DEKRA Testing and Certification (Suzhou) Co., Ltd. No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Test report No: 22A0151R-RF-US-P03V01

SAR TEST REPORT

Product Name	AH80 Bluetooth Headset		
Trademark	Alcatel-Lucent Enterprise		
Model and /or type reference	AH80		
FCC ID	OL3AH80		
IC	1737D-AH80		
Applicant's name / address	ALE International 32, Avenue Kléber – 92700 Colombes – FRANCE		
Test method requested, standard	FCC KDB Publication 248227 D01v02r02 FCC KDB Publication 447498 D04v01 FCC KDB Publication 865664 D01v01r04 BS IEC/IEEE 62209-1528-2020 FCC 47CFR §2.1093 ANSI C95.1-2005 RSS - 102 Issue 5: 2015		
Test Result	MAX Head SAR 1g SAR Bluetooth: 0.006W/kg		
Verdict Summary	IN COMPLIANCE		
Documented by (name / position & signature)	Tim Cao /Project Engineer		
Approved by (name / position & signature)	Jack Zhang/Manager Jack Zhong		
Date of issue	2022-11-08		

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Report Version	V1.1
Report template No	Template_FCC SAR-RF-V1.0

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

INDEX

COMPET	ENCES AND GUARANTEES	5
GENERA	L CONDITIONS	5
ENVIRON	IMENTAL CONDITIONS	6
POSSIBL	E TEST CASE VERDICTS	6
DOCUME	NT HISTORY	7
REMARK	S AND COMMENTS	7
1 GEN	IERAL INFORMATION	
1 1	GENERAL DESCRIPTION OF THE ITEM(S)	8
1.1		10
1.2	CHANNEL LIST	
2 SAR		
2.1	DASY5 System Description	
2.1.1	. Applications	
2.1.2	. Area Scans	
2.1.3	Zoom Scan (Cube Scan Averaging)	
2.1.4	. Uncertainty of Inter-/Extrapolation and Averaging	
2.2	DASY5 E-FIELD PROBE	
2.3	BOUNDARY DETECTION UNIT AND PROBE MOUNTING DEVICE	
2.4	DATA ACQUISITION ELECTRONICS (DAE) AND MEASUREMENT SERVER	
2.5	Rовот	
2.6	LIGHT BEAM UNIT	
2.7	DEVICE HOLDER	
2.8	SAM TWIN PHANTOM	
3 TISS	SUE SIMULATING LIQUID	
3.1	THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	
3.2	TISSUE CALIBRATION RESULT	
3.3	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
4 SAR	MEASUREMENT PROCEDURE	
4.1	SAR SYSTEM VALIDATION	
4.1.1	. Validation Dipoles	
4.1.2	Validation Result	

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

	4.2	SAR MEASUREMENT PROCEDURE	1		
	4.3	SAR MEASUREMENT PROCEDURE	3		
	4.3.1.	Duty Factor Control	3		
	4.3.2.	Initial Test Position SAR Test Reduction Procedure	3		
5	SAR	EXPOSURE LIMITS)		
6	TES	Γ EQUIPMENT LIST)		
7	MEA	SUREMENT UNCERTAINTY	L		
8	CON	DUCTED POWER MEASUREMENT	ł		
9	TES	۲ PROCEDURES	j		
	9.1	SAR TEST RESULTS SUMMARY	5		
	9.2	TEST POSITION AND CONFIGURATION	1		
AI	PPENDI	X A. SAR SYSTEM VALIDATION DATA	;		
APPENDIX B. SAR MEASUREMENT DATA					
APPENDIX C. PROBE CALIBRATION DATA					
AI	APPENDIX D. DIPOLE CALIBRATION DATA				
AI	APPENDIX E. DAE CALIBRATION DATA				

COMPETENCES AND GUARANTEES

DEKRA is a testing laboratory competent to carry out the tests described in this report. In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and Maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowlEdge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the Maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

Test Location	No. 99, Hongye Road, Suzhou Industrial Park Suzhou, 215006, P.R. China
Date(receive sample)	Jun. 22, 2022
Date (start test)	Oct. 18, 2022
Date (finish test)	Oct. 25, 2022

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	18 °C – 25 °C
Relative Humidity air	30% - 60%

