				Bursting
85.5				Bursting
85.0				Bursting
81.3				Bursting
45.2	74	-28.9		Bursting
38.3	74	-35.7		Bursting
34.6	54	-19.4		Bursting
35.1	54	-18.9		Bursting
39.9	74	-34.1		Bursting
39.2	74	-34.8		Bursting

-27.2

-20.0

54

43.5

Bursting

Bursting Bursting

Run # 1- 4: Primary scan 30MHz -1GHz,

Frequency MHz

2480.0000

2480.0000

2480.0000

2480.0000 4960.0000

4960.0000

4960.0000 4960.0000

7440.0000 7440.0000

7440.0000 7440.0000

Reading dBuV/m

105.0

100.7

100.2

96.5 54.4

47.5

43.8 44.3

43.6 42.9 30.5 30.2

Gun		Measure	a at 1 met	er								
Frequency	Reading	Direction	Height	Polar	intenna Los	Cable loss	Amplifer	Distance Factor	Correction Factor	15B	15B	Comments
MHz	dBuV	Degree	Meter	H/V	dB	dB	dB	dB	dBuV/m	Limit	Margin	Peak
240.50	38.2	270	3.2	Н	11.5	3.3	27.5	10.0	15.5	46	-30.5	\Box
240.50	36.2	75	1.8	V	11.5	3.3	27.5	10.0	13.5	46	-32.5	
249.90	42.0	270	2.1	Н	11.8	3.4	27.5	10.0	19.7	46	-26.3	
249.90	39.1	330	1.2	V	11.8	3.4	27.5	10.0	16.8	46	-29.2	
144 20	47.5	280	2.8	Н	13.3	2.4	28.1	10.0	25.1	43.5	-18 4	

Base		Measure	d at 1 met	er								
Frequency	Reading	Direction	Height	Polar	intenna Los	Cable loss	Amplifer	Distance Factor	Correction Factor	15B	15B	Comments
MHz	dBuV	Degree	Meter	H/V	dB	dB	dB	dB	dBuV/m	Limit	Margin	Peak
240.50	38.2	270	3.2	Н	11.5	3.3	27.5	10.0	15.5	46	-30.5	
240.50	36.2	75	1.8	V	11.5	3.3	27.5	10.0	13.5	46	-32.5	
249.90	42.0	270	2.1	Н	11.8	3.4	27.5	10.0	19.7	46	-26.3	
249.90	39.1	330	1.2	V	11.8	3.4	27.5	10.0	16.8	46	-29.2	
144.20	47.5	280	2.8	Н	13.3	2.4	28.1	10.0	25.1	43.5	-18.4	
144.20	45.9	250	1.0	V	13.3	2.4	28.1	10.0	23.5	43.5	-20.0	

QCD0004 Page 23 of 25

Run#2 Conducted Emission

Frequency	Reading	Detector	Phase	FCC B	FCC B
MHz	dBuV	Qp/Ave	L/N	Limits	Margin
9.800	45.1	QP	Neutral	60.00	-14.9
2.960	41.2	QP	Neutral	56.00	-14.8
0.480	41.3	QP	Neutral	56.34	-15.0
9.800	41.6	QP	Line	60.00	-18.4
2.980	32.1	QP	Line	56.00	-23.9
0.480	31.2	QP	Line	56.34	-25.1
9.800	37.2	Ave	Neutral	50.00	-12.8
2.960	34.7	Ave	Neutral	46.00	-11.3
0.480	32.1	Ave	Neutral	46.34	-14.2
9.800	31.2	Ave	Line	50.00	-18.8
2.980	27.4	Ave	Line	46.00	-18.6
0.480	21.9	Ave	Line	46.34	-24.4

Run#3 Maximum Peak Output Power

Channel	Frequency	ax Peak 0	Output Pov	Limit	Result
	MHz	(dBm)	(m Watt)	(m Watt)	
Low	2402		1.00	1000	pass
Mid	2442		1.00	1000	pass
High	2480		1.00	1000	pass

Run #4 Dwell Time

Channel	Frequence	ulse Wid	Occupied	well Tin	Limit
	MHz	uSec	time	Sec	Sec
Low	2402			0.000	0.4
Mid	2442			0.000	0.4
High	2480			0.000	0.4

Run #5 Number Of Hopping Channel

See Plots Channels limit > 15 channels

QCD0004 Page 24 of 25

Run #6 20 dB Channel Bandwidth

Channel	Frequency MHz	Channel Bandwidth (KHz)	Limit KHz
Low	2402	Deliver (10 in)	<1000
Mid	2442		<1000
High	2480		<1000

Run #7 Channel Separation

Channel	Frequency	Channel
	MHz	Separation (KHz)
Low	2402	
Mid	2442	
High	2480	

Run #8 Attenna Port Emission

See Plots

Run #9 99% BW (for RSS 210 only)

Channel	Frequency	99% BW
	MHz	(KHz)
Low	2402	
Mid	2442	
High	2480	

QCD0004 Page 25 of 25