

Report No.: EED32J00216901 Page 1 of 57

TEST REPORT

Product : ALTRA IQ

Trade mark : ALTRA

Model/Type reference : AIQ18

Serial Number : N/A

Report Number : EED32J00216901

FCC ID : OMCAIQ18

Date of Issue : Nov. 09, 2017

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Icon Health and Fitness, Inc.
1500 South 1000 West Logan, Utah, United State, 84321

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Ware Xin (Reviewer)

Date: Nov. 09, 2017

Max. Liang

Max liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:3096334245

2 Version

Version No.	Date	6	Description)
00	Nov. 09, 2017		Original	
	125	100	75	715
((4°)	(63/2)	(6/2)

Report No.: EED32J00216901 Page 3 of 57

3 Test Summary

Test Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013 KDB 558074 D01v04 ANSI C63.10-2013 KDB 558074 D01v04 ANSI C63.10-2013 KDB 558074 D01v04	PASS PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)		
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)		
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

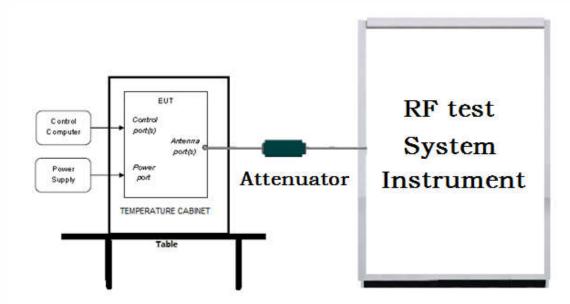
N/A: The device is only button cell operated, therefore it is not applicable.

The model AlQ18 product includes AlQ18(Left) and AlQ18(Right), the model AlQ18(Right) was fully tested, the model AlQ18(Left) was only tested the Output Power and the Radiated Spurious Emissions, other tests data please refer to the model AlQ18(Right), since their RF electrical circuit design, components used and internal wiring are identical, only the orientation of the accelerometer, silkscreen and an identification resistor is different.

Report No. : EED32J00216901 Page 4 of 57

4 Content

1 COVER PA	AGE		•••••				1
2 VERSION.		•••••			•••••	•••••	2
	MARY						
4 CONTENT		•••••		•••••		•••••	4
5 TEST REC	QUIREMENT	•••••				•••••	5
	SETUPor Conducted test						
5.1.2 F	or Radiated Emiss	sions test setu	p				5
	ENVIRONMENT						
	. INFORMATION.						
	TINFORMATION						
	JCT SPECIFICATION						
	RIPTION OF SUPPOR						
	_OCATION						
	TION FROM STANDA RMALITIES FROM ST						
	RINFORMATION RE						
	JREMENT UNCERTA						
	NT LIST	1 April 1 7 10 10 10 10 10 10 10 10 10 10 10 10 10					
8 RADIO TE	CHNICAL REQU	IREMENTS SI	PECIFICATIO	N		•••••	11
	dix A): 6dB Occup						
	dix B): Conducted						
	dix C): Band-edge						
	dix D): RF Conduction dix E): Power Spe						
	dix F): Antenna Re	•					
	dix G: Restricted b						
	dix H): Radiated S						
PHOTOGRA	APHS OF TEST S	ETUP		(6)		(6,2)	37
	APHS OF EUT CO						44
PHOTOGRA	APHS OF EUT CO	NSTRUCTIO	NAL DETAILS)	•••••	•••••	41



Report No. : EED32J00216901 Page 5 of 57

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

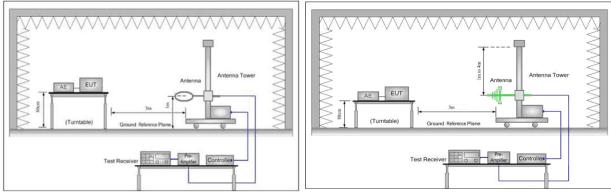


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.2 Test Environment

Operating Environment:	6	6	
Temperature:	25.9 °C		
Humidity:	42 % RH		
Atmospheric Pressure:	1010mbar	1	

5.3 Test Condition

Test channel:

2450 a	T (D	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Grak	2402NID2 ~2400 NID2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No. : EED32J00216901 Page 7 of 57

6 General Information

6.1 Client Information

Applicant:	Icon Health and Fitness, Inc.
Address of Applicant:	1500 South 1000 West Logan, Utah, United State, 84321
Manufacturer:	FENDA TECHNOLOGY CO., LTD
Address of Manufacturer:	Fenda hi-tech park, zhoushi road shiyan, baoan, shenzhen china
Factory:	FENDA TECHNOLOGY CO., LTD
Address of Factory:	Fenda hi-tech park, zhoushi road shiyan, baoan, shenzhen china

6.2 General Description of EUT

Product Name:	ALTRA IQ	
Model No.(EUT):	AIQ18	6.
Trade mark:	ALTRA	
EUT Supports Radios application:	BT4.2	7:5
Power Supply:	AIQ18(Right): Button battery DC 3V AIQ18(Left): Button battery DC 3V	
Sample Received Date:	Sep. 26, 2017	
Sample tested Date:	Sep. 26, 2017 to Nov. 08, 2017	1900

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz-2480MHz	
Bluetooth Version:	4.2	
Modulation Technique:	DSSS	15 /5
Modulation Type:	GFSK	
Number of Channel:	40	
Test Power Grade:	N/A	
Test Software of EUT:	nRFgo studio V1.20.0.2(manufacturer decla	re)
Antenna Type and Gain:	Chip Antenna and 1.3dBi	
Test Voltage:	AIQ18(Right): Button battery DC 3V	(6)
	AIQ18(Left): Button battery DC 3V	

Operation F	requency eac	h of channe			(3)		(3)
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz

Report No. : EED32J00216901 Page 8 of 57

9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

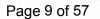
6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer


None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

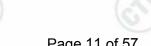
No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
	162.	100.