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

DOCUMENT HISTORY

Report No.	Version	Description	Issued Date
22A0151R-RF-US-P03V01	V1.0	Initial issue of report.	2022-11-02
22A0151R-RF-US-P03V01	V1.1	Page22&23Add test date.	2022-11-08

REMARKS AND COMMENTS

- 1. The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).
- These test results on a sample of the device are for the purpose of demonstrating Compliance with FCC KDB Publication 248227 D01v02r02, FCC KDB Publication 447498 D04v01, FCC KDB Publication 865664 D01v01r04,BS IEC/IEEE 62209-1528-2020, FCC 47CFR §2.1093, ANSI C95.1-2005, RSS 102: Issue 5.
- 3. The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to account the uncertainty associated with the measurement result.
- 4. The test results presented in this report relate only to the object tested.
- 5. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.
- 6. This report will not be used for social proof function in China market.
- 7. DEKRA declines any responsibility with the following test data provided by customer that may affect the validity of result:
 - Chapter 1.1 General Description of the Item(s);
 - Chapter 1.2 Antenna Informaion;
 - Chapter 1.3 Channel List.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

1.1 General Description of the Item(s)

Product Name	AH80 Bluetooth Headset		
Model No	AH80		
FCC ID	OL3AH80		
IC	1737D-AH80		
Hardware version	V1.7		
Software version	V4.0.21		
Firmware version	V4.0.21		
HVIN	AH80		
Manufacturter	ALE International		
Manufacturer Address	32, Avenue Kléber – 92700 Colombes – FRANCE		
SAR Tests	#10 Sample		
Model differences	NA		

Wireless specification	Blueto	Bluetooth				
Bluetooth Specification	V3.0	V3.0				
Operating frequency range(s)	2400-	2400~2483.5MHz				
Type of Modulation	GFSK	GFSK				
PHYs	\square	GFSK		Pi/4 DQPSK		8DPSK
Data Rate	\boxtimes	1Mbit/s		2Mbit/s		3Mbit/s
Number of channel	79					

Wireless specification	Bluetooth 5.0					
Operating frequency range(s)	2400~	2400~2483.5MHz				
Type of Modulation	GFSK					
PHYs	\boxtimes	LE 1M	\boxtimes	LE 2M		LE Coded S=2/8
Data Rate	\boxtimes	1Mbit/s	\boxtimes	2Mbit/s		500/125 Kbit/s
Number of channel	40					

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Rated power supply:	Voltage and Frequency				
	AC: 220 – 240 V, 50/60 Hz				
		AC: 100 – 240 V, 50/60 Hz			
	\boxtimes	Battery:3.7V			
	\boxtimes	DC:5V			
Mounting position:	Table top equipment				
		Wall/Ceiling mounted equipment			
		Floor standing equipment			
	\boxtimes	Head-mounted equipment			
		Other:			

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

1.2 Antenna Information

Antenna model / type number	N/A					
Antenna serial number	N/A					
Antenna Delivery	\square	1TX + 1RX				
		2TX + 2RX				
		Others:				
Antenna technology	\boxtimes	SISO				
				Beam-forming		
Antenna Type		External		Dipole		
				Sectorized		
	\boxtimes	Internal		PIFA		
			\square	РСВ		
				Dipole		
				Others		
Antenna Gain	-1.52 (dBi				

