



**REPORT ON THE CERTIFICATION TESTING OF AN  
ALCATEL BUSINESS SYSTEMS  
MOBILE HANDSET  
WITH RESPECT TO  
FCC RULES CFR 47, PART 15D August 2006  
INTENTIONAL RADIATOR SPECIFICATION**



**TRL Compliance**  
part of **TRAC** global

TEST REPORT NO: RU1304/7506

COPY NO: 2 -----

ISSUE NO: 1

FCC ID: OL3300400

**REPORT ON THE CERTIFICATION TESTING OF AN  
ALCATEL BUSINESS SYSTEMS  
MOBILE HANDSET  
WITH RESPECT TO  
FCC RULES CFR 47, PART 15D August 2006  
INTENTIONAL RADIATOR SPECIFICATION**

TEST DATE: 19<sup>th</sup> February – 14<sup>th</sup> March 2007

TESTED BY: ----- D WINSTANLEY

APPROVED BY: ----- J CHARTERS  
RADIO SECTION  
LEADER

DATE: 2<sup>nd</sup> July 2007 -----

Distribution:

Copy Nos: 1. ALCATEL BUSINESS SYSTEMS  
2. FCC EVALUATION LABORATORIES  
3. TRL COMPLIANCE Ltd

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

## CONTENTS

|                                        | <b>PAGE</b> |
|----------------------------------------|-------------|
| CERTIFICATE OF CONFORMITY & COMPLIANCE | 5           |
| APPLICANT'S SUMMARY                    | 6           |
| TESTS REQUIRED                         | 7           |
| EQUIPMENT TEST CONDITIONS              | 8           |
| SYSTEM DESCRIPTION                     | 8           |
| TEST RESULTS                           | 9 – 28      |

## ANNEX

|             |   |
|-------------|---|
| PHOTOGRAPHS | A |
|-------------|---|

- PHOTOGRAPH No. 1: Radiated Test Setup
- PHOTOGRAPH No. 2: Powerline Conduction Test Setup
- PHOTOGRAPH No. 3: MR300 Front Overview
- PHOTOGRAPH No. 4: MR300 Rear Overview
- PHOTOGRAPH No. 4: MR300 Rear Overview, Cover & Battery Removed
- PHOTOGRAPH No. 6: MR400 Front Overview
- PHOTOGRAPH No. 7: MR400 Rear Overview
- PHOTOGRAPH No. 8: MR400 Rear Overview, Cover & Battery Removed
- PHOTOGRAPH No. 9: MR300 PCB Keypad Side & Keypads
- PHOTOGRAPH No. 10: MR400 PCB Keypad Side & Keypads
- PHOTOGRAPH No. 11: PCB RF Side
- PHOTOGRAPH No. 12: PCB RF Side Cans Removed
- PHOTOGRAPH No. 13: Antenna

## CONTENTS Continued

### ANNEX

|                                              |   |
|----------------------------------------------|---|
| APPLICANT'S SUBMISSION OF DOCUMENTATION LIST | B |
| AC POWERLINE CONDUCTION                      | C |
| EMISSION BANDWIDTH                           | D |
| PEAK TRANSMIT POWER                          | E |
| POWER SPECTRAL DENSITY                       | F |
| ACKNOWLEDGEMENTS                             | G |
| EMISSIONS OUTSIDE THE SUB-BAND - CONDUCTED   | H |
| EMISSIONS INSIDE THE SUB-BAND - CONDUCTED    | I |
| SPURIOUS EMISSIONS – RADIATED                | J |
| FRAME PERIOD                                 | K |
| EQUIPMENT DETAILS & CALIBRATION              | L |
| MEASUREMENT UNCERTAINTY                      | M |

**Notes:**

|                                                                                                                                                                                                     |                              |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|
| 1. Component failure during test                                                                                                                                                                    | YES <input type="checkbox"/> | NO <input checked="" type="checkbox"/> |
| 2. If Yes, details of failure:                                                                                                                                                                      |                              |                                        |
| 3. The facilities used for the testing of the product contain in this report are FCC Listed.                                                                                                        |                              |                                        |
| 4. The contents of the attached applicants declarations and other supplied information are not covered by the scope of this laboratory's UKAS or FCC accreditations' and is provided in good faith. |                              |                                        |



# TRL Compliance

part of TRAC global

## CERTIFICATE OF CONFORMITY & COMPLIANCE

FCC IDENTITY: OL3300400

PURPOSE OF TEST: Certification

TEST SPECIFICATION: FCC RULES CFR 47, Part 15D August 2006

TEST RESULT: Compliant to Specification

EQUIPMENT UNDER TEST: Mobile Handset

MODEL(s) TESTED

MR300 Conducted Sample  
MR300 Radiated Sample  
MR400 Radiated Sample

EQUIPMENT TYPE: UPCS Transceiver

PRODUCT USE: Personal communications

CARRIER POWER: 18.61 dBm (Conducted)

ANTENNA TYPE: Integral

ALTERNATIVE ANTENNA: Not Applicable

BAND OF OPERATION: 1920 MHz – 1930 MHz

CHANNEL SPACING: 1.728 MHz

NUMBER OF CHANNELS: 5 frequencies, 12 single time slots per frequency giving 60 channels

FREQUENCY GENERATION: SAW Resonator  Crystal  Synthesiser

MODULATION METHOD: Amplitude  Digital  Angle

POWER SOURCE(s): +3.7Vdc

TEST DATE(s): 19<sup>th</sup> February – 14<sup>th</sup> March 2007

ORDER No(s): Pro Forma Invoice

APPLICANT: Alcatel Business Systems

ADDRESS: 1 Route Du Dr Albert Schweitzer  
67408 Illkirch  
Cedex  
France

TESTED BY:

D WINSTANLEY

APPROVED BY:

p.p. J CHARTERS  
RADIO SECTION  
LEADER

RU1304/7506

## APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT): Mobile Handset

EQUIPMENT TYPE: UPCS Transceiver

PURPOSE OF TEST: Certification

TEST SPECIFICATION(s): FCC RULES CFR 47, Part 15D August 2006

TEST RESULT: COMPLIANT Yes  No

APPLICANT'S CATEGORY: MANUFACTURER   
IMPORTER   
DISTRIBUTOR   
TEST HOUSE   
AGENT

APPLICANT'S ORDER No(s): Pro Forma Invoice

APPLICANT'S CONTACT PERSON(s): Mr Rainier Baltz

E-mail address: rainier.baltz@alcatel-lucent.fr

APPLICANT: Alcatel Business Systems

ADDRESS: 1 Route Du Dr Albert Schweitzer  
67408 Illkirch  
Cedex  
France

TEL: +33 390 676790

FAX: +33 390 676541

TEST LABORATORY: TRL Compliance Ltd

UKAS ACCREDITATION No: 0728

TEST DATE(s): 19<sup>th</sup> February – 14<sup>th</sup> March 2007

TEST REPORT No: RU1304/7506

## EQUIPMENT TEST / EXAMINATIONS REQUIRED

| 1.    | TEST/EXAMINATION                                                                                                                                                                                                                              | RULE PART                      | APPLICABILITY |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
|       | Coordination with Fixed Microwave Service                                                                                                                                                                                                     | 15.307 (b)                     | No<br>note 1  |
|       | Cross reference to Subpart B                                                                                                                                                                                                                  | 15.309 (b)                     | Yes           |
|       | Labelling Requirements                                                                                                                                                                                                                        | 15.311<br>15.19 (a)(3)         | Yes           |
|       | Measurement Procedures                                                                                                                                                                                                                        | 15.313                         | Yes           |
|       | Antenna Requirement                                                                                                                                                                                                                           | 15.317<br>15.203               | Yes           |
|       | Modulation Techniques                                                                                                                                                                                                                         | 15.319 (b)                     | Yes           |
|       | Conducted AC Powerline                                                                                                                                                                                                                        | 15.315<br>15.207               | Yes           |
|       | Emission Bandwidth                                                                                                                                                                                                                            | 15.323 (a)                     | Yes           |
|       | Peak Transmit Power                                                                                                                                                                                                                           | 15.319 (c)                     | Yes           |
|       | Power Spectral Density                                                                                                                                                                                                                        | 15.319 (d)                     | Yes           |
|       | Antenna Gain                                                                                                                                                                                                                                  | 15.319 (e)                     | Yes           |
|       | Automatic Discontinuation of Transmission                                                                                                                                                                                                     | 15.319 (f)                     | Yes           |
|       | Radio Frequency Radiation Exposure                                                                                                                                                                                                            | 15.319 (i)                     | Yes           |
|       | Monitoring Thresholds                                                                                                                                                                                                                         | 15.323 (c)(2)<br>15.323 (c)(9) | Yes           |
|       | Monitoring of Intended Transmit Window and Maximum Reaction Time                                                                                                                                                                              | 15.323 (c)(1)                  | Yes           |
|       | Monitoring Bandwidth                                                                                                                                                                                                                          | 15.323 (c)(7)                  | Yes           |
|       | Access Criteria Functional Test                                                                                                                                                                                                               | 15.323 (c)(6)                  | No<br>Note 2  |
|       | Duration of Transmission                                                                                                                                                                                                                      | 15.323 (c)(3)                  | Yes           |
|       | Connection Acknowledgement                                                                                                                                                                                                                    | 15.323 (c)(4)                  | Yes           |
|       | Lower threshold Selected Channel, Power Accuracy, Segment Occupancy                                                                                                                                                                           | 15.323 (c)(5)                  | Yes           |
|       | Monitoring Antenna                                                                                                                                                                                                                            | 15.323 (c)(8)                  | Yes           |
|       | Duplex Connections                                                                                                                                                                                                                            | 15.323 (c)(10)                 | Yes           |
|       | Alternative Monitoring Interval for Co-located Devices                                                                                                                                                                                        | 15.323 (c)(11)                 | No<br>Note 3  |
|       | Fair Access to Spectrum Related to (c)(10) & (c)(11)                                                                                                                                                                                          | 15.323 (c)(12)                 | Yes           |
|       | Emission Inside and Outside the Sub-band                                                                                                                                                                                                      | 15.323 (d)                     | Yes           |
|       | Frame Period                                                                                                                                                                                                                                  | 15.323 (e)                     | Yes           |
|       | Frequency Stability                                                                                                                                                                                                                           | 15.323 (f)                     | Yes           |
| Note: | 1. Requirement removed April 4 <sup>th</sup> 2005 see public notice DX 05-1005.<br>2. The EUT does not transmit control and signalling information.<br>3. Not utilized by this EUT as devices will not be co-located within 1m of each other. |                                |               |

|                                             |                             |         |
|---------------------------------------------|-----------------------------|---------|
| 2. Product Use:                             | Personal Communications     |         |
| 3. Duty Cycle:                              | 8.33%                       |         |
| 4. Transmitter bit or pulse rate and level: | 2Mbps                       |         |
| 5. Temperatures:                            | Ambient (T <sub>nom</sub> ) | 22°C    |
| 6. Supply Voltages:                         | V <sub>nom</sub>            | +3.7Vdc |

Note: V<sub>nom</sub> voltages are as stated above unless otherwise shown on the test report page

|                        |                |     |
|------------------------|----------------|-----|
| 7. Equipment Category: | Single channel | [ ] |
|                        | Two channel    | [ ] |
|                        | Multi-channel  | [X] |
| 8. Channel spacing:    | Narrowband     | [ ] |
|                        | Wideband       | [X] |
| 9. System Description: |                |     |

The system is made up of two parts, a fixed part and a portable part. The portable part is a cordless telephone device. The portable part is capable of operating on a maximum of 60 channels (time spectrum windows). The fixed part is wall mounted and consists of two transmitters connected to an Alcatel OmniPCX exchange. One fixed part transmitter operates on odd time slots only and the second fixed part transmitter operates on even time slots only. This gives the portable part access to a maximum of 60 channels (time spectrum windows).

