Safety Human Exposure

1.1 Radio Frequency Exposure Compliance

1.1.1 Electromagnetic Fields

RESULT: Pass

Test Specification

Test item : BT & WLAN Module

Identification / Type No.: BTWDB01FCC ID: OL3BTWDB01IC:1737D-BTWDB01

HVIN : BTWDB01

Test standard : CFR47 FCC Part 2: Section 2.1091

CFR47 FCC Part 1: Section 1.1310 FCC KDB Publication 447498 v06

FCC KDB Publication 865664 D01 v01r04 FCC KDB Publication 865664 D02 v01r02

RSS-102 Issue 5 February 2021

Product Classification

This device defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at 20 cm is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons.

Max 3.16 dBi for Bluetooth & 2.4GHz Wi-Fi, Max 3.00 dBi for 5GHz Wi-Fi

> Radio Frequency Exposure Limit

For FCC:

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)
300-1,500	-	-	f/1500
1,500-100,000	-		1.0

For IC:

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period	
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)	
0.003-10 ²¹	83	90	-	Instantaneous*	
0.1-10	-	0.73/f	-	6**	
1.1-10	$87/f^{0.5}$	-	-	6**	
10-20	27.46	0.0728	2	6	
20-48	58.07/ f ^{0.25}	$0.1540/f^{0.25}$	8.944/ f ^{0.5}	6	
48-300	22.06	0.05852	1.291	6	
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6	
6000-15000	61.4	0.163	10	6	
15000-150000	61.4	0.163	10	616000/ f ^{1.2}	
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}	

Note: f is frequency in MHz.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

> Radio Frequency Exposure Calculation Formula

$$S = \frac{PG}{4\pi R^2}$$

where: $S = power density (in appropriate units, e.g. <math>mW/cm^2$)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

or:

$$S = \frac{EIRP}{4\pi R^2}$$

where: EIRP = equivalent (or effective) isotropically radiated power

a) EUT RF Exposure Evaluation standalone operations

Mode	*Measured RF Output Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	FCC Limit (mW/cm²)	IC Limit (mW/cm²)
Bluetooth	2.90	3.16	20	0.0008	1.0	5.41
2.4G Wi-Fi	21.50	3.16	20	0.0582	1.0	5.40
5G Wi-Fi	17.57	3.00	20	0.0227	1.0	9.44

Note:

- 1. *Bluetooth RF Output Power: Refer to CN2118OG 001
- 2. *2.4GHz Band RF Output Power: Refer CN2118OG 002
- 3. *5GHz Bands RF Output Power: Refer CN2118OG 003 Appendix B

b) Simultaneous transmission MPE:

Per KDB 447498 D01 v06, simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on calculated or measured field strengths or power density, is ≤ 1.0.

Simultaneous transmission Scenarios

No.	Simultaneous transmission Scenarios	
1	Bluetooth + 2.4GHz Wi-Fi	
2	Bluetooth + 5GHz Wi-Fi	

1) For Bluetooth + 2.4GHz Wi-Fi:

The MPE ratio for Bluetooth can be calculated as follow:

- =The power density at 20cm distance/MPE limit
- =0.0008 mW/cm²/1 mW/cm²
- =0.0008

The MPE ratio for 2.4GHz WiFi can be calculated as follow:

- =The power density at 20cm distance/MPE limit
- =0.0582 mW/cm²/1 mW/cm²
- =0.0582

The sum of the MPE ratios for all simultaneous transmitting antennas:

- =0.0008+0.0582
- = 0.059 < 1.0

As the sum of MPE ratios for all simultaneous transmitting antennas is ≤ 1.0, simultaneous transmission MPE test exclusion will be applied.

2) For Bluetooth + 5GHz Wi-Fi:

The MPE ratio for Bluetooth can be calculated as follow:

- =The power density at 20cm distance/MPE limit
- =0.0008 mW/cm²/1 mW/cm²
- =0.0008

The MPE ratio for 5GHz WiFi can be calculated as follow:

- =The power density at 20cm distance/MPE limit
- =0.0227 mW/cm²/1 mW/cm²
- =0.0227

The sum of the MPE ratios for all simultaneous transmitting antennas:

- =0.0008+0.0227
- = 0.0235<1.0

As the sum of MPE ratios for all simultaneous transmitting antennas is ≤ 1.0 , simultaneous transmission MPE test exclusion will be applied.

Conclusion

Therefore the maximum calculations result of above are meet the requirement of Radio Frequency Exposure (MPE) limit.