1.3 Channel List

For Bluetooth

Bluetooth	Bluetooth Working Frequency of Each Channel: (FHSS)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2403 MHz	02	2404 MHz	03	2405 MHz
04	2406 MHz	05	2407 MHz	06	2408 MHz	07	2409 MHz
08	2410 MHz	09	2411 MHz	10	2412 MHz	11	2413 MHz
12	2414 MHz	13	2415 MHz	14	2416 MHz	15	2417 MHz
16	2418 MHz	17	2419 MHz	18	2420 MHz	19	2421 MHz
20	2422 MHz	21	2423 MHz	22	2424 MHz	23	2425 MHz
24	2426 MHz	25	2427 MHz	26	2428 MHz	27	2429 MHz
28	2430 MHz	29	2431 MHz	30	2432 MHz	31	2433 MHz
32	2434 MHz	33	2435 MHz	34	2436 MHz	35	2437 MHz
36	2438 MHz	37	2439 MHz	38	2440 MHz	39	2441 MHz
40	2442 MHz	41	2443 MHz	42	2444 MHz	43	2445 MHz
44	2446 MHz	45	2447 MHz	46	2448 MHz	47	2449 MHz
48	2450 MHz	49	2451 MHz	50	2452 MHz	51	2453 MHz
52	2454 MHz	53	2455 MHz	54	2456 MHz	55	2457 MHz
56	2458 MHz	57	2459 MHz	58	2460 MHz	59	2461 MHz
60	2462 MHz	61	2463 MHz	62	2464 MHz	63	2465 MHz
64	2466 MHz	65	2467 MHz	66	2468 MHz	67	2469 MHz
68	2470 MHz	69	2471 MHz	70	2472 MHz	71	2473 MHz
72	2474 MHz	73	2475 MHz	74	2476 MHz	75	2477 MHz
76	2478 MHz	77	2479 MHz	78	2480 MHz	N/A	N/A

DEKRA Testing and Certification (Suzhou) Co., Ltd. No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Bluetooth Working Frequency of Each Channel: (BT 5.0)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2404 MHz	02	2406 MHz	03	2408 MHz
04	2410 MHz	05	2412 MHz	06	2414 MHz	07	2416 MHz
08	2418 MHz	09	2420 MHz	10	2422 MHz	11	2424 MHz
12	2426 MHz	13	2428 MHz	14	2430 MHz	15	2432 MHz
16	2434 MHz	17	2436 MHz	18	2438 MHz	19	2440 MHz
20	2442 MHz	21	2444 MHz	22	2446 MHz	23	2448 MHz
24	2450 MHz	25	2452 MHz	26	2454 MHz	27	2456 MHz
28	2458 MHz	29	2460 MHz	30	2462 MHz	31	2464 MHz
32	2466 MHz	33	2468 MHz	34	2470 MHz	35	2472 MHz
36	2474 MHz	37	2476 MHz	38	2478 MHz	39	2480 MHz

Note: The General Description of the Item, antenna information and Channel List in clause 1 are provided and confirmed by the client.

2 SAR MEASUREMENT SYSTEM

2.1 DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

1. A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

2. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,

AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is

battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

3. The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

4. The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

5. A computer running WinXP and the DASY5 software.

6. Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

7. The phantom, the device holder and other accessories according to the targeted measurement.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383, EN62311 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and Body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$
$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2 DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4		
Construction	Symmetrical design with triangular core Built-in shieldin	ig against static charges	
	PEEK enclosure material (resistant to organic solvents, e.g	., DGBE)	
Frequency	10 MHz to 6 GHz		
Frequency	Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in HSL (rotation around probe axis)		
Directivity	± 0.5 dB in tissue material (rotation normal to probe axis)	/	
Dynamic Bango	10 μW/g to 100 mW/g		
	Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)		
	Overall length: 330 mm (Tip: 20 mm)		
Dimensions	Tip diameter: 2.5 mm (Body: 12 mm)		
Dimensions	Typical distance from probe tip to dipole centers: 1 mm		
	High precision dosimetric measurements in any exposure s	scenario (e.g., very strong	
Application	gradient fields). Only probe which enables compliance testing for frequencies up to 6		
	GHz with precision of better 30%.		

2.3 Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect Frontal and lateral probe collisions and trigger the necessary software response.

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7 Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the Body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3 TISSUE SIMULATING LIQUID

3.1 The composition of the tissue simulating liquid

INGREDIENT	2450MHz
(% Weight)	Head
Water	73.2
Salt	0.01
Sugar	0.00
HEC	0.00
Preventol	0.00
DGBE	26.7
Triton X-100	0.00

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement					
Frequency	Description	Dielectric P	Tissue Temp.		
[MHz]	Description	r 3	σ [s/m]	[°C]	
	Reference result	39.2	1.80	NI/A	
2450MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	11/7	
	10-21-2022	39.051	1.85	21.0	