The system operates in the 1920MHz -1930MHz band. The system use 5 different frequency channels 1.728MHz apart using MC/TDMA/TDD (Multi Carrier / Time Division Multiple Access / Time Division Duplex) using QPSK modulation.

The system employs a 10ms frame, divided into 24 equal timeslots, numbered 0-23. The system uses single-slots only. The Base station always transmits in the first half of the frame, and the Portable always transmits on the duplex mate in the second half of the frame. A physical bearer is composed of a transmit single-slot and a receive single-slot. The two halves of a given bearer are always exactly half a frame (5ms, 12 slots) apart.

During the testing frequency administration was utilised to allow operation on only certain channels during the tests. The frequency administration was performed using a software interface. A portable part was supplied with a temporary antenna connector to allow conducted measurements where applicable.

This report covers two portable part models, the MR300 and the MR400. The radio and etiquette portions of these portable parts are identical. The MR300 has a monochrome screen and the MR400 has a colour screen. Due to differences in the non radio related circuitry emissions testing was performed on both models.

There are two type of charger available for the portable part a single charger holding portable part only and a dual charger holding the portable part and a spare battery.

**CROSS REFERENCE TO SUBPART B – PART 15.309 (b)**

The unit contains digital circuitry which is not directly related to the radio transmitter. See emissions outside the sub-band for results.

**LABELLING INFORMATION – PART 15.311 & 15.19 (a)(3)**

This information is contained in a separate document. See attached exhibit.

**ANTENNA REQUIREMENTS – PART 15.317**

The unit employs an integral antenna arrangement.

**MODULATION TECHNIQUES – PART 15.319 (b)**

The Alcatel Business Systems Mobile Handset is an isochronous device operating in the 1920 MHz – 1930 MHz frequency band.

The Alcatel Business Systems Mobile Handsets modulation technique is based on DECT technology as described in European standards EN 300 175-2 and EN 300 175-3.

The Alcatel Business Systems Mobile Handsets modulation techniques are MC/TDMA/TDD (Multi Carrier / Time Division Multiple Access / Time Division Duplex) using QPSK modulation.

**TRANSMITTER CONDUCTED EMISSIONS – AC POWER LINE PART 15.315****MODEL NUMBER: MR300****SIGNIFICANT EMISSIONS**

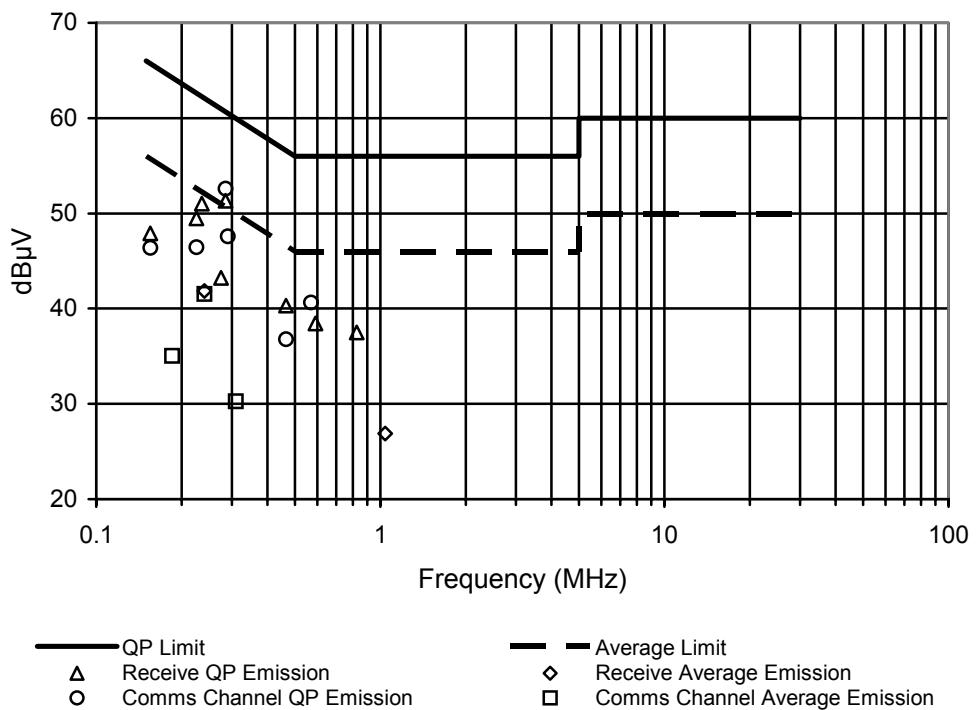
MR300 in receive mode

| FREQUENCY (MHz) | MEASUREMENT RECEIVER READING (dB $\mu$ V) | DETECTOR   | CONDUCTOR (L or N) | Limit (dB $\mu$ V) |
|-----------------|-------------------------------------------|------------|--------------------|--------------------|
| 0.155           | 47.90                                     | Quasi Peak | Live               | 65.73              |
| 0.225           | 49.47                                     | Quasi Peak | Live               | 62.63              |
| 0.235           | 51.04                                     | Quasi Peak | Live               | 62.27              |
| 0.240           | 41.86                                     | Average    | Neutral            | 52.10              |
| 0.275           | 43.24                                     | Quasi Peak | Neutral            | 60.97              |
| 0.285           | 51.34                                     | Quasi Peak | Neutral            | 60.67              |
| 0.465           | 40.33                                     | Quasi Peak | Live               | 56.60              |
| 0.590           | 38.45                                     | Quasi Peak | Live               | 56.00              |
| 0.825           | 37.51                                     | Quasi Peak | Live               | 56.00              |
| 1.04            | 26.88                                     | Average    | Live               | 46.00              |

**SIGNIFICANT EMISSIONS**

MR300 Communications Channel Active

| FREQUENCY (MHz) | MEASUREMENT RECEIVER READING (dB $\mu$ V) | DETECTOR   | CONDUCTOR (L or N) | Limit (dB $\mu$ V) |
|-----------------|-------------------------------------------|------------|--------------------|--------------------|
| 0.155           | 46.41                                     | Quasi Peak | Live               | 65.73              |
| 0.185           | 35.03                                     | Average    | Live               | 54.26              |
| 0.225           | 46.46                                     | Quasi Peak | Neutral            | 62.63              |
| 0.240           | 41.55                                     | Average    | Neutral            | 52.10              |
| 0.285           | 52.62                                     | Quasi Peak | Live               | 60.67              |
| 0.290           | 47.61                                     | Quasi Peak | Neutral            | 60.52              |
| 0.310           | 30.26                                     | Average    | Neutral            | 49.97              |
| 0.465           | 36.78                                     | Quasi Peak | Neutral            | 56.60              |
| 0.570           | 40.65                                     | Quasi Peak | Live               | 56.00              |


**Notes:**

- 1 See Annex C for sample powerline plot.
- 2 Emissions that are 20 dB's or more below the limit are not necessarily recorded.
- 3 The EUT was tested seated in both single and dual chargers.
- 4 Results Recorded for Worst Case Charger.
- 5 The EUT was tested while in receive mode.
- 6 The EUT was tested while in communications with the companion device.
- 7 Closest emissions to the applicable limit are recorded.

**Test Method:**

- 1 As per Radio – Noise Emissions, ANSI C63.4: 2003.

AC Powerline Conduction  
(Levels below the limit are only displayed if  
within 20dB of the limit)



**TRANSMITTER CONDUCTED EMISSIONS – AC POWER LINE PART 15.315****MODEL NUMBER: MR400****SIGNIFICANT EMISSIONS**

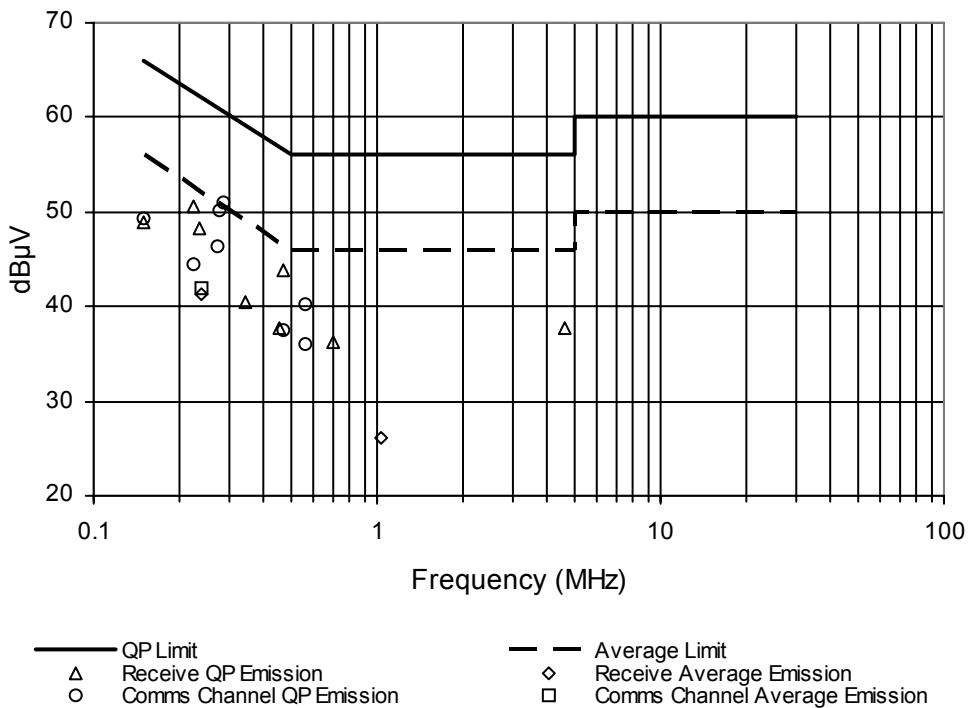
MR400 in receive mode

| FREQUENCY (MHz) | MEASUREMENT RECEIVER READING (dB $\mu$ V) | DETECTOR   | CONDUCTOR (L or N) | Limit (dB $\mu$ V) |
|-----------------|-------------------------------------------|------------|--------------------|--------------------|
| 0.150           | 48.92                                     | Quasi Peak | Live               | 66.00              |
| 0.225           | 50.69                                     | Quasi Peak | Live               | 62.63              |
| 0.235           | 48.29                                     | Quasi Peak | Neutral            | 62.27              |
| 0.240           | 41.41                                     | Average    | Neutral            | 52.10              |
| 0.345           | 40.38                                     | Quasi Peak | Live               | 59.08              |
| 0.450           | 37.77                                     | Quasi Peak | Neutral            | 56.88              |
| 0.470           | 43.81                                     | Quasi Peak | Live               | 56.51              |
| 0.695           | 36.30                                     | Quasi Peak | Live               | 56.00              |
| 1.040           | 26.22                                     | Average    | Live               | 46.00              |
| 4.575           | 37.77                                     | Quasi Peak | Neutral            | 56.00              |