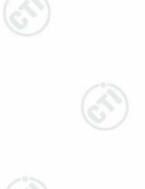
7 Equipment List

Report No.: EED32J00216901

Equipmen	it Liot		100		180
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(3)	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(0.)	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018
PC-1	Lenovo	R4960d	("	04-01-2017	03-31-2018
BT&WI-FI Automatic control	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-14-2017	03-13-2018

200			200	200	
	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2017	05-22-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112		01-11-2017	01-10-2018
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(2)	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-11-2017	01-10-2018




Page 11 of 57 Report No.: EED32J00216901

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

est results List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Appendix A): 6dB Occupied Bandwidth

Test Result

AIQ18 (Right)

	T /				
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6888	1.0643	PASS	
BLE	MCH	0.6884	1.0675	PASS	Peak
BLE	HCH	0.6897	1.0688	PASS	detector

Test Graphs

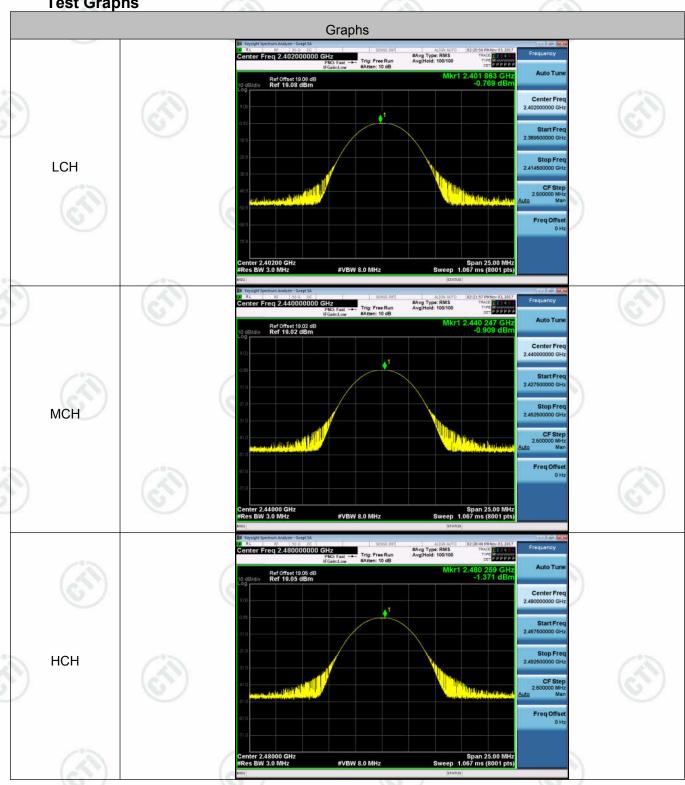
Report No.: EED32J00216901

Appendix B): Conducted Peak Output Power

Test Result

AIQ18 (Right)

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.769	PASS
BLE	MCH	-0.909	PASS
BLE	НСН	-1.371	PASS



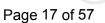
Test Graphs

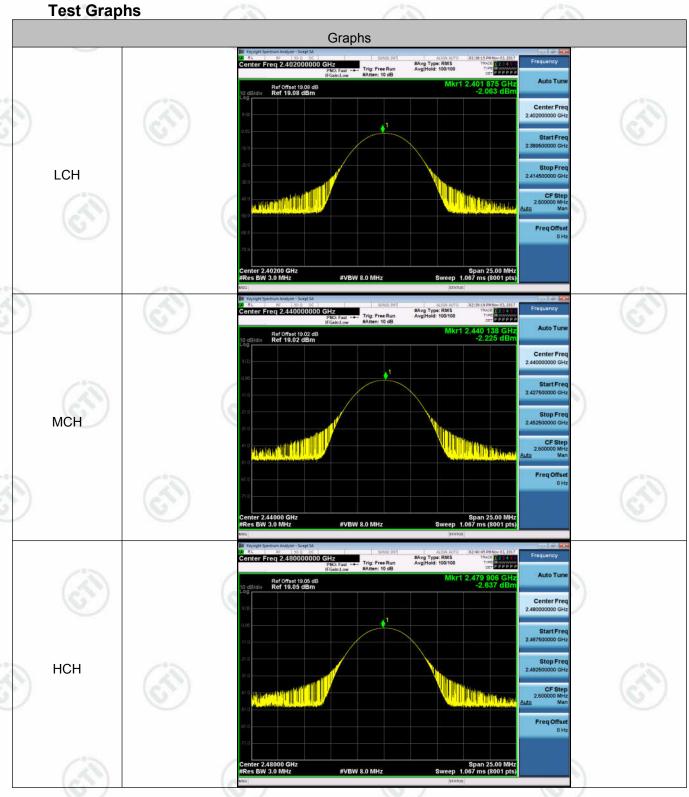
Page 16 of 57

Test Result

AIQ18 (Left)

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-2.063	PASS
BLE	MCH	-2.225	PASS
BLE	HCH	-2.637	PASS





Page 18 of 57 Report No.: EED32J00216901

Appendix C): Band-edge for RF Conducted Emissions

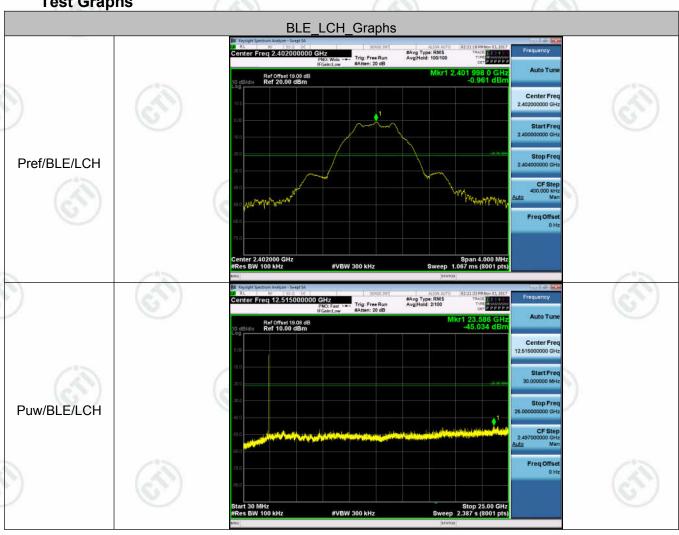
Result Table

AIQ18 (Right)

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-0.753	-60.588	-20.75	PASS
BLE	HCH	-1.304	-53.917	-21.3	PASS

Test Graphs

Page 19 of 57 Report No.: EED32J00216901


Appendix D): RF Conducted Spurious Emissions

Result Table

AIQ18 (Right)

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-0.961	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.059	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-1.504	<limit< td=""><td>PASS</td></limit<>	PASS