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Head Tissue Simulant Measurement								
Dielectric Parameters						Tissue		
[MH ₇]	Channel	Permittivity	Conductivity	Permittivity	Conductivity	Delta	Delta	Temp.
[11112]		εr	σ	Target εr	Target σ	(ɛ r) %	(σ) %	[°C]
2402	Low	39.14	1.81	39.29	1.76	-0.41	2.84	21.0
2441	Mid	39.04	1.84	39.22	1.79	-0.41	2.79	21.0
2480	High	39.10	1.88	39.15	1.83	-0.26	2.73	21.0
Date: 10-21	-2022							

Note:

1. The delta (ϵ_r) and (σ) are within ±5%, delta SAR value was not calculated in this report.

2. As per IEC 62209-2 Annex F, the SAR correction factor is given by:

 $\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma$

For the1g average SAR $C\epsilon$ and $C\sigma$ are given by:

 $C\epsilon = -7.854 x 10^{-4} f^{3} + 9.402 x 10^{-3} f^{2} - 2.742 x 10^{-2} f - 0.2026$

 $C\sigma = 9.804 \times 10^{-3} f^{3} - 8.661 \times 10^{-2} f^{2} + 2.981 \times 10^{-2} f + 0.7829$

Where f is the frequency in GHz.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and Body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	Неа	ad
(MHz)	٤r	σ (S/m)
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
915	41.5	0.98
1450	40.5	1.20
1610	40.3	1.29
1800 – 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5800	35.3	5.07

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4 SAR MEASUREMENT PROCEDURE

4.1 SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

4.1.2. Validation Result

System Performance Check Head at 2450MHz Validation Dipole: D2450V2, SN: 839						
Frequency	Description	SAR [w/kg]	SAR [w/kg]	Tissue Temp.		
[MHz]		1g	10g	[°C]		
	Reference result	52.6	24.3	Ν/Δ		
2450 MHz ± 10% window 47.34 to 57.86 21.87 to 26.73						
10-21-2022 48.4 22.52 21.0						
Note: All SAR v	alues are normalized to '	1W forward power.				

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

4.2 SAR Measurement Procedure

The DASY 5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivityρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3 SAR Measurement Procedure

4.3.1. Duty Factor Control

Unless it is permitted by specific KDB procedures or continuous transmission is specifically restricted by the device, the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

4.3.2. Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.16 The initial test position procedure is described in the following:

When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (reMaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).

a) When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and Edges) are tested.

b) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

5 SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowlEdge or control over their exposure.

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or Body)	1.6 W/kg
Spatial Average SAR (whole Body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Limits for General Population/Uncontrolled Exposure (W/kg)

6 TEST EQUIPMENT LIST

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D2450V2	839	2025.03.31
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
ELI1 Phantom	Speag	QDOVA002AA	TP:2106	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1220	2023.03.23
E-Field Probe	Speag	EX3DV4	3710	2023.04.17
Tissue fluid test probe	Speag	DAK 3.5	1308	N/A
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	woken	0110A05A82Z-20	CMLC66W1A1	2023.08.18
Vector Network	Agilent	E5071C	MY46103316	2023.09.16
Signal Generator	Agilent	E4438C	MY49070163	2023.06.30
Spectrum Analyzer	Agilent	N9010A	MY48030494	2022.12.14
USB Power Sensor	Keysight	U2021XA	MY60330005	2023.09.16
Temperature/Humidity Meter	Zhichen	ZC1-2	N/A	2023.07.06
Temperature Meter	Dretec	O-274	RF-001	2022.11.23

7 MEASUREMENT UNCERTAINTY

		DAS	SY5 Unce	rtainty				
Measurement uncertainty for	or 300 MHz	to 3 GHz	averaged	l over 1 gr	[.] am / 10 g	ram.		
Error Description	Uncert.	Prob.	Div.	(ci)	(ci)	Std.	Std.	(vi)
	value	Dist.		1g	10g	Unc.	Unc.	veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related	<u> </u>							
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup	<u> </u>							
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	+2 5%	N	1	0.78	0.71	+2 0%	±1 8%	~
(meas.)	±2.0 /0	IN	1	0.70	0.71	±2.0 /0	±1.0 /0	~
Liquid Permittivity (meas.)	±2.5%	Ν	1	0.26	0.26	±0.6%	±0.7%	∞
Combined Std. Uncertaint	t y					±10.6%	±10.5%	361
Expanded STD Uncertaint	ty					±21.2%	±21.1%	