**SIGNIFICANT EMISSIONS**

MR400 Communications Channel Active

| FREQUENCY (MHz) | MEASUREMENT RECEIVER READING (dB $\mu$ V) | DETECTOR   | CONDUCTOR (L or N) | Limit (dB $\mu$ V) |
|-----------------|-------------------------------------------|------------|--------------------|--------------------|
| 0.150           | 49.36                                     | Quasi Peak | Live               | 66.00              |
| 0.225           | 44.51                                     | Quasi Peak | Live               | 62.63              |
| 0.240           | 41.86                                     | Average    | Neutral            | 52.10              |
| 0.275           | 46.45                                     | Quasi Peak | Neutral            | 60.97              |
| 0.280           | 50.27                                     | Quasi Peak | Live               | 60.82              |
| 0.285           | 50.99                                     | Quasi Peak | Live               | 60.67              |
| 0.470           | 37.51                                     | Quasi Peak | Neutral            | 56.51              |
| 0.555           | 36.13                                     | Quasi Peak | Neutral            | 56.00              |
| 0.560           | 40.18                                     | Quasi Peak | Live               | 56.00              |


**Notes:**

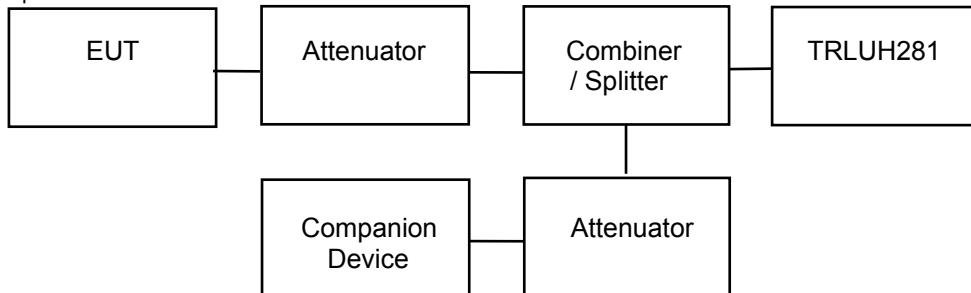
- 1 See Annex C for sample powerline plot.
- 2 Emissions that are 20 dB's or more below the limit are not necessarily recorded.
- 3 The EUT was tested seated in both single and dual chargers.
- 4 Results Recorded for Worst Case Charger.
- 5 The EUT was tested while in receive mode.
- 6 The EUT was tested while in communications with the companion device.
- 7 Closest emissions to the applicable limit are recorded.

**Test Method:**

- 1 As per Radio – Noise Emissions, ANSI C63.4: 2003.

**AC Powerline Conduction**  
**(Levels below the limit are only displayed if**  
**within 20dB of the limit)**




The test equipment used for the Transmitter Conducted Emissions – AC Power Line Part 15.207 tests was:

| TYPE OF EQUIPMENT | MAKER/ SUPPLIER | MODEL No      | SERIAL No   | TRL No | ACTUAL EQUIPMENT USED |
|-------------------|-----------------|---------------|-------------|--------|-----------------------|
| RECEIVER          | ROHDE & SCHWARZ | ESHS 10       | 830051/01   | UH03   | <b>X</b>              |
| LISN              | ROHDE & SCHWARZ | ESH3-Z5       | 863906/018  | UH05   | <b>X</b>              |
| RECEIVER          | ROHDE & SCHWARZ | ESHS 10       | 841429/012  | UH187  | <b>X</b>              |
| LISN              | ROHDE & SCHWARZ | ESH3-Z5.831.5 | 8470 31/015 | UH195  | <b>X</b>              |

## TRANSMITTER EMISSION BANDWIDTH – PART 15.323 (a)

The emission bandwidth is measured in accordance with ANSI C63.17 sub-clause 6.1.3 using the setup below

Test Setup 1:



| $f_x = 1921.536 \text{ MHz}$ |                     |                     |                          |                                    |
|------------------------------|---------------------|---------------------|--------------------------|------------------------------------|
| $\Delta P \text{ (dBc)}$     | $f_l \text{ (MHz)}$ | $f_h \text{ (MHz)}$ | $\Delta f \text{ (MHz)}$ | Limit                              |
| -26                          | 1920.7715770        | 1922.2908080        | 1.52                     | 50kHz > $\Delta f > 2.5\text{MHz}$ |
| -12                          | 1920.9590770        | 1922.1225380        | 1.16                     | N/A                                |
| -6                           | 1921.1658080        | 1921.9590770        | 0.79                     | N/A                                |

| $f_x = 1924.992 \text{ MHz}$ |                     |                     |                          |                                    |
|------------------------------|---------------------|---------------------|--------------------------|------------------------------------|
| $\Delta P \text{ (dBc)}$     | $f_l \text{ (MHz)}$ | $f_h \text{ (MHz)}$ | $\Delta f \text{ (MHz)}$ | Limit                              |
| -26                          | 1924.2516150        | 1925.7468080        | 1.49                     | 50kHz > $\Delta f > 2.5\text{MHz}$ |
| -12                          | 1924.4343080        | 1925.5641150        | 1.13                     | N/A                                |
| -6                           | 1924.6073850        | 1925.3814230        | 0.77                     | N/A                                |

| $f_x = 1928.448 \text{ MHz}$ |                     |                     |                          |                                    |
|------------------------------|---------------------|---------------------|--------------------------|------------------------------------|
| $\Delta P \text{ (dBc)}$     | $f_l \text{ (MHz)}$ | $f_h \text{ (MHz)}$ | $\Delta f \text{ (MHz)}$ | Limit                              |
| -26                          | 1927.7076150        | 1929.0761500        | 1.50                     | 50kHz > $\Delta f > 2.5\text{MHz}$ |
| -12                          | 1927.8758850        | 1929.0585770        | 1.18                     | N/A                                |
| -6                           | 1928.0201150        | 1928.8890308        | 0.87                     | N/A                                |

Notes:

- 1 See emission bandwidth plots in Annex D.
- 2 Emission bandwidth rounded up.

### PEAK TRANSMIT POWER – PART 15.319 (c)

The peak transmit power is measured in accordance with ANSI C63.17 sub-clause 6.1.2 using test setup 1(page 10).

The limit for Peak Transmit Power (PTP) is calculated using the following formula:

$$PTP = 100\mu W \times \sqrt{EBW}$$

This limit must be corrected to take into account any gain of the antenna greater than 3dBi.  
Where: EBW is the transmitter emission bandwidth in Hz as determined in the previous test.

**Limit**

$$EBW = 1.520 \text{ MHz}$$
$$PTP = 100\mu W \times \sqrt{1.520} \text{ MHz}$$
$$PTP = 20.93 \text{ dBm}$$

### Results

| Frequency (MHz) | Peak Transmit Power (dBm) | Limit (dBm) |
|-----------------|---------------------------|-------------|
| 1921.536        | 18.61                     | 20.93       |
| 1924.992        | 18.60                     | 20.93       |
| 1928.448        | 18.59                     | 20.93       |

Note:

1. Permanent antenna was replaced with temporary antenna connector to enable conducted measurement.
2. Antenna gain < 3dBi and so correction of the limit is not required.
3. See Annex E for Peak Transmit Power Plots.

### POWER SPECTRAL DENSITY – PART 15.319 (d)

The power spectral density is measured using test setup 1, (page 10). The peak emission level measured in a 3 kHz resolution bandwidth was compared directly to the limit.

### Limit

The power spectral density shall not exceed 3mW in any 3 kHz bandwidth as measured with a spectrum analyser having a resolution bandwidth of 3 kHz.

### Results

| Frequency (MHz) | Power Spectral Density (mW/3kHz) | Limit (mW/3kHz) |
|-----------------|----------------------------------|-----------------|
| 1921.536        | 2.97                             | 3               |
| 1924.992        | 2.62                             | 3               |
| 1928.448        | 2.39                             | 3               |

Note:

1. See Annex F for Power Spectral Density Plots.

### **ANTENNA GAIN – PART 15.319 (e)**

Any directional gain of the antenna exceeding 3dBi has an effect on the limit applied to the measurements taken for the peak transmit power test. If the directional gain of the antenna is less than 3dBi it is not required to be taken into account.

| Maximum Antenna Gain | Exceeds 3dBi by |
|----------------------|-----------------|
| +2dBi                | N/A             |

Note: Statement by manufacturer declaring maximum antenna gain. See attached exhibit.

### **AUTOMATIC DISCONTINUATION OF TRANSMISSION – PART 15.319 (f)**

Automatic discontinuation of transmission means break off of transmissions that are not control and signalling information.

This test is monitored using the test setup 1(page 10) as per transmitter emission bandwidth and an active channel.

The OL3300400 is a Portable part and as such does not transmit control and signalling information the counter part device is a fixed part device and does transmit control and signalling information.

| Part          | Transmits Control and Signaling Information | Equipment Under Test |
|---------------|---------------------------------------------|----------------------|
| Fixed Part    | X                                           |                      |
| Portable Part |                                             | X                    |

### **Results**

The following tests were performed after a connection had been established with the counter part device

| Number | Test                                                    | Reaction of EUT | Pass / Fail |
|--------|---------------------------------------------------------|-----------------|-------------|
| 1      | Power down EUT                                          | C               | Pass        |
| 2      | Power removed from EUT                                  | C               | Pass        |
| 3      | Power down counter part (exchange)                      | A               | Pass        |
| 4      | Power removed from counter part (exchange)              | A               | Pass        |
| 5      | Disconnection of called extension from exchange         | A               | Pass        |
| 6      | Disconnection of cable between counterpart and exchange | A               | Pass        |

A – Connection breakdown, Cease of all transmissions.

B – Connection breakdown, EUT transmits control and signalling information.

C – Connection breakdown, Counterpart transmits control and signalling information.