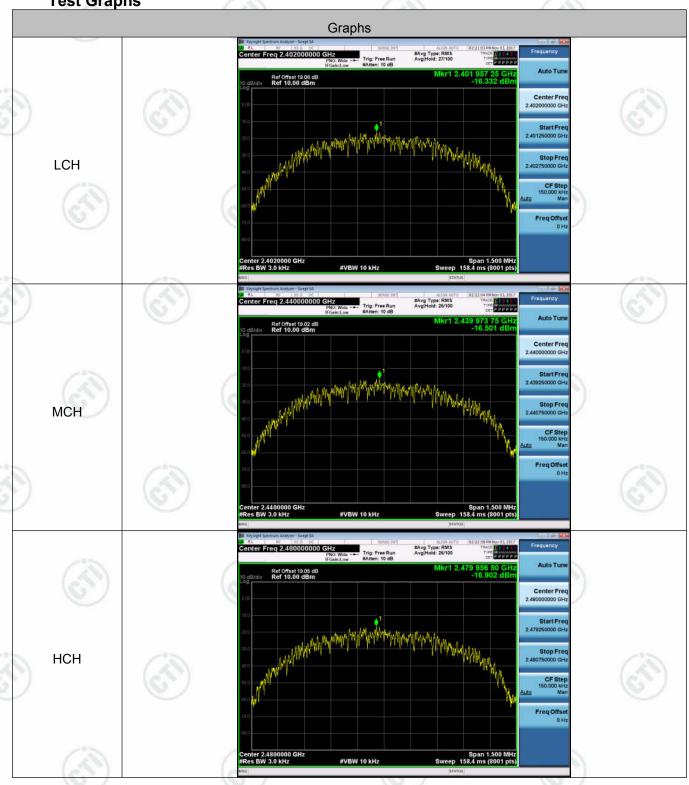
Test Graphs

Page 22 of 57

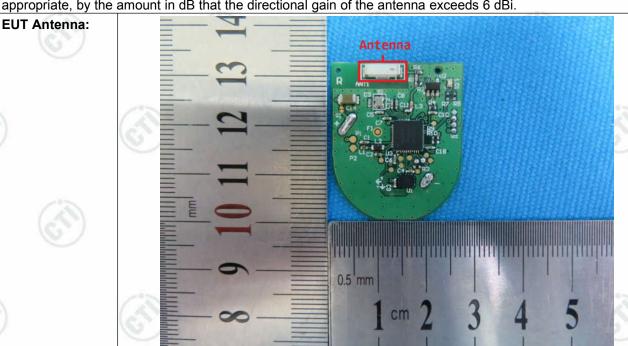
Appendix E): Power Spectral Density

Result Table

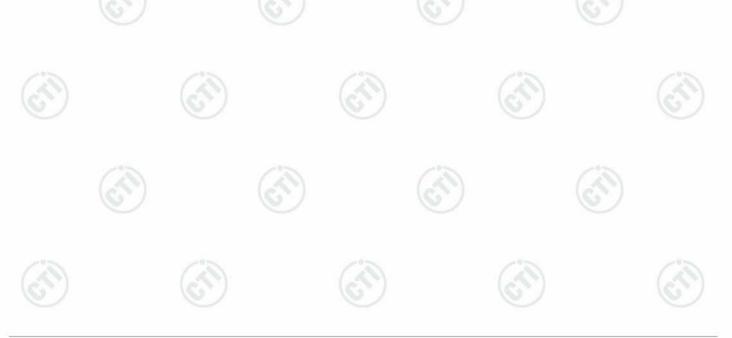
AIQ18 (R	ight)			
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-16.332	8	PASS
BLE	MCH	-16.501	8	PASS



Test Graphs


Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

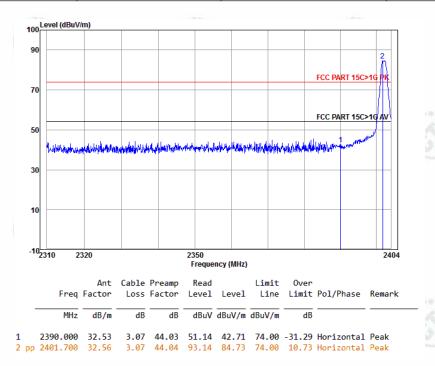
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

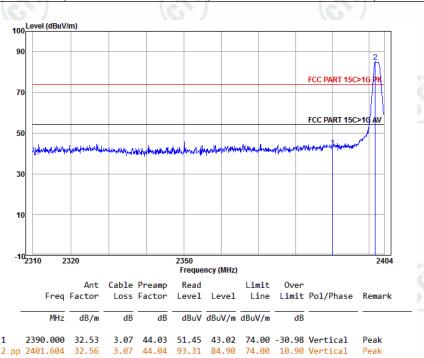
The antenna is chip antenna and no consideration of replacement. The best case gain of the antenna is1.3dBi.

Appendix G: Restricted bands around fundamental frequency (Radiated)

