15.247 (b) (5) RF Exposure Requirements

RF Exposure – MPE Calculations (2400-2483.5 MHz Band)

Transmitter Power:	1 mW
Antenna Gain:	2.3 dB
Cable loss:	0 dB
Frequency range:	2400 - 2483.5 MHz
Assumptions	

1. A single ¹/₄ wavelength radiating antenna is assumed.

2. Closest exposure distance is assumed to be 2 cm.

Calculations

The following results shall be assumed to be accurate for the far-field only. These predictions will over-estimate power density in the near-field. Based on the use of a ¹/₄ wavelength radiator, a distance of 2 cm is considered to be in the far-field for all cases.

 $\mathbf{S} = \mathbf{PG}/4*\mathbf{PI}*\mathbf{R}^2$

P is 1 mW G is 2.3 dB (Antenna gain - loss) or $10^{(2.3/10)}$ or 2.3

	20cm	10cm	5cm	2cm	
S =	0.000351	0.001403	0.005614	0.035086	mW/cm ²

For Occupational/Controlled Exposure

From 1,500 to 100,000 MHz, power density limit is 5 mW/cm² for 6 minutes

For General Population/Uncontrolled Exposure

From 1,500 to 100,000 MHz, power density limit is 1 mW/cm² for 30 minutes

Conclusion: Meets MPE limits