### **RADIO FREQUENCY RADIATION EXPOSURE – PART 15.319 (i)**

This information is contained in a separate document

## MONITORING THRESHOLDS – PART 15.323 (c)(2); (c)(9)

The monitoring threshold calculations are carried out in accordance with ANSI C63.17 sub-clause 7.2.1 using the calculations laid out in ANSI C63.17 sub-clauses 4.3.3 and 4.3.4

Calculation of monitoring threshold limits for isochronous devices:

$$\text{Lower threshold: } T_L = -174 + 10\log_{10}B + M_U + P_{MAX} - P_{EUT} \text{ (dBm)}$$

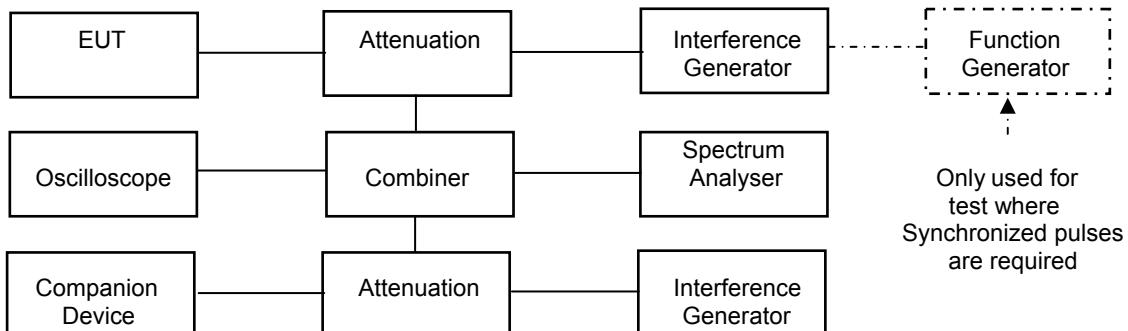
$$\text{Upper threshold: } T_U = -174 + 10\log_{10}B + M_U + P_{MAX} - P_{EUT} \text{ (dBm)}$$

Where:

B = Emission bandwidth (Hz)

$M_U$  = dBs the threshold may exceed thermal noise (30 for  $T_L$  & 50 for  $T_U$ )

$P_{MAX}$  = Output Power Limit (dBm)


$P_{EUT}$  = Transmitted power (dBm)

| Monitor Threshold | B (MHz) | $M_U$ (dB) | $P_{MAX}$ (dBm) | $P_{EUT}$ (dBm) | Threshold (dBm) |
|-------------------|---------|------------|-----------------|-----------------|-----------------|
| $T_L$             | 1.52    | 30         | 20.93           | 18.61           | -59.8           |
| $T_U$             | 1.52    | 50         | 20.93           | 18.61           | -79.8           |

Note: 1. The upper threshold ( $T_U$ ) is only applicable for systems with a minimum of 40 channels.

The monitoring threshold tests are carried out in accordance with ANSI C63.17 sub-clause 7.3 using the test setup 2. The lower threshold level was determined following the procedure as laid out in ANSI C63.17 sub-clause 7.3.2 (a) Frequency administration was used to allow operation on the carrier closest to the centre of the band.

Test Setup 2:



## Limits

The EUT must not transmit until the interference level is less than or equal to:

$$\text{Measured Threshold Level} \leq T_U + U_M$$

Where:  $T_U$  = Calculated Upper threshold level

$U_M$  = Margin of uncertainty in threshold measurements (6dB)

## Results

| Monitor threshold     | Measured Threshold Level | Limit     | Pass/Fail |
|-----------------------|--------------------------|-----------|-----------|
| Lower Threshold (dBm) | N/A                      | N/A       | Pass      |
| Upper threshold (dBm) | -64.8 dBm                | -53.8 dBm | Pass      |

Notes: 1. The upper threshold is applicable as the EUT utilizes more than 40 system channels.

## MONITORING OF INTENDED TRANSMIT WINDOW AND MAXIMUM REACTION TIME – PART 15.323 (c)(1)

The monitoring of intended transmit window was carried out in accordance with ANSI C63.17 sub-clause 7.5 using test setup 2 (page 13).

The EUT was frequency administered to only one operating frequency channel and only one of the interference generators in the test setup was utilized. The interference generator was fed pulses from the function generator to produce a pulsed carrier of the specified time length and the output of the interference generator was set to the required level. The pulse generator and companion device were synchronized so the position of the pulses corresponded to the time-slot pattern in the frame of the EUT. The test is performed with the unit frequency administered to operate only on bottom, middle or top frequency.

For each of the required tests the pulse width and interference level are as below:

Test c)

With the interference generator output set at the calculated threshold level (upper) plus measurement uncertainty ( $U_M$ ) and the width of the pulse interference exceeds the largest of  $50\mu s$  and  $50\sqrt{1.25/B}\mu s$  verify that the EUT does not establish a connection.

Test d)

With the interference generator output set at 6dB above the calculated threshold level (upper) plus measurement uncertainty ( $U_M$ ) and the width of the pulse interference exceeds the largest of  $35\mu s$  and  $35\sqrt{1.25/B}\mu s$  verify that the EUT does not establish a connection.

Where  $B$  = Emission bandwidth of the EUT in MHz

### Results

| Test Equation<br>( $\mu s$ ) | Pulse<br>Width<br>( $\mu s$ ) | Interferer Level<br>(dBm) | Connection Made |       |       | Pass/Fail |
|------------------------------|-------------------------------|---------------------------|-----------------|-------|-------|-----------|
|                              |                               |                           | $F_L$           | $F_M$ | $F_H$ |           |
| $50\sqrt{1.25/B}$            | 50                            | $T_U + U_M$               | No              | No    | No    | Pass      |
| $35\sqrt{1.25/B}$            | 35                            | $T_U + U_M + 6$           | No              | No    | No    | Pass      |

Notes:

1.  $T_U$  is the calculated upper threshold.
2.  $U_M$  is Margin of uncertainty in threshold measurements (6dB).

## MONITORING BANDWIDTH – PART 15.323 (c)(7)

The monitoring bandwidth test was carried out in accordance with ANSI C63.17 sub-clause 7.4.

ANSI C63.17 sub-clause 7.4 states that if the monitoring is made through the radio receiver used by the EUT for communication the intended bandwidth requirements for the monitoring system are met.

As declared by the manufacturer the EUT uses the radio receiver used for communication for monitoring therefore the intended bandwidth requirements for the monitoring system are met of ANSI C63.17 sub-clause 7.4 are met.

## DURATION OF TRANSMISSION – PART 15.323 (c)(3)

The duration of transmission test was carried out in accordance with ANSI C63.17 sub-clause 8.2.2 using test setup 2.(page 13) (No interference generators were active during this test).

The time/spectrum window occupied by the connection was monitored using a spectrum analyzer for the spectrum window and an oscilloscope for the time slot. The connection was watched over a period of over 6 hours during this time the access criteria was repeated several times.

### Result

| Repetition of Access Criteria | Maximum Transmission Time | Maximum Transmission Time Limit | Pass/Fail |
|-------------------------------|---------------------------|---------------------------------|-----------|
| First                         | 1 Hour                    | <8 Hours                        | Pass      |
| Second                        | 1 Hour                    | <8 Hours                        | Pass      |

Notes: 1. The portable part is the initiating device that repeats the access criteria.  
2. The test was performed using a version V85-86 portable part.

## CONNECTION ACKNOWLEDGEMENT – PART 15.323 (c)(4)

The connection acknowledgement test was carried out in accordance with ANSI C63.17 sub-clause 8.2.1 using test setup 2. (Page 13)(No interference generators were active during this test).

The test was carried out in two parts. The first was to verify that with the companion device off the EUT does not transmit on the same time/spectrum window for more than the limit. The second was to verify that after a connection is broken the EUT terminates its transmission on the current communication channel within 30 seconds or less.

### Result

| Test                                                                                                  | Time Taken (seconds) | Limit (seconds) | Pass/Fail |
|-------------------------------------------------------------------------------------------------------|----------------------|-----------------|-----------|
| Transmission on communications channel no acknowledgement received (note 1)                           | 0.40                 | 1               | Pass      |
| Established communication channel termination, acknowledgements blocked during communication (note 1) | 5.00                 | 30              | Pass      |

Note: 1. The companion device transmits a beacon signal when acknowledgements are blocked.  
2. The EUT does not transmit a control channel.  
3. See Annex G Acknowledgement plots.

**UPPER THRESHOLD SELECTED CHANNEL, POWER ACCURACY, SEGMENT OCCUPANCY – PART 15.323**  
**(c)(5)**

**Least interfered Channel**

The EUT utilizes more than 40 channels the least interfered channel testing is applicable. This test was carried out in accordance with ANSI C63.17 sub-clause 7.3.3 using test setup 2 (page 13).

The EUT was frequency administered to operating on two frequencies only, f1 and f2.

$$\begin{aligned}f_1 &= 1924.992 \text{ MHz} \\f_2 &= 1923.264 \text{ MHz}\end{aligned}$$

Test b)

Interference on f1 was set at  $T_L + U_M + 7\text{dB}$  and at  $T_L + U_M$  on f2. Initiate communication. The EUT should transmit on f2. Repeat 5 times. If the EUT transmits on f1 the test is failed.

Test c)

Interference on f1 was set at  $T_L + U_M$  and at  $T_L + U_M + 7\text{dB}$  on f2. Initiate communication. The EUT should transmit on f1. Repeat 5 times. If the EUT transmits on f2 the test is failed.

Test d)

Interference on f1 was set at  $T_L + U_M + 1\text{dB}$  and at  $T_L + U_M - 6\text{dB}$  on f2. Initiate communication. The EUT should transmit on f2. Repeat 5 times. If the EUT transmits on f1 the test is failed.

Test e)

Interference on f1 was set at  $T_L + U_M - 6\text{dB}$  and at  $T_L + U_M + 7\text{dB}$  on f2. Initiate communication. The EUT should transmit on f1. Repeat 5 times. If the EUT transmits on f2 the test is failed.

**Result**

| Test | Transmit on f1 | Transmit on f2 | Wanted Transmit Channel | Pass/Fail |
|------|----------------|----------------|-------------------------|-----------|
| b    | No             | Yes            | f2                      | Pass      |
| c    | Yes            | No             | f1                      | Pass      |
| d    | No             | Yes            | f2                      | Pass      |
| e    | Yes            | No             | f1                      | Pass      |

Note: 1. All tests were repeated 5 times.

### **Selected Channel Confirmation**

This test was carried out in accordance with ANSI C63.17 sub-clause 7.3.4 using test setup 2 (page 13). The test is to ensure the EUT monitors the time/spectrum window immediately prior to transmission.

The EUT was frequency administered to operating on two frequencies only, f1 and f2.

$$\begin{aligned}f1 &= 1924.992 \text{ MHz} \\f2 &= 1923.264 \text{ MHz}\end{aligned}$$

Test a)

Interference is applied on f1 at a level of  $T_U + U_M$ . Verify a connection is established on f2.

Any connection is terminated.

Test b)

Interference is applied on f2 at a level of  $T_U + U_M$  and immediately removed from f1 and the EUT is immediately caused to attempt transmission. In this case the EUT should transmit on f1

### **Result**

| Test | Transmit on f1 | Transmit on f2 | Wanted Transmit Channel | Pass/Fail |
|------|----------------|----------------|-------------------------|-----------|
| a    | No             | Yes            | f2                      | Pass      |
| b    | Yes            | No             | f1                      | Pass      |

### **Power Accuracy**

The power measurement resolution for the previous comparison must be accurate to within 6dB. The monitoring threshold test covered in Part 15.323 (c)(2) automatically proves that this requirement is met.