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Measurement	uncertainty	v evaluat	ion temp	late for s	system r	epeatabilit	y	
Measurement uncertainty for 30	MHz to 6 G	Hz avera	ged over	1 gram /	10 gram			
Error Description	Uncert.	Prob.	Div.	(ci)	(ci)	Std.	Std.	(vi)
	Value	Dist.		1g	10g	Unc.	Unc.	veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.65%	Ν	1	1	1	±6.65%	±6.65%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	$\sqrt{3}$	0	0	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	0	0	±1.4%	±1.4%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	0	0	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	Ν	1	0	0	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	0	0	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	0	0	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	0	0	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	0	0	±1.7%	±1.7%	×
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	×
Post-processing	±4.0%	R	$\sqrt{3}$	0	0	±2.3%	±2.3%	∞
Test Sample Related								
Test Sample Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	5
Power Drift	±0.0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	∞
Power Scaling	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%	∞
SAR correction	±1.9%	R	$\sqrt{3}$	1	1	±1.1%	±0.9%	∞
Liquid Conductivity (meas.)	±2.5%	Ν	1	0.78	0.71	±2.0%	±1.8%	∞
Liquid Permittivity (meas.)	±2.5%	Ν	1	0.26	0.26	±0.6%	±0.7%	∞
Temp. unc Conductivity	±5.2%	R	$\sqrt{3}$	0.78	0.71	±2.3%	±2.1%	∞
Temp. unc Permittivity	±0.8%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Std. Uncertainty						±12.8%	±12.7%	748
Expanded STD Uncertainty						±25.6%	±25.4%	

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

8 CONDUCTED POWER MEASUREMENT

Bluetooth Duty Cycle

Toot Mode	Tx On	Tx Off	Tx On + Tx Off	Duty Cycle
Test Mode	(ms)	(ms)	(ms)	(%)
DH5	2.87	0.88	3.75	76.53
2DH5	2.89	0.86	3.75	77.07
3DH5	2.87	0.88	3.75	76.80
LE_1M	2.128	0.376	2.504	84.98
LE_2M	1.070	0.810	1.880	56.91
		LE_1M_2440MF	łz:	

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

For Bluetooth Power

Test Mode	Frequency (MHz)	Avg. Power (dBm)	Tune-up Power (dBm)	Duty cycle (%)	Tune-up Scaling Factor	Duty Cycle Scaling Factor
	2402	7.34	8.00	76.53	1.164	1.307
GFSK	2441	7.22	8.00	76.53	1.197	1.307
	2480	7.18	8.00	76.53	1.208	1.307
	2402	9.10	10.00	77.07	1.230	1.298
Pi/4 DQPSK	2441	9.22	10.00	77.07	1.197	1.298
	2480	9.12	10.00	77.07	1.225	1.298
	2402	9.36	10.00	76.80	1.159	1.302
8DPSK	2441	9.56	10.00	76.80	1.107	1.302
	2480	9.35	10.00	76.80	1.161	1.302
	2402	7.21	8.00	84.98	1.199	1.177
LE 1M	2440	7.48	8.00	84.98	1.127	1.177
	2480	7.43	8.00	84.98	1.140	1.177
	2402	7.57	8.00	56.91	1.104	1.757
LE 2M	2440	7.50	8.00	56.91	1.122	1.757
	2480	7.51	8.00	56.91	1.119	1.757

9 TEST PROCEDURES

9.1 SAR Test Results Summary

	SAR Measurement									
Ambient Temperature (°C) : 21.5 ± 2					Rela	ative Humic	dity (%): 52			
Liquid Temperature (°C) : 21.0 ± 2 Depth					th of Liquic	l (cm):>15				
AH80 Bluetooth Headset										
Head SAR: S	Spacing On	nm								
Test Mode	Test Position	Frequency (MHz)	Max Power (dBm)	Powe Drift (<±0.	er t 2)	SAR 1g (W/kg)	Scaling Factor	Duty factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
Bluetooth 3DH5	In Side	2402	9.36	0.18	3	0.001	1.159	1.302	0.002	1.6
Bluetooth 3DH5	In Side	2441	9.56	-0.1	1	0.001	1.107	1.302	0.001	1.6
Bluetooth 3DH5	In Side	2480	9.35	-0.18	3	0.004	1.161	1.302	0.006	1.6

Note:

1. The product is a headphone, and the sponge pad on the test surface cannot be removed. The test is carried out by sticking to the sponge pad.