(Radiated)							
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	-		Peak	1MHz	3MHz	Peak	-05
	(65	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	B a b c d d e f.	at a 3 meter semi-and determine the position. The EUT was set 3 m was mounted on the to the antenna height is determine the maximular polarizations of the armount of the antenna was turned from 0 dequals turned from 0 de	ure as below: on the top of a ro choic camber. The of the highest ra eters away from op of a variable-h varied from one um value of the finatenna are set to mission, the EUT d to heights from grees to 360 degreem was set to Penum Hold Mode.	tating table was adiation. the interfer to foeld strength make the range of the meter to foeld strength make the range of the total part of the tak Detect	e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurement aged to its we 4 meters a the maxin Function a	rs above the gas above the groving antenna, above the grovizontal and vert. worst case an and the rotata and the rotata and Specified	whice whice which which will be write which which will be write and the will be write which will be write.
		frequency to show conbands. Save the spector lowest and highest	trum analyzer plo channel				
	A g h i.	bands. Save the spector lowest and highest bove 1GHz test proced. Different between about of fully Anechoic Characterists.	trum analyzer plot channel lure as below: ove is the test site of the change form of the change form owest channel, the channel are perform of found the X ax	e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis position	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo ositioning for t is worse cas	ulatio ambe ve
Limit:	g	bands. Save the spector for lowest and highest bove 1GHz test proced. Different between about to fully Anechoic Character 18GHz the distance is a Test the EUT in the The radiation measure Transmitting mode, and	trum analyzer plot channel lure as below: ove is the test site of the change form of the change form owest channel, the channel are perform of found the X ax	e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo ositioning for t is worse cas	ulatio ambe ve
imit:	g	bands. Save the spect for lowest and highest bove 1GHz test proced. Different between about to fully Anechoic Characterist the distance is . Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced.	trum analyzer plot channel lure as below: lure as below: love is the test site of the change form of the channel owest channel, the channel of the channel the cha	e, change fin table 0.8 e is 1.5 methe Highest rmed in X, kis position uencies method.	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ve
imit:	g	bands. Save the spector for lowest and highest bove 1GHz test proced. Different between about to fully Anechoic Charans 18GHz the distance is a contract the EUT in the The radiation measure Transmitting mode, at Repeat above proced. Frequency	trum analyzer plot channel lure as below: live is the test site of the change form of the channel owest channel ow	e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which ineasured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ve
imit:	g	bands. Save the spector for lowest and highest bove 1GHz test proceds. Different between about to fully Anechoic Character 18GHz the distance is a Test the EUT in the The radiation measure Transmitting mode, and Repeat above proced Frequency 30MHz-88MHz	trum analyzer plot channel lure as below: love is the test site of the change form of the channel of the channe	e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	Anechoic Cha .5 meter(Abo ositioning for t is worse cas as complete. mark	ulatio ambe ve
Limit:	g	bands. Save the spector for lowest and highest bove 1GHz test proceds. Different between about to fully Anechoic Charant 18GHz the distance is a second to the The radiation measure. Transmitting mode, and Repeat above proced. Frequency 30MHz-88MHz 88MHz-216MHz	trum analyzer plot channel lure as below: live is the test site of the change form of the channel owest channel ow	e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for it is worse cas as complete. mark eak Value	ulatio ambe ve
Limit:	g	bands. Save the spector lowest and highest shove 1GHz test proced. Different between about to fully Anechoic Charat 18GHz the distance is a second to the The radiation measure Transmitting mode, and Repeat above proced. Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	trum analyzer plot channel lure as below: ove is the test site of the change form of the channel owest channel owe	e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo ositioning for t is worse cas as complete. mark eak Value eak Value	ulatio ambe ve

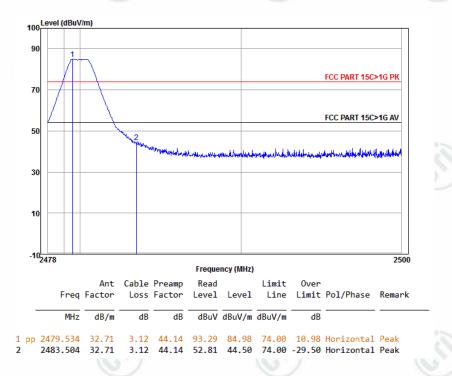


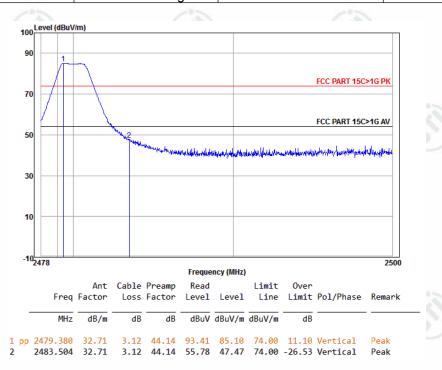
Report No.: EED32J00216901 Page 26 of 57


AIQ18 (Right)

Test plot as follows:

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Report No. : EED32J00216901 Page 27 of 57

Worse case mode:	GFSK	(20)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32J00216901 Page 28 of 57

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

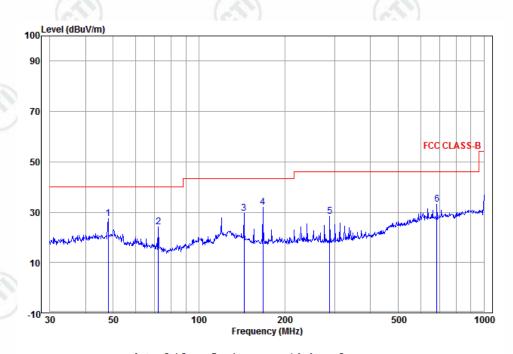
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	2°5	30
1.705MHz-30MHz	30	-	(4.5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

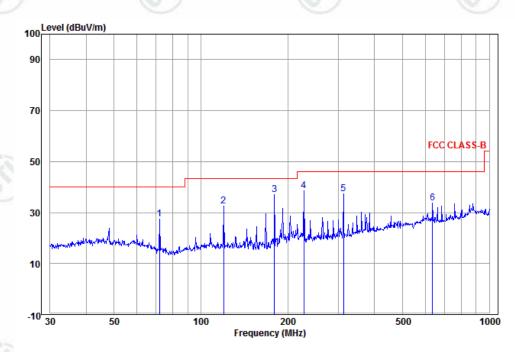


Radiated Spurious Emissions test Data:

AIQ18 (Right) Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		•			•	•			
1	47.994	14.45	0.10	12.96	27.51	40.00	-12.49	Vertical	QP
2	72.084	10.00	0.29	13.73	24.02	40.00	-15.98	Vertical	QP
3	143.830	9.18	0.61	19.72	29.51	43.50	-13.99	Vertical	QP
4 pp	167.824	9.85	0.80	21.24	31.89	43.50	-11.61	Vertical	QP
5	287.990	13.22	1.13	14.04	28.39	46.00	-17.61	Vertical	QP
6	684.745	19.04	1.96	12.08	33.08	46.00	-12.92	Vertical	QР