### **Segment Occupancy**

This section is not applicable as no units will be located within 1 metre of each other.

### **MONITORING ANTENNA – PART 15.323 (c)(8)**

The antenna of the EUT used for transmitting is the same antenna that is used for monitoring.

## DUPLEX CONNECTIONS – PART 15.323 (c)(10)

The tests laid out in this section verify that the access criteria are met by two devices communicating over a duplex connection. For the purposes of this testing the EUT is the initiating device and the companion is the responding device. These tests are carried out in accordance with ANSI C63.17 sub-clause 8.3.2 using test setup 2 (page 13) Before all tests are carried out any connection is terminated.

### Test b)

The system is restricted to operation on one frequency (1924.992 MHz) using administration. Verify that a connection between the EUT and its companion device can be made.

### Test c) & d)

Apply interference at a level  $T_L + U_M$  to all transmit time slots except one which has interference at least 10dB below  $T_L$ . Apply interference at a level  $T_L + U_M + 10\text{dB}$  to all receive time slots except one which has interference at least 10dB below  $T_L$ . The interference free receive timeslot should not be the duplex mate of the interference free transmit timeslot. The EUT should establish a connection on the interference free receive slot and its duplex mate.

### Test e) & f)

Apply interference at a level  $T_L + U_M$  to all receive time slots except one which has interference at least 10dB below  $T_L$ . Apply interference at a level  $T_L + U_M + 10\text{dB}$  to all transmit time slots except one which has interference at least 10dB below  $T_L$ . The interference free transmit timeslot should not be the duplex mate of the interference free receive timeslot. The EUT should establish a connection on the interference free transmit slot and its duplex mate.

### Test g)

Apply interference at a level  $T_U + U_M$  to all receive and transmit time slots except one which has interference at least 10dB below  $T_L$ . The interference free transmit and receive time slots shall not constitute a duplex pair. The EUT should not transmit or establish a connection.

## Result

| Test  | Connection Made | Time Slot Selected                              | Required Time Slot                              | Pass/Fail |
|-------|-----------------|-------------------------------------------------|-------------------------------------------------|-----------|
| b     | Yes             | N/A                                             | Any                                             | Pass      |
| c & d | Yes             | Interference Free Receive Slot and Duplex Mate  | Interference Free Receive Slot and Duplex Mate  | Pass      |
| e & f | Yes             | Interference Free Transmit Slot and Duplex Mate | Interference Free Transmit Slot and Duplex Mate | Pass      |
| g     | No              | None                                            | None                                            | Pass      |

## ALTERNATIVE MONITORING INTERVAL FOR CO-LOCATED DEVICES – PART 15.323 (c)(11)

This test is carried out in accordance with ANSI C63.17 sub-clause 8.4.

The manufacturer declares that this provision is not utilized by the EUT.

## FAIR ACCESS TO SPECTRUM RELATED TO (c)(10) & (c)(11) – PART 15.323 (c)(12)

The provisions of (c)(10) & (c)(11) shall not be used to extend the range of spectrum occupied over space or time for the purposes of denying fair access to the spectrum to other devices.

The manufacturer declares that this device does not work in a mode which denies fair access to the spectrum to others.

## EMISSIONS INSIDE AND OUTSIDE THE SUB-BAND – CONDUCTED – PART 15.323 (d)

RF carrier set to the lowest carrier defined by the EUT.

These measurements are carried out in accordance with ANSI C63.17 sub-clause 6.1.6.

| Out-of-Band Emissions from UPCS bandedge | FREQ. (MHz)                                         | MEAS. Rx. (dBm) | CABLE LOSS (dB) | ATTEN. LOSS (dB)                                                 | EMISSION LEVEL (dBm) | LIMIT (dBm) |
|------------------------------------------|-----------------------------------------------------|-----------------|-----------------|------------------------------------------------------------------|----------------------|-------------|
| > - 2.5MHz                               |                                                     |                 |                 |                                                                  | Note 10              | -39.5       |
| - 1.25 MHz – 2.5 MHz                     |                                                     |                 |                 |                                                                  | Note 10              | -29.5       |
| - 1.25 MHz                               |                                                     |                 |                 |                                                                  | Note 10              | -9.5        |
| + 1.25 MHz                               |                                                     |                 |                 |                                                                  | Note 10              | -9.5        |
| + 1.25 MHz – 2.5 MHz                     |                                                     |                 |                 |                                                                  | Note 10              | -29.5       |
| > + 2.5MHz                               | 3843.703                                            | -78.49          | 0.5             | 20.16                                                            | -57.99               | -39.5       |
| Limits                                   | Out-of-Band Emissions from UPCS bandedge            |                 |                 | Attenuation (dB) required below reference power of 112mW         |                      |             |
|                                          | ± 1.25MHz                                           |                 |                 | 30                                                               |                      |             |
|                                          | ±1.25 MHz – 2.5 MHz                                 |                 |                 | 50                                                               |                      |             |
|                                          | > ±2.5MHz                                           |                 |                 | 60                                                               |                      |             |
|                                          | In band Emissions from centre of emission bandwidth |                 |                 | Attenuation (dB) required below permitted peak power for the EUT |                      |             |
|                                          | 1B – 2B                                             |                 |                 | 30                                                               |                      |             |
|                                          | 2B – 3B                                             |                 |                 | 50                                                               |                      |             |
|                                          | 3B – UPCS band edge                                 |                 |                 | 60                                                               |                      |             |

### Notes:

- 1 EUT fitted with temporary antenna connector.
- 2 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a.
- 3 New / Fully Charged batteries used for battery powered products.
- 4 See Annex H for out of band emissions compliance plots.
- 5 See Annex I for in band emissions compliance plots.
- 6 As per 15.323(g) attenuation to the requirements of 15.209 is not required.
- 7 Resolution bandwidth approximately 1% of emissions bandwidth.
- 8 Video bandwidth 3 x Resolution bandwidth.
- 9 Receiver detector = Peak detector, Max Hold Enabled.
- 10 Only emissions within 20 dB of the limit are recorded.

### Test Method:

- 1 The EUT was connected to a spectrum analyser via suitable attenuation or filter.
- 2 The Spectrum analyser was tuned across the required frequency range in steps.
- 3 Any emissions found were measured with the required analyser settings.

## EMISSIONS INSIDE AND OUTSIDE THE SUB-BAND – CONDUCTED – PART 15.323 (d)

RF carrier set to the highest carrier defined by the EUT.

These measurements are carried out in accordance with ANSI C63.17 sub-clause 6.1.6.

| Out-of-Band Emissions from UPCS bandedge | FREQ. (MHz)                                         | MEAS. Rx. (dBm) | CABLE LOSS (dB) | ATTEN. LOSS (dB)                                                 | EMISSION LEVEL (dBm) | LIMIT (dBm) |
|------------------------------------------|-----------------------------------------------------|-----------------|-----------------|------------------------------------------------------------------|----------------------|-------------|
| > - 2.5MHz                               |                                                     |                 |                 |                                                                  | Note 10              | -39.5       |
| - 1.25 MHz – 2.5 MHz                     |                                                     |                 |                 |                                                                  | Note 10              | -29.5       |
| - 1.25 MHz                               |                                                     |                 |                 |                                                                  | Note 10              | -9.5        |
| + 1.25 MHz                               |                                                     |                 |                 |                                                                  | Note 10              | -9.5        |
| + 1.25 MHz – 2.5 MHz                     |                                                     |                 |                 |                                                                  | Note 10              | -29.5       |
| > + 2.5MHz                               | 3856.251                                            | -77.94          | 0.5             | 20.16                                                            | -57.34               | -39.5       |
| Limits                                   | Out-of-Band Emissions from UPCS bandedge            |                 |                 | Attenuation (dB) required below reference power of 112mW         |                      |             |
|                                          | ± 1.25MHz                                           |                 |                 | 30                                                               |                      |             |
|                                          | ±1.25 MHz – 2.5 MHz                                 |                 |                 | 50                                                               |                      |             |
|                                          | > ±2.5MHz                                           |                 |                 | 60                                                               |                      |             |
|                                          | In band Emissions from centre of emission bandwidth |                 |                 | Attenuation (dB) required below permitted peak power for the EUT |                      |             |
|                                          | 1B – 2B                                             |                 |                 | 30                                                               |                      |             |
|                                          | 2B – 3B                                             |                 |                 | 50                                                               |                      |             |
|                                          | 3B – UPCS band edge                                 |                 |                 | 60                                                               |                      |             |

### Notes:

- 1 EUT fitted with temporary antenna connector.
- 2 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a.
- 3 New / Fully Charged batteries used for battery powered products.
- 4 See Annex H for out of band emissions compliance plots.
- 5 See Annex I for in band emissions compliance plots.
- 6 As per 15.323(g) attenuation to the requirements of 15.209 is not required.
- 7 Resolution bandwidth approximately 1% of emissions bandwidth.
- 8 Video bandwidth 3 x Resolution bandwidth.
- 9 Receiver detector = Peak detector, Max Hold Enabled.
- 10 Only emissions within 20 dB of the limit are recorded.

### Test Method:

- 1 The EUT was connected to a spectrum analyser via suitable attenuation or filter.
- 2 The Spectrum analyser was tuned across the required frequency range in steps.
- 3 Any emissions found were measured with the required analyser settings.

## EMISSIONS OUTSIDE THE SUB-BAND – RADIATED – PART 15.109

The MR300 and MR400 were tested for radiated spurious emissions from digital circuitry not directly related to the radio transmitter.