9.2 Test position and configuration

1. Liquid tissue depth was at least 15.0 cm for all frequencies.

2. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

3. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.

4. Reported SAR were scaled to the maximum duty factor to demonstrate compliance per FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02.

5. SAR was performed with the device configured in the positions according to KDB 447498 D01 SAR
 Procedures for general, Body SAR was performed with the device to phantom separation distance of 10mm.
 6. SAR was performed with the device configured in the positions according to KDB 447498 D01 SAR
 Procedures for general, Limb SAR was performed with the device to phantom separation distance of 0mm.
 7. Because of the Hand-held device, so addition tests are performed at five positions (Front, Back, Top, Right,

Left).

Appendix A. SAR System Validation Data

Date: 10/21/2022

Test Laboratory: DEKRA Lab

System Check Head 2450MHz

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: UID 0, CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; ϵ r = 39.051; $\rho = 1000$ kg/m3; Phantom section: Flat Section; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.39, 7.39, 7.39) ; Calibrated: 4/18/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 3/24/2022
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 13.0 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.08 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 24.5 W/kg

SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.63 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Appendix B. SAR measurement Data

Date: 10/21/2022

Test Laboratory: DEKRA Lab

Bluetooth 3DH5 3Mbps CH78 2480MHz inside

DUT: Bluetooth Headset

Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.302; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 1.88$ S/m; $\epsilon r = 39.104$; $\rho = 1000$ kg/m3; Phantom section: Flat Section; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.39, 7.39, 7.39) ; Calibrated: 4/18/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 3/24/2022
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

CH78/Area Scan (13x13x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.00353 W/kg

CH78/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.086 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.0110 W/kg

SAR(1 g) = 0.00359 W/kg; SAR(10 g) = 0.000884 W/kg

Maximum value of SAR (measured) = 0.00410 W/kg

0 dB = 0.00410 W/kg = -23.87 dBW/kg

Date: 10/21/2022

Test Laboratory: DEKRA Lab

Bluetooth 3DH5 3Mbps CH39 2441MHz inside

DUT: Bluetooth Headset

Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.302; Frequency: 2441 MHz; Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.839$ S/m; $\epsilon r = 39.037$; $\rho = 1000$ kg/m3; Phantom section: Flat Section; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.39, 7.39, 7.39) ; Calibrated: 4/18/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 3/24/2022
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

CH39/Area Scan (11x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.00194 W/kg

CH39/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.7120 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.00346 W/kg

SAR(1 g) = 0.000599 W/kg; SAR(10 g) = 0.000145 W/kg

Maximum value of SAR (measured) = 0.00346 W/kg

0 dB = 0.00346 W/kg = -24.61 dBW/kg

Date: 10/21/2022

Test Laboratory: DEKRA Lab

Bluetooth 3DH5 3Mbps CH0 2402MHz inside

DUT: Bluetooth Headset

Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.302; Frequency: 2402 MHz; Medium parameters used (interpolated): f = 2402 MHz; $\sigma = 1.811$ S/m; $\epsilon r = 39.138$; $\rho = 1000$ kg/m3; Phantom section: Flat Section; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.39, 7.39, 7.39) ; Calibrated: 4/18/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 3/24/2022
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

CH00/Area Scan (13x13x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.00255 W/kg

CH00/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.4130 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.00436 W/kg