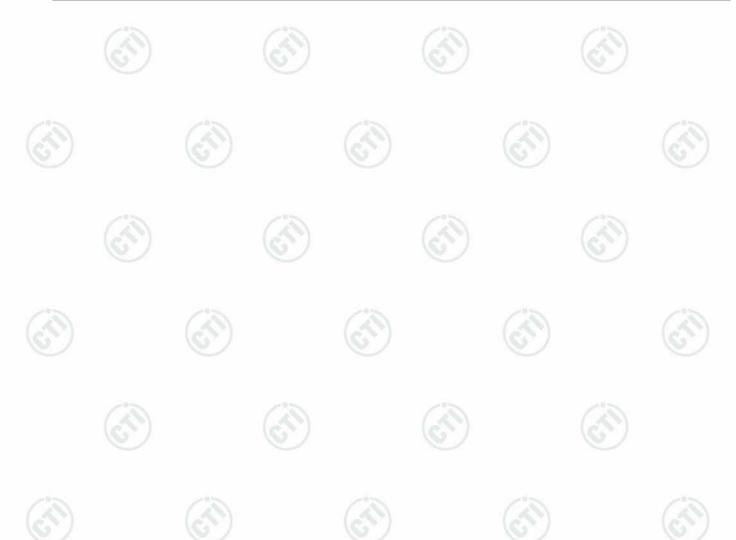
Test mode: Transmitting Horizontal

	Freq					Limit Line		Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	71.832	10.05	0.28	17.24	27.57	40.00	-12.43	Horizontal	QP
2	119.856	10.85	0.60	21.21	32.66	43.50	-10.84	Horizontal	QP
3 рр	180.017	10.51	0.92	25.71	37.14	43.50	-6.36	Horizontal	QP
4	227.691	12.14	1.24	25.13	38.51	46.00	-7.49	Horizontal	QP
5	312.179	13.66	1.13	22.56	37.35	46.00	-8.65	Horizontal	QP
6	636.134	18.85	1.83	13.21	33.89	46.00	-12.11	Horizontal	QP

Transmitter Emission above 1GHz

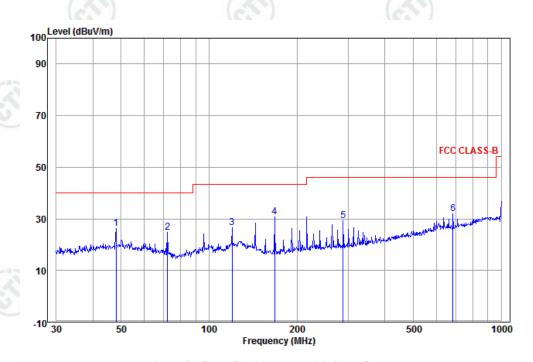
Worse case	mode:	GFSK		Test channel:		Lowest	Lowest Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1439.090	30.75	2.21	44.07	52.79	41.68	74.00	-32.32	Pass	H
1593.340	31.04	2.40	43.89	52.60	42.15	74.00	-31.85	Pass	Н
4804.000	34.69	5.98	44.60	43.50	39.57	74.00	-34.43	Pass	Н
5762.235	35.72	7.20	44.52	46.51	44.91	74.00	-29.09	Pass	Н
7206.000	36.42	6.97	44.77	45.36	43.98	74.00	-30.02	Pass	Н
9608.000	37.88	6.98	45.58	43.44	42.72	74.00	-31.28	Pass	Н
1195.049	30.21	1.85	44.39	49.93	37.60	74.00	-36.40	Pass	V
1439.090	30.75	2.21	44.07	49.32	38.21	74.00	-35.79	Pass	V
4804.000	34.69	5.98	44.60	44.35	40.42	74.00	-33.58	Pass	V
5762.235	35.72	7.20	44.52	47.05	45.45	74.00	-28.55	Pass	V
7206.000	36.42	6.97	44.77	47.92	46.54	74.00	-27.46	Pass	V
9608.000	37.88	6.98	45.58	44.38	43.66	74.00	-30.34	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1073.876	29.91	1.65	44.58	49.06	36.04	74.00	-37.96	Pass	/° ∄
1597.401	31.05	2.41	43.89	51.88	41.45	74.00	-32.55	Pass	(NH)
4880.000	34.85	6.13	44.60	45.40	41.78	74.00	-32.22	Pass	H
5762.235	35.72	7.20	44.52	46.27	44.67	74.00	-29.33	Pass	Н
7320.000	36.43	6.85	44.87	44.36	42.77	74.00	-31.23	Pass	Н
9760.000	38.05	7.12	45.55	44.11	43.73	74.00	-30.27	Pass	Н
1303.086	30.46	2.02	44.24	50.61	38.85	74.00	-35.15	Pass	V
3728.625	33.00	3.99	44.62	47.05	39.42	74.00	-34.58	Pass	V
4880.000	34.85	6.13	44.60	44.90	41.28	74.00	-32.72	Pass	V
5762.235	35.72	7.20	44.52	47.84	46.24	74.00	-27.76	Pass	V
7320.000	36.43	6.85	44.87	47.80	46.21	74.00	-27.79	Pass	V
9760.000	38.05	7.12	45.55	42.90	42.52	74.00	-31.48	Pass	V



Report No. : EED32J00216901 Page 32 of 57

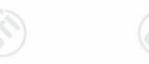
-2.00		200							
Worse case	mode:	GFSK		Test channel:		Highest	est Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	1.84	44.40	48.09	35.72	74.00	-38.28	Pass	→ H
1439.090	30.75	2.21	44.07	50.69	39.58	74.00	-34.42	Pass	(H)
4960.000	35.02	6.29	44.60	43.10	39.81	74.00	-34.19	Pass	H
5971.290	35.88	7.41	44.50	42.41	41.20	74.00	-32.80	Pass	Н
7440.000	36.45	6.73	44.97	42.75	40.96	74.00	-33.04	Pass	Н
9920.000	38.22	7.26	45.52	42.10	42.06	74.00	-31.94	Pass	Н
1195.049	30.21	1.85	44.39	50.35	38.02	74.00	-35.98	Pass	V
1668.044	31.18	2.49	43.81	51.62	41.48	74.00	-32.52	Pass	V
3225.037	33.40	3.57	44.67	47.44	39.74	74.00	-34.26	Pass	V
4960.000	35.02	6.29	44.60	42.72	39.43	74.00	-34.57	Pass	V
7440.000	36.45	6.73	44.97	47.55	45.76	74.00	-28.24	Pass	V
9920.000	38.22	7.26	45.52	42.12	42.08	74.00	-31.92	Pass	V



AIQ18 (Left) Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			_
1	47.994	14.45	0.10	11.86	26.41	40.00	-13.59	Vertical	QP	
2	72.084	10.00	0.29	14.53	24.82	40.00	-15.18	Vertical	QP	
3	119.856	10.85	0.60	15.10	26.55	43.50	-16.95	Vertical	QР	
4 pp	167.824	9.85	0.80	20.04	30.69	43.50	-12.81	Vertical	QP	
5	287.990	13.22	1.13	14.94	29.29	46.00	-16.71	Vertical	QP	
6	684.745	19.04	1.96	10.98	31.98	46.00	-14.02	Vertical	QP	