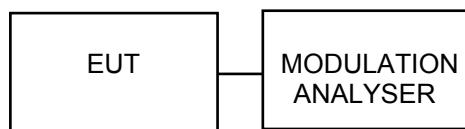
These measurements are carried out in accordance with ANSI C63.17 sub-clause 6.1.6

|                  | FREQ.<br>(MHz)    | MEAS.<br>Rx.<br>(dB $\mu$ V) | CABLE<br>LOSS<br>(dB) | PRE AMP<br>(dB) | ANT<br>FACTOR | FIELD<br>STRENGTH<br>(dB $\mu$ V/m) | FIELD<br>STRENGTH<br>( $\mu$ V/m) | LIMIT<br>( $\mu$ V/m) |
|------------------|-------------------|------------------------------|-----------------------|-----------------|---------------|-------------------------------------|-----------------------------------|-----------------------|
| 1.705MHz - 30MHz |                   |                              |                       |                 |               |                                     | Note 9                            | 30                    |
| 30MHz - 88MHz    |                   |                              |                       |                 |               |                                     | Note 9                            | 100                   |
| 88MHz - 216MHz   |                   |                              |                       |                 |               |                                     | Note 9                            | 150                   |
| 216MHz - 960MHz  |                   |                              |                       |                 |               |                                     | Note 9                            | 200                   |
| 960MHz - 1GHz    |                   |                              |                       |                 |               |                                     | Note 9                            | 500                   |
| 1GHz - 20GHz     |                   |                              |                       |                 |               |                                     | Note 9                            | 500                   |
| Limits           | 1.705MHz to 30MHz |                              | 30 $\mu$ V/m @ 30m    |                 |               |                                     |                                   |                       |
|                  | 30MHz to 88MHz    |                              | 100 $\mu$ V/m @ 3m    |                 |               |                                     |                                   |                       |
|                  | 88MHz to 216MHz   |                              | 150 $\mu$ V/m @ 3m    |                 |               |                                     |                                   |                       |
|                  | 216MHz to 960MHz  |                              | 200 $\mu$ V/m @ 3m    |                 |               |                                     |                                   |                       |
|                  | 960MHz to 1GHz    |                              | 500 $\mu$ V/m @ 3m    |                 |               |                                     |                                   |                       |
|                  | 1GHz to 20GHz     |                              | 500 $\mu$ V/m @ 3m    |                 |               |                                     |                                   |                       |

### Notes:

- 1 Results quoted are extrapolated as indicated.
- 2 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a.
- 3 Emission due to digital circuitry not directly associated with the radio transmitter.
- 4 Measurements >1GHz @ 3m as per Part 15.31f(1).
- 5 Receiver detector <1GHz = CISPR, Quasi-Peak, 120kHz bandwidth.
- 6 Receiver detector >1GHz = Peak Hold, 1MHz resolution bandwidth.
- 7 New / Fully Charged batteries used for battery powered products.
- 8 See Annex J for scan plot 30MHz – 1GHz.
- 9 No significant emissions within 20 dB of the limit due to digital circuitry.

### Test Method:


- 1 As per Radio – Noise Emissions, ANSI C63.4: 2003.
- 2 Measuring distances as Notes 1 to 4 above.
- 3 EUT 0.8 metre above ground plane.
- 4 Emissions maximised by rotation of EUT, on an automatic turntable.  
Raising and lowering the receiver antenna between 1m & 4m.  
Horizontal and vertical polarisations, of the receive antenna.  
EUT orientation in three orthogonal planes.  
Maximum results recorded.

The test equipment used for the Spurious Emissions – Radiated – Part 15.109 tests is shown overleaf:

| TYPE OF EQUIPMENT | MAKER/ SUPPLIER | MODEL No | SERIAL No  | TRL No | ACTUAL EQUIPMENT USED |
|-------------------|-----------------|----------|------------|--------|-----------------------|
| HORN ANTENNA      | EMCO            | 3115     | 9010-3581  | 139    | X                     |
| RECEIVER          | ROHDE & SCHWARZ | ESVS 10  | 844594/003 | 352    | X                     |
| SPECTRUM ANALYSER | ANRITSU         | MS2665C  | MT26089    | 479    | X                     |
| PRE AMP           | AGILENT         | 8449B    | 3008A016   | 572    | X                     |
| RANGE 1           | TRL             | 3 METRE  | N/A        | UH06   | X                     |
| RANGE 1           | TRL             | 10 METRE | N/A        | UH07   | X                     |
| BILOG ANTENNA     | CHASE           | CBL6112  | 2129       | UH93   | X                     |
| RECEIVER          | ROHDE & SCHWARZ | ESVS 10  | 841431/014 | UH186  | X                     |
| BILOG ANTENNA     | YORK            | CBL611/A | 1618       | UH191  | X                     |
| SPECTRUM ANALYSER | ROHDE & SCHWARZ | FSU 46   | 200034     | UH281  | X                     |
| SIGNAL GENERATOR  | HP              | 83630B   | 3722A00588 | UH340  | X                     |

## FRAME PERIOD 15.323 (e)

Frame repetition stability is tested according with ANSI C63.17 sub-clause 6.2.2. Frame period and jitter are tested in accordance with ANSI C63.17 sub-clause 6.2.3. The test setup below is used for the above measurements.



Test Setup 3:

### Frame Repetition Stability

This is the mean value of the frame repetition rate recorded over 1000 samples. For devices that divide access in time the repetition rate shall not exceed 10ppm.

### Result

| Frame Repetition Stability<br>(ppm) | Limit<br>(ppm) | Pass/Fail |
|-------------------------------------|----------------|-----------|
| 0.01 ppm                            | 10ppm          | Pass      |

### Frame Period and Jitter

Jitter is the difference in time between the rising edges of consecutive pulses.

### Result

| Maximum Jitter<br>( $\mu$ s) | 3xSD Jitter<br>( $\mu$ s) | Frame period<br>(ms) | Limit<br>( $\mu$ s)  |                      | Pass/Fail |
|------------------------------|---------------------------|----------------------|----------------------|----------------------|-----------|
|                              |                           |                      | Frame Period<br>(ms) | Jitter<br>( $\mu$ s) |           |
| -0.08                        | 0.24                      | 10.00024             | 2 or 10/X            | 25                   | Pass      |

Notes: 1. See Annex K for frame period plot.

## FREQUENCY STABILITY – PART 15.323 (e)

The frequency stability tests are carried out according with ANSI C63.17 sub-clause 6.2.1 using test setup number 3(page 23). This testing is carried out with the following conditions over 5000 samples.

### Results

| Temperature (°C) | Voltage (Vdc) | Fc (MHz) | offset (kHz) | offset (ppm) | Limit (ppm) |
|------------------|---------------|----------|--------------|--------------|-------------|
| +20              | Vnom          | 1924.992 | +1.0         | +7.3         | ±10ppm      |
| -20              | Vnom          | 1924.992 | -5.0         | -2.6         | ±10ppm      |
| +55              | Vnom          | 1924.992 | +3.0         | +1.5         | ±10ppm      |

Note: 1. The EUT is battery powered therefore voltage variations are not required.