SAR(1 g) = 0.00138 W/kg; SAR(10 g) = 0.000606 W/kg

Maximum value of SAR (measured) = 0.00338 W/kg

0 dB = 0.00338 W/kg = -24.71 dBW/kg

Appendix C. Probe Calibration Data

Client Dek	ra-CN	Certificate No:	Z22-60083
CALIBRATION O	CERTIFICATE		
Object	EX3DV4	- SN : 3710	
Calibration Procedure(s)	FF-Z11-0 Calibratic	04-02 on Procedures for Dosimetric E-field Probes	
Calibration date:	April 18, 2	2022	
humidity<70%. Calibration Equipment use	ed (M&TE critical for	calibration)	Sebadulad O-liter (
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
	101010		
Power sensor NRP2	101919	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91	101919 101547 101548	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	Jun-22 Jun-22 Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua	101919 101547 101548 ator 18N50VV-10d	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) IB 20-Jan-21(CTTL, No.J21X00486)	Jun-22 Jun-22 Jun-22 Jan-23
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) IB 20-Jan-21(CTTL, No.J21X00486) IB 20-Jan-21(CTTL, No.J21X00485)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) IB 20-Jan-21(CTTL, No.J21X00486) IB 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 21) May-22
Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D Reference Probe EX3D	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) IB 20-Jan-21(CTTL, No.J21X00486) IB 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D Reference Probe EX3D DAE4	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au Cal Date(Calibrated by, Certificate No.)	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration
Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37 Network Analyzer E507	101919 101547 101548 ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605 1C MY46110673	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406)	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37 Network Analyzer E507	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605 1C MY46110673 Name	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23 Signature
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37 Network Analyzer E507 Calibrated by:	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605 1C MY46110673 Name Yu Zongying	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00485) 26-May-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 3 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23 Signature
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37 Network Analyzer E507 Calibrated by: Reviewed by:	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605 1C MY46110673 Name Yu Zongying Lin Hao	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au 20-Aug-21(SPEAG, No.DAE4-1555_Au Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23 Signature
Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37 Network Analyzer E507 Calibrated by: Reviewed by:	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605 1C MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 20-Aug-21(SPEAG, No.EX3-7307_May 20-Aug-21(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23 Signature
Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37 Network Analyzer E507 Calibrated by: Reviewed by:	101919 101547 101548 ator 18N50W-10d ator 18N50W-20d V4 SN 7307 V4 SN 7464 SN 1555 ID # 00A 6201052605 1C MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 18 20-Jan-21(CTTL, No.J21X00486) 18 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(CTTL, No.J21X00486) 19 20-Jan-21(SPEAG, No.EX3-7307_May 26-Jan-22(SPEAG, No.EX3-7464_Jan2 20-Aug-21(SPEAG, No.DAE4-1555_Au 20-Aug-21(SPEAG, No.DAE4-1555_Au 20-Aug-21(CTTL, No.J21X04467) 20 16-Jun-21(CTTL, No.J21X04467) 21 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer SAR Test Engineer SAR Project Leader Issued: April 11 14-San22(CAP)	Jun-22 Jun-22 Jan-23 Jan-23 21) May-22 2) Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23 Signature

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(µV/(V/m) ²) ^A	0.37	0.41	0.49	±10.0%
DCP(mV) ^B	101.9	102.3	102.5	

Modulation Calibration Parameters

System Name	÷	dB	B dBõV	C	dB	WR mV	Unc - (<i>k</i> =2)
CW	Х	0.0	0.0	1.0	0.00	140.6	±2.1%
	Y	0.0	0.0	1.0		148.8	
	Z	0.0	0.0	1.0		170.6	
	System Name CW	System Name CW X Y Z	System Name dB CW X 0.0 Y 0.0 Z 0.0	System Name dB dBõV CW X 0.0 0.0 Y 0.0 0.0 Z 0.0 0.0	System Name dB dB√μV CW X 0.0 0.0 1.0 Y 0.0 0.0 1.0 Z 0.0 0.0 1.0	System Name dB dBõV dB CW X 0.0 0.0 1.0 0.00 Y 0.0 0.0 1.0 2 Z 0.0 0.0 1.0 0	System Name dB dBõV dB mV CW X 0.0 0.0 1.0 0.00 140.6 Y 0.0 0.0 1.0 148.8 Z 0.0 0.0 1.0 170.6

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E² field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z22-60083