/3				/2		/°>
est mode:)	Transmitting		Horizo	ntal	(67)
	100 Level (dBuV/m)					
	100 Lever (dbdv/iii)					
	90					
	70					
					F	CC CLASS-B
	50					
			2	4 1	6	
	30	1 1 1			المالغرس اللا	La bear Marchania
	managelyan	urrhin-rendedurk.	Later and a second	Haybird alada balada bala bala.	hillippe of the state of the st	
	10	The state of the s				
	10					
	-10 30	50	100 Frequency	200 (MHz)	500	1000
		Ant Cable		Limit Ove		
	Freq	Factor Loss	Level Level	Line Limi	t Pol/Phase	Remark
	MHz	dB/m dB	dBuV dBuV/m	dBuV/m	IB	
	1 71.832		16.94 27.27			
			21.11 32.56 25.61 37.04			
	4 227.691	12.14 1.24	25.03 38.41	46.00 -7.5	9 Horizontal	QP
			22.56 37.35 12.21 32.89			

Report No.: EED32J00216901 Page 35 of 57

Transmitter Emission above 1GHz

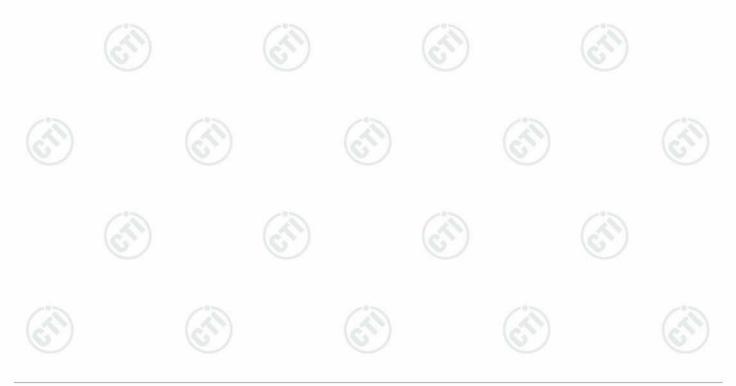
Worse case	mode:	GFSK		Test channel:		Lowest Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1395.796	30.66	2.15	44.12	54.40	43.09	74.00	-30.91	Pass	Н
3184.250	33.43	3.53	44.68	49.32	41.60	74.00	-32.40	Pass	ЭН
4804.000	34.69	5.98	44.60	44.46	40.53	74.00	-33.47	Pass	Н
5732.974	35.70	7.17	44.52	45.71	44.06	74.00	-29.94	Pass	Н
7206.000	36.42	6.97	44.77	44.49	43.11	74.00	-30.89	Pass	Н
9608.000	37.88	6.98	45.58	42.76	42.04	74.00	-31.96	Pass	Н
1198.095	30.22	1.86	44.39	52.00	39.69	74.00	-34.31	Pass	V
3728.625	33.00	3.99	44.62	47.74	40.11	74.00	-33.89	Pass	V
4804.000	34.69	5.98	44.60	43.71	39.78	74.00	-34.22	Pass	V
5747.586	35.71	7.19	44.52	44.71	43.09	74.00	-30.91	Pass	V
7206.000	36.42	6.97	44.77	47.64	46.26	74.00	-27.74	Pass	V
9608.000	37.88	6.98	45.58	43.49	42.77	74.00	-31.23	Pass	V

Worse case mode:		GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1442.758	30.76	2.21	44.07	46.61	35.51	74.00	-38.49	Pass	~Н
4880.000	34.85	6.13	44.60	43.63	40.01	74.00	-33.99	Pass	(AH)
5940.967	35.86	7.38	44.51	44.93	43.66	74.00	-30.34	Pass	Н
7320.000	36.43	6.85	44.87	44.02	42.43	74.00	-31.57	Pass	Н
8377.241	36.77	6.27	45.52	43.70	41.22	74.00	-32.78	Pass	Н
9760.000	38.05	7.12	45.55	43.89	43.51	74.00	-30.49	Pass	Н
1392.247	30.65	2.14	44.13	50.60	39.26	74.00	-34.74	Pass	V
3192.366	33.43	3.54	44.68	49.66	41.95	74.00	-32.05	Pass	V
4880.000	34.85	6.13	44.60	45.00	41.38	74.00	-32.62	Pass	V
5762.235	35.72	7.20	44.52	49.36	47.76	74.00	-26.24	Pass	V
7320.000	36.43	6.85	44.87	48.01	46.42	74.00	-27.58	Pass	V
9760.000	38.05	7.12	45.55	43.39	43.01	74.00	-30.99	Pass	V

(ii)

Report No. : EED32J00216901

200			200		- 2107		20%		
Worse case	mode:	GFSK	Test ch		nel:	Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1216.534	30.27	1.89	44.36	47.15	34.95	74.00	-39.05	Pass	~ H
1439.090	30.75	2.21	44.07	49.71	38.60	74.00	-35.40	Pass	(H)
4960.000	35.02	6.29	44.60	43.40	40.11	74.00	-33.89	Pass	H
6331.329	36.07	7.35	44.53	44.78	43.67	74.00	-30.33	Pass	Н
7440.000	36.45	6.73	44.97	44.43	42.64	74.00	-31.36	Pass	Н
9920.000	38.22	7.26	45.52	43.20	43.16	74.00	-30.84	Pass	Н
1195.049	30.21	1.85	44.39	51.25	38.92	74.00	-35.08	Pass	V
1392.247	30.65	2.14	44.13	52.59	41.25	74.00	-32.75	Pass	V
4960.000	35.02	6.29	44.60	42.81	39.52	74.00	-34.48	Pass	V
5762.235	35.72	7.20	44.52	55.22	41.62	74.00	-32.38	Pass	V
7440.000	36.45	6.73	44.97	47.64	45.85	74.00	-28.15	Pass	V
9920.000	38.22	7.26	45.52	42.75	42.71	74.00	-31.29	Pass	V


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.:AIQ18 AIQ18(Right)

Radiated spurious emission Test Setup-1(9kHz-30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