**ANNEX A**  
**PHOTOGRAPHS**

PHOTOGRAPH No. 1

**RADIATED TEST SETUP**



PHOTOGRAPH No. 2      **POWERLINE CONDUCTION TEST SETUP**



PHOTOGRAPH No. 3

**MR300 FRONT OVERVIEW**



PHOTOGRAPH No. 4

**MR300 REAR OVERVIEW**



PHOTOGRAPH No. 5 MR300 REAR OVERVIEW COVER & BATTERY REMOVED



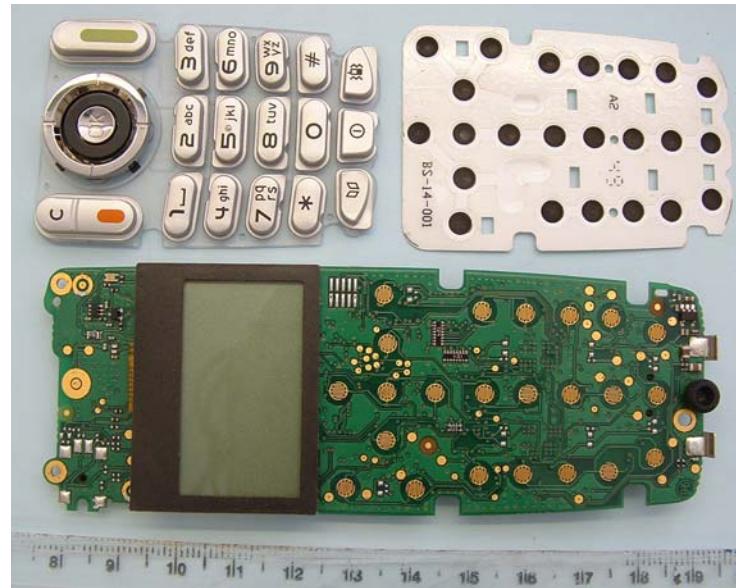
PHOTOGRAPH No. 6

**MR400 FRONT OVERVIEW**



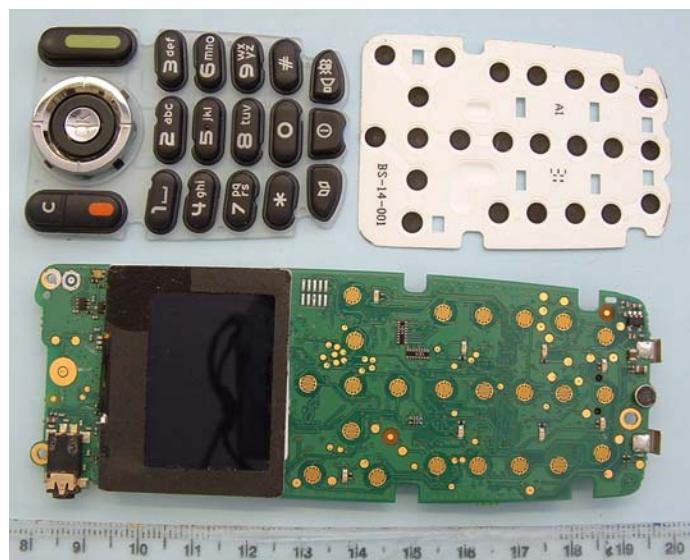
PHOTOGRAPH No. 7

**MR400 REAR OVERVIEW**



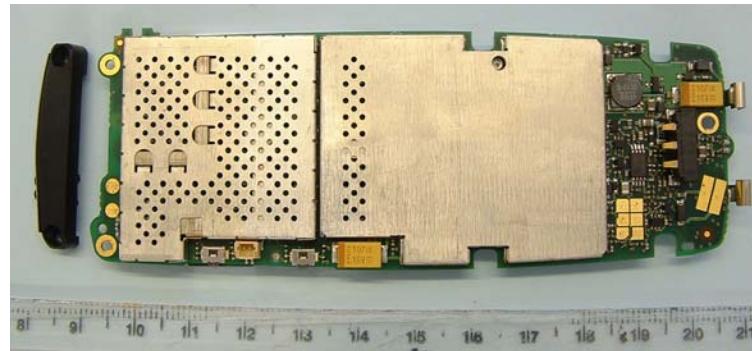

PHOTOGRAPH No. 8 MR400 REAR OVERVIEW COVER & BATTERY REMOVED




PHOTOGRAPH No. 9

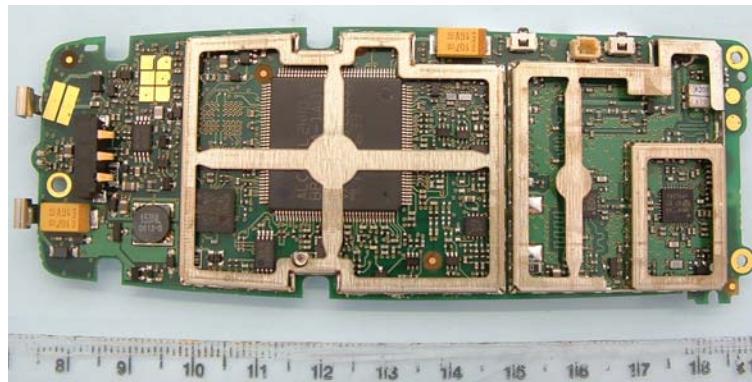
MR300 PCB KEYPAD SIDE & KEYPADS




PHOTOGRAPH No. 10

MR400 PCB KEYPAD SIDE & KEYPADS




PHOTOGRAPH No. 11

PCB RF SIDE



PHOTOGRAPH No. 12

PCB RF SIDE CANS REMOVED



PHOTOGRAPH No. 13

ANTENNA



**ANNEX B**  
**APPLICANT'S SUBMISSION OF DOCUMENTATION LIST**

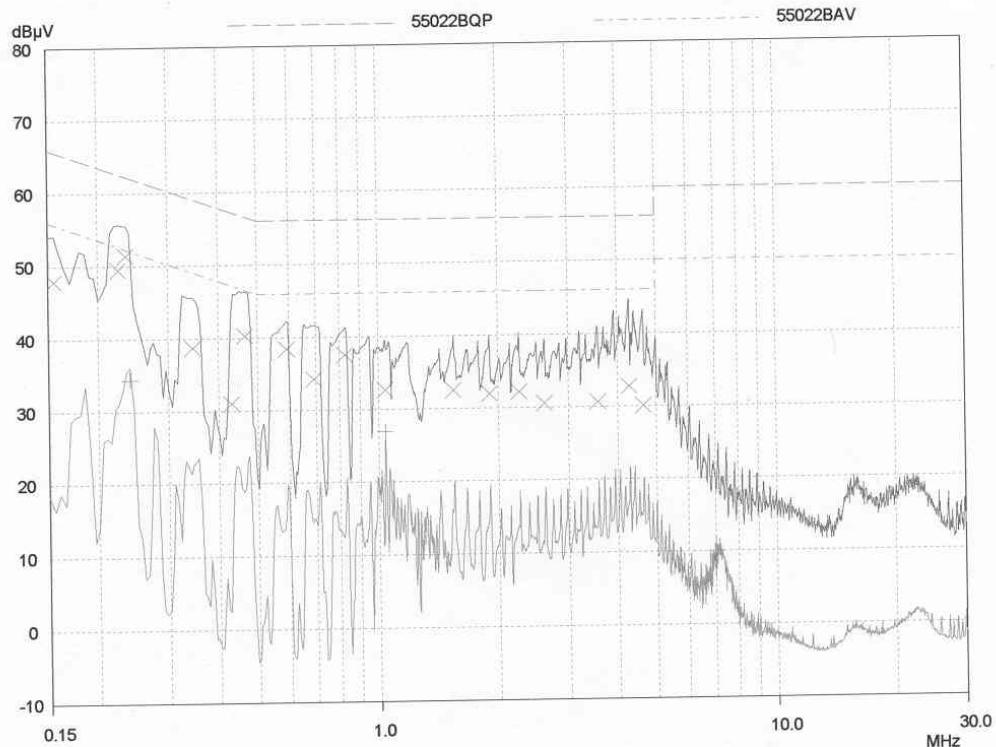
## APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

|    |                                            |   |             |     |
|----|--------------------------------------------|---|-------------|-----|
| a. | TCB                                        | - | APPLICATION | [X] |
|    |                                            | - | FEE         | [X] |
| b. | AGENT'S LETTER OF AUTHORISATION            | - |             | [X] |
| c. | MODEL(s) vs IDENTITY                       | - |             | [ ] |
| d. | ALTERNATIVE TRADE NAME DECLARATION(s)      | - |             | [ ] |
| e. | LABELLING                                  | - | PHOTOGRAPHS | [ ] |
|    |                                            | - | DECLARATION | [ ] |
|    |                                            | - | DRAWINGS    | [X] |
| f. | TECHNICAL DESCRIPTION                      | - |             | [X] |
| g. | BLOCK DIAGRAMS                             | - | Tx          | [X] |
|    |                                            | - | Rx          | [ ] |
|    |                                            | - | PSU         | [ ] |
|    |                                            | - | AUX         | [ ] |
| h. | CIRCUIT DIAGRAMS                           | - | Tx          | [X] |
|    |                                            | - | Rx          | [ ] |
|    |                                            | - | PSU         | [ ] |
|    |                                            | - | AUX         | [ ] |
| i. | COMPONENT LOCATION                         | - | Tx          | [X] |
|    |                                            | - | Rx          | [ ] |
|    |                                            | - | PSU         | [ ] |
|    |                                            | - | AUX         | [ ] |
| j. | PCB TRACK LAYOUT                           | - | Tx          | [X] |
|    |                                            | - | Rx          | [ ] |
|    |                                            | - | PSU         | [ ] |
|    |                                            | - | AUX         | [ ] |
| k. | BILL OF MATERIALS                          | - | Tx          | [X] |
|    |                                            | - | Rx          | [ ] |
|    |                                            | - | PSU         | [ ] |
|    |                                            | - | AUX         | [ ] |
| l. | USER INSTALLATION / OPERATING INSTRUCTIONS | - |             | [X] |

## ANNEX C

## **AC POWERLINE CONDUCTION**

## MR300 AC powerline Conduction Sample Scan


### Powerline Conduction

26 Feb 2007 12:25

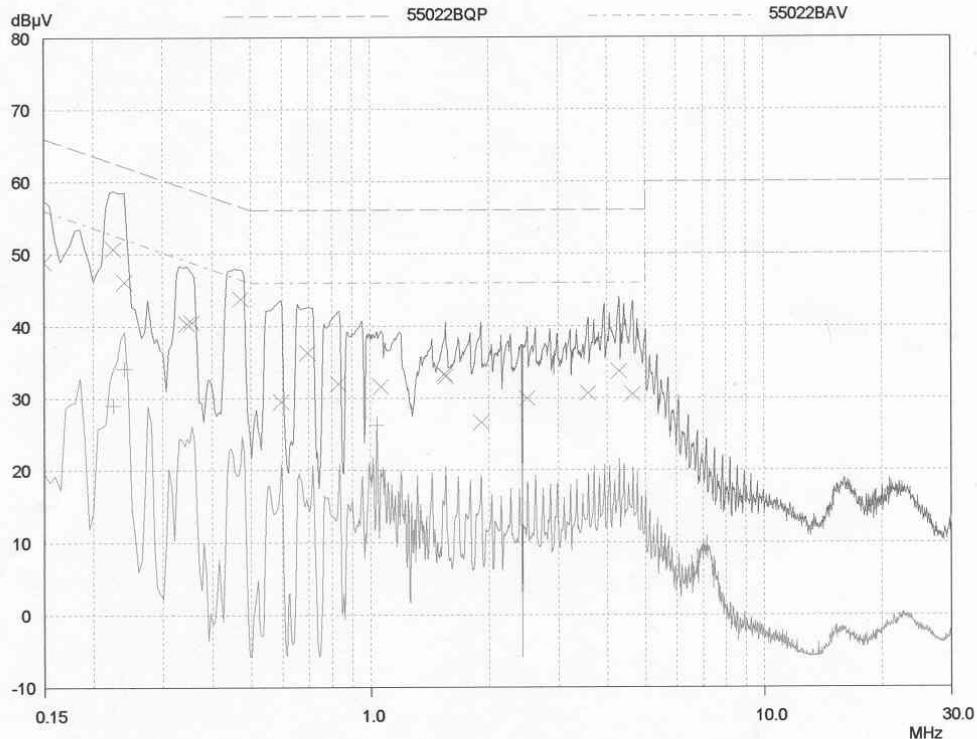
#### 150kHz - 30MHz

EUT: M300  
 Manuf: Alcatel-Lucent  
 Op Cond: LISN UH195, cable UH21 & Receiver UH03  
 Operator: D Winstanley  
 Test Spec: Part 15  
 Comment: Live Line, 110V, 60Hz, EUT seated in Single charger No transmissions.

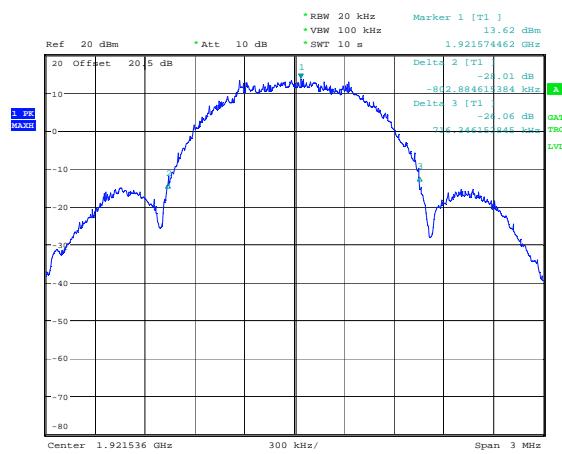
| Scan Settings      |       | (1 Range) Frequencies  |                 |               | Receiver Settings |       |        |       |  |
|--------------------|-------|------------------------|-----------------|---------------|-------------------|-------|--------|-------|--|
| Start              | Stop  | Step                   | IF BW           | Detector      | M-Time            | Atten | Preamp | OpRge |  |
| 150kHz             | 30MHz | 5kHz                   | 10kHz           | PK+AV         | 50msec            | Auto  | OFF    | 60dB  |  |
| Transducer         | No. 1 | Start 10kHz            | Stop 30MHz      | Name UH21     |                   |       |        |       |  |
| Final Measurement: |       | Detectors: X QP / + AV | Meas Time: 2sec | Subranges: 25 | Acc Margin: 20 dB |       |        |       |  |



## MR400 AC powerline Conduction Sample Scan


### Powerline Conduction

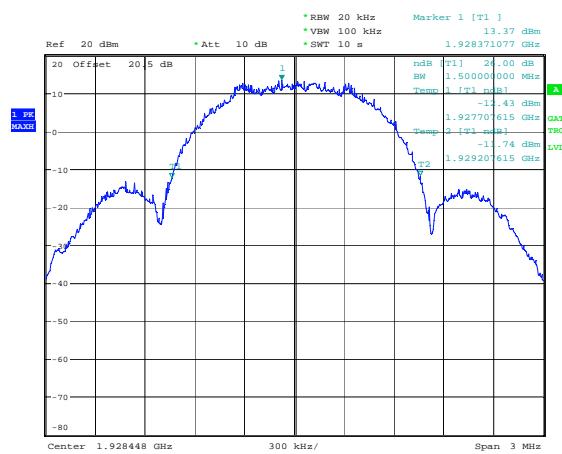
150kHz - 30MHz


06 Mar 2007 09:25

EUT: MR400  
 Manuf: Alcatel-Lucent  
 Op Cond: LISN UH05, cable UH21 & Receiver UH187  
 Operator: D Winstanley  
 Test Spec: Part 15  
 Comment: Live Line, 110V, 60Hz, Eut in Single Charger. No Comms. RX Mode