Page 3 of 9

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3710

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊩]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	9.60	9.60	9.60	0.17	1.28	±12.1%
835	41.5	0.90	9.31	9.31	9.31	0.15	1.41	±12.1%
900	41.5	0.97	9.30	9.30	9.30	0.17	1.27	±12.1%
1810	40.0	1.40	7.90	7.90	7.90	0.30	0.93	±12.1%
1900	40.0	1.40	7.80	7.80	7.80	0.32	0.94	±12.1%
2300	39.5	1.67	7.66	7.66	7.66	0.57	0.71	±12.1%
2450	39.2	1.80	7.39	7.39	7.39	0.61	0.69	±12.1%
2600	39.0	1.96	7.18	7.18	7.18	0.53	0.76	±12.1%
3300	38.2	2.71	7.00	7.00	7.00	0.43	0.93	±13.3%
3500	37.9	2.91	6.78	6.78	6.78	0.45	0.98	±13.3%
3700	37.7	3.12	6.49	6.49	6.49	0.42	1.02	±13.3%
3900	37.5	3.32	6.55	6.55	6.55	0.35	1.35	±13.3%
4100	37.2	3.53	6.53	6.53	6.53	0.40	1.15	±13.3%
4200	37.1	3.63	6.44	6.44	6.44	0.40	1.25	±13.3%
4400	36.9	3.84	6.34	6.34	6.34	0.40	1.25	±13.3%
4600	36.7	4.04	6.23	6.23	6.23	0.45	1.25	±13.3%
4800	36.4	4.25	6.18	6.18	6.18	0.45	1.30	±13.3%
4950	36.3	4.40	5.87	5.87	5.87	0.45	1.30	±13.3%
5250	35.9	4.71	5.40	5.40	5.40	0.45	1.30	±13.3%
5600	35.5	5.07	4.85	4.85	4.85	0.55	1.20	±13.3%
5750	35.4	5.22	4.88	4.88	4.88	0.55	1.20	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z22-60083

Page 4 of 9

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Certificate No:Z22-60083

Page 5 of 9

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z22-60083

Page 8 of 9

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

	11	1111	
			Triangular
a Alto ago a			81.3
e			enabled
			disable
			337mm
			10mm
			9mm
			2.5mm
Point			1mm
oint			1mm
oint			1mm
nce from Si	urface		1.4mm
	e Point Point Point Point nce from St	e Point Point Point Point nce from Surface	e Point Poin

Other Probe Parameters

Certificate No:Z22-60083

Page 9 of 9

Appendix D. Dipole Calibration Data

- man striggennation	Http://www.ch	2304633-2504 <u>iinattl.cn</u>	
Client Deki	ra-CN	Certificate No: Z2	2-60089
CALIBRATION C	ERTIFICAT	TE	
Object	D2450	V2 - SN: 839	
Calibration Procedure(s)	FF-Z11 Calibra	-003-01 tion Procedures for dipole validation kits	
Calibration date:	April 1,	2022	
All calibrations have been humidity<70%. Calibration Equipment used	conducted in t	ne closed laboratory facility: environment t	emperature (22±3)°C ar
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibratio
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	106277 104291 SN 7307 SN 1556	24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-May-21(SPEAG,No.EX3-7307_May21) 12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Sep-22 Sep-22 May-22 Jan-23
UNLY	· · · · · · · · · · · · · · · · · · ·		Scheduled Calibration
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	concatica campiator
Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) 14-Jan-22 (CTTL, No.J22X00406)	Jan-23 Jan-23
Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function	Jan-23 Jan-23 Signature
Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function SAR Test Engineer	Jan-23 Jan-23 Signature
Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function SAR Test Engineer SAR Test Engineer	Jan-23 Jan-23 Signature
Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao Qi Dianyuan	Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jan-23 Jan-23 Signature
Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by: Approved by: This calibration certificate sh	ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao Qi Dianyuan	Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function SAR Test Engineer SAR Test Engineer SAR Project Leader Issued: April 6 duced except in full without written approval of	Jan-23 Jan-23 Signature

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary: Т

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A ·	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60089 Page 2 of 6

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

The following parameters and calculations were applied. Temperature Permittivity Conductivity Nominal Head TSL parameters 22.0 °C 39.2 1.80 mho/m Measured Head TSL parameters (22.0 ± 0.2) °C 39.5 ± 6 % 1.79 mho/m ± 6 % Head TSL temperature change during test <1.0 °C</td> --- ---

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.1 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 18.8 % (<i>k</i> =2)	
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	2	
SAR measured	250 mW input power	6.05 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 18.7 % (k=2)	

Certificate No: Z22-60089

D			~	C	
P	20	0	3	at	1
	чъ	Υ.	2	U.	

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by		SPEAG		
			,	
le salet de la				
Hadrah Maria I.				
ificate No: Z22-60089	Pag	e 4 of 6		

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