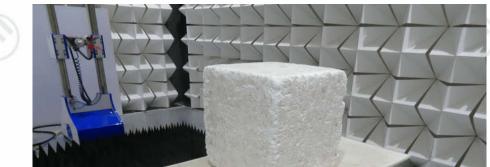
Close-up

Report No. : EED32J00216901 Page 39 of 57

AIQ18(Left)

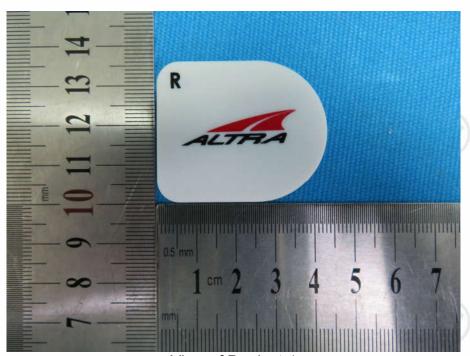
Radiated spurious emission Test Setup-1(9kHz-30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)



Radiated spurious emission Test Setup-3(Above 1GHz)

Report No. : EED32J00216901 Page 41 of 57

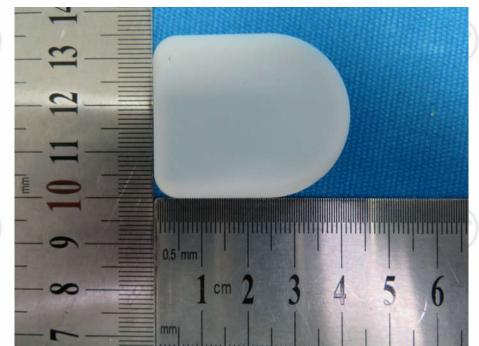

PHOTOGRAPHS OF EUT Constructional Details

Test model No.:AIQ18

View of Product

AIQ18(Right)

View of Product-1



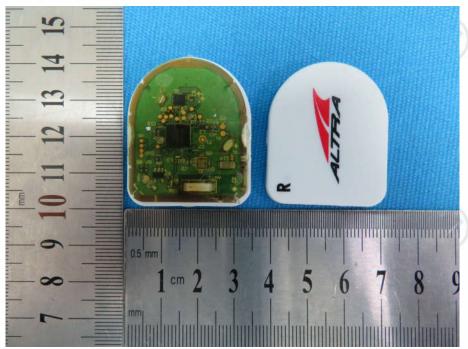


View of Product-3

View of Product-4

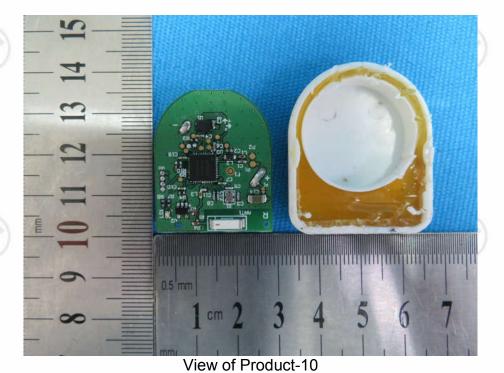
View of Product-6

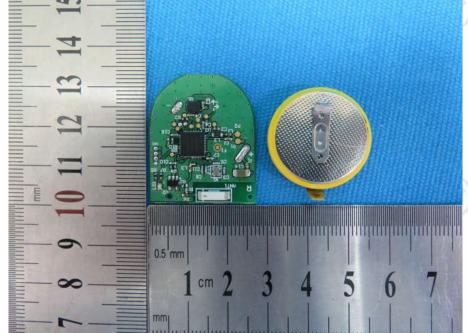
View of Product-7



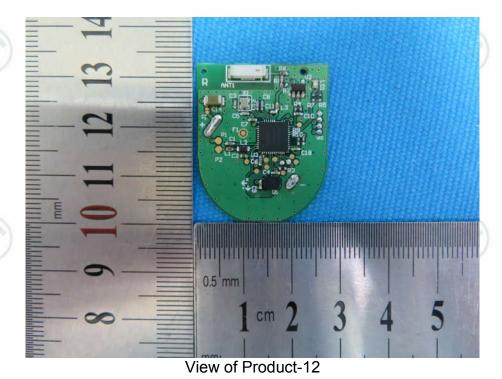
Report No.: EED32J00216901 Page 45 of 57

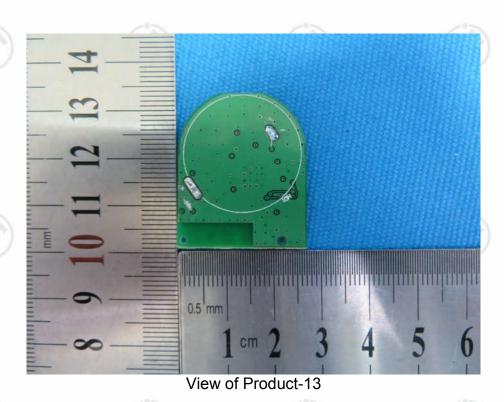
View of Product-8

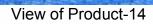


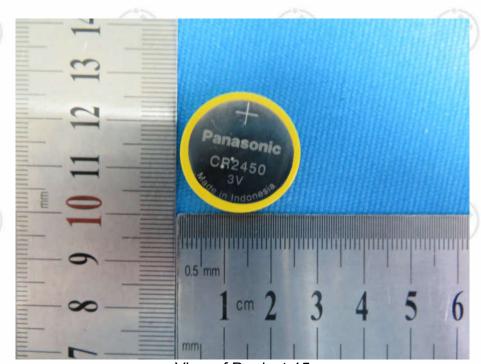


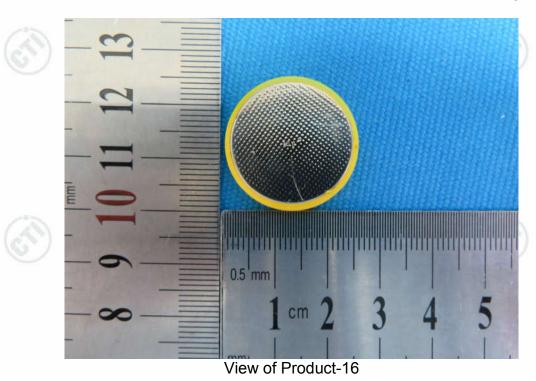
View of Product-11









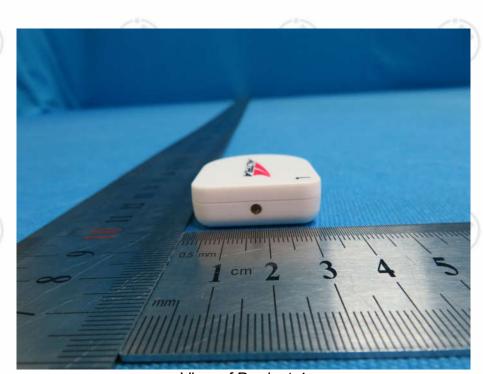


Page 49 of 57

Report No. : EED32J00216901 Page 50 of 57

AIQ18(Left)

View of Product-1

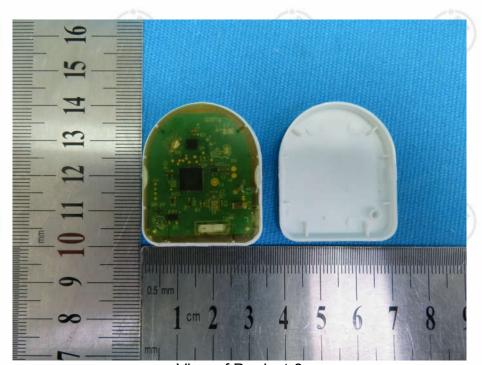


View of Product-3

View of Product-4

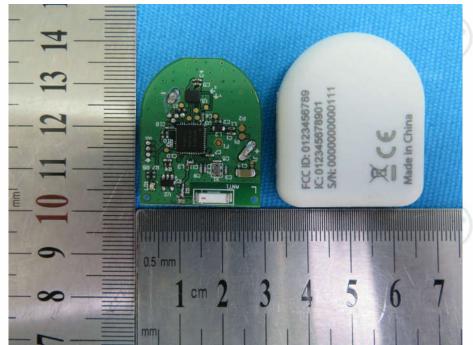
View of Product-5

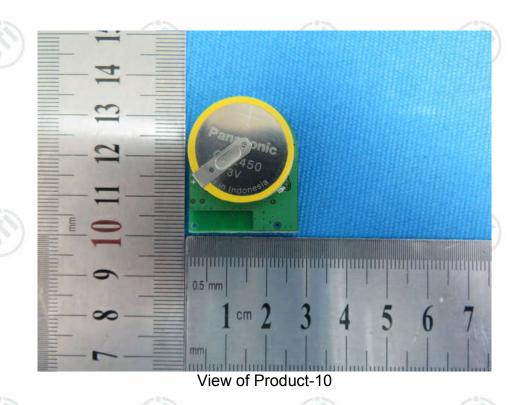
View of Product-6



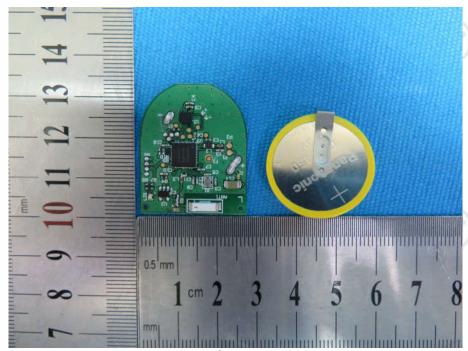
View of Product-7

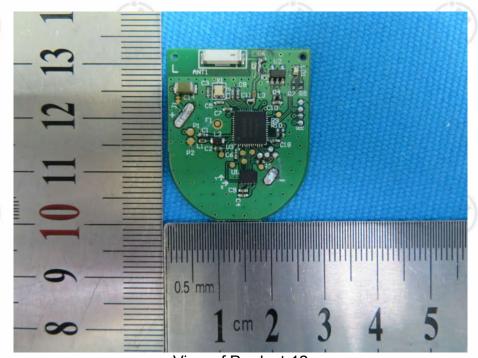
View of Product-8





View of Product-9

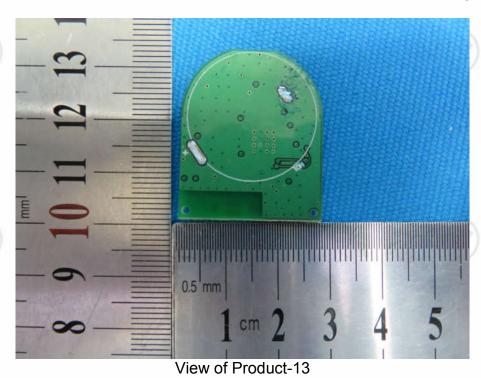


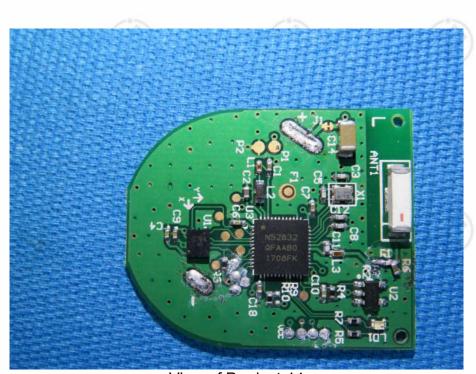


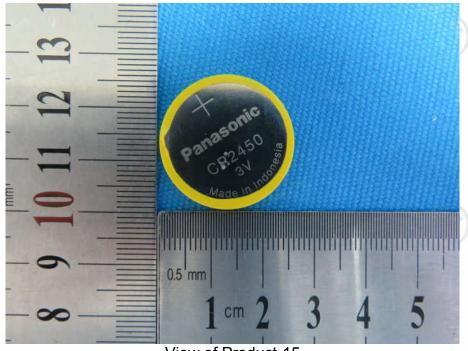
Report No. : EED32J00216901 Page 55 of 57

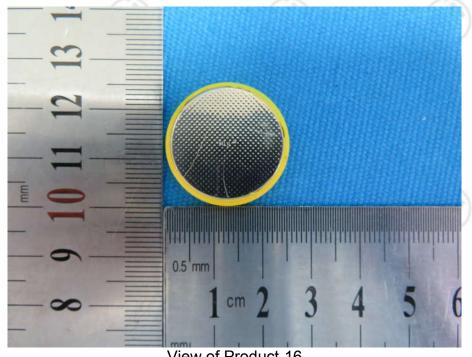
View of Product-11

View of Product-12









Report No.: EED32J00216901 Page 57 of 57

View of Product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.