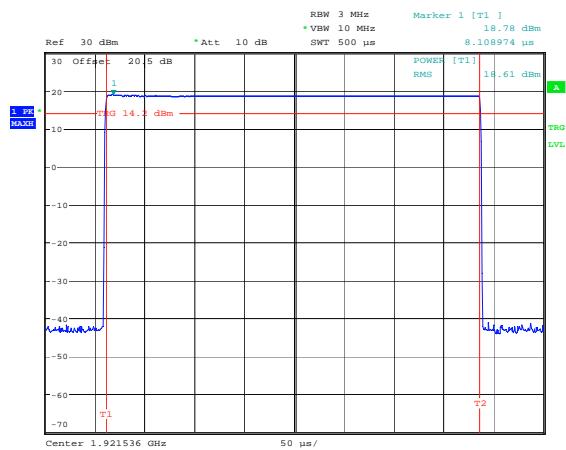
| Scan Settings      |        | (1 Range)   |             |      |       |          | Receiver Settings |       |        |       |
|--------------------|--------|-------------|-------------|------|-------|----------|-------------------|-------|--------|-------|
|                    |        | Frequencies |             | Step | IF BW | Detector | M-Time            | Atten | Preamp | OpRge |
| Start              | 150kHz | Stop        | 30MHz       | 5kHz | 10kHz | PK+AV    | 50msec            | Auto  | OFF    | 60dB  |
| Transducer         | No.    | Start       | Stop        |      |       | Name     |                   |       |        |       |
|                    | 1      | 10kHz       | 30MHz       |      |       | UH21     |                   |       |        |       |
| Final Measurement: |        | Detectors:  | X QP / + AV |      |       |          |                   |       |        |       |
|                    |        | Meas Time:  | 2sec        |      |       |          |                   |       |        |       |
|                    |        | Subranges:  | 25          |      |       |          |                   |       |        |       |
|                    |        | Acc Margin: | 20 dB       |      |       |          |                   |       |        |       |



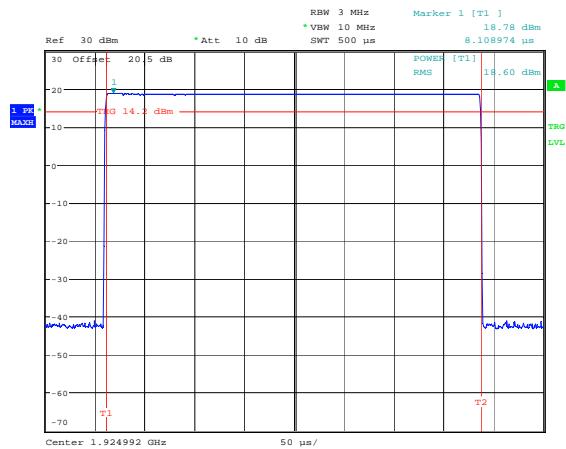

**ANNEX D**  
**EMISSION BANDWIDTH**



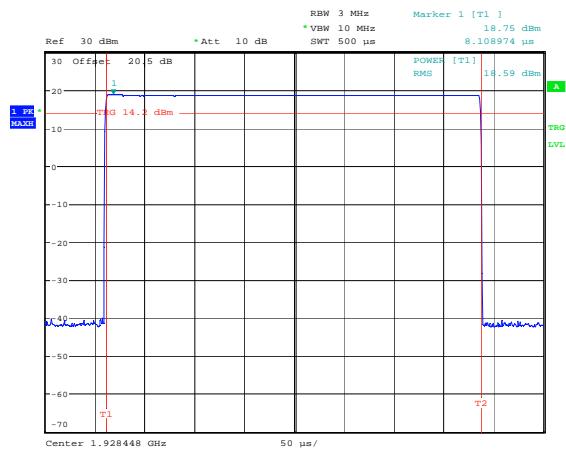
Date: 20.FEB.2007 11:18:15




Date: 20.FEB.2007 11:41:36

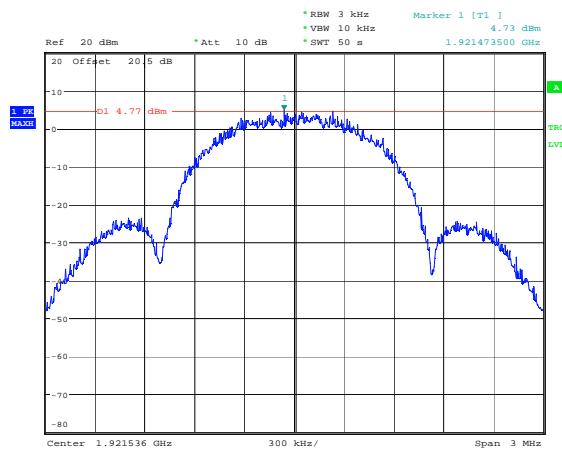



Date: 20.FEB.2007 11:57:35

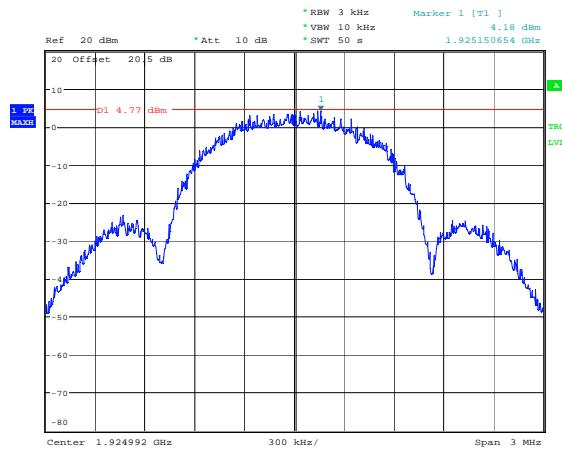

**ANNEX E**  
**PEAK TRANSMIT POWER**



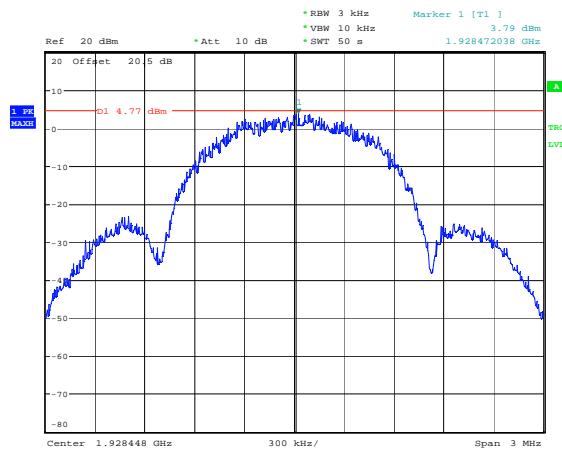
Date: 20.FEB.2007 12:12:56




Date: 20.FEB.2007 12:11:30



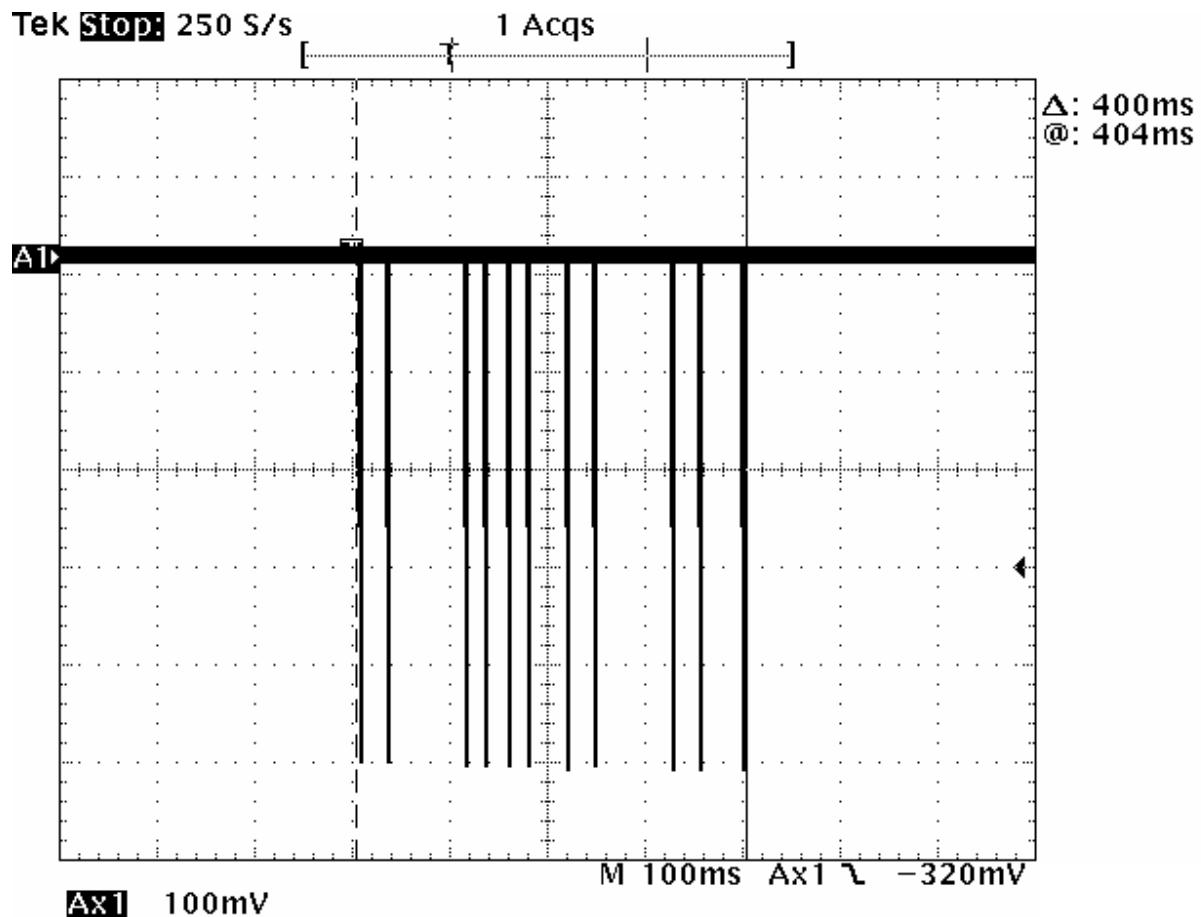

Date: 20.FEB.2007 12:09:08


**ANNEX F**  
**POWER SPECTRAL DENSITY**



Date: 21.FEB.2007 17:23:11



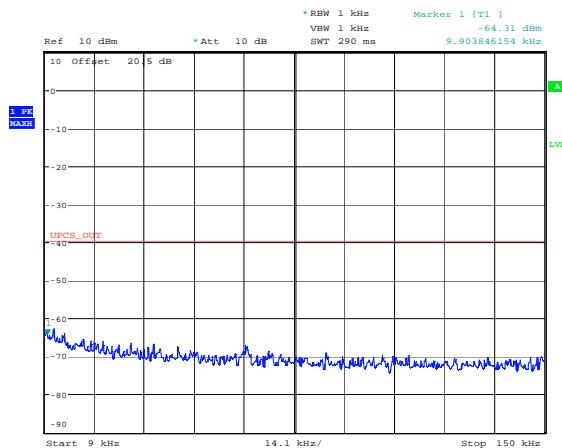

Date: 21.FEB.2007 17:28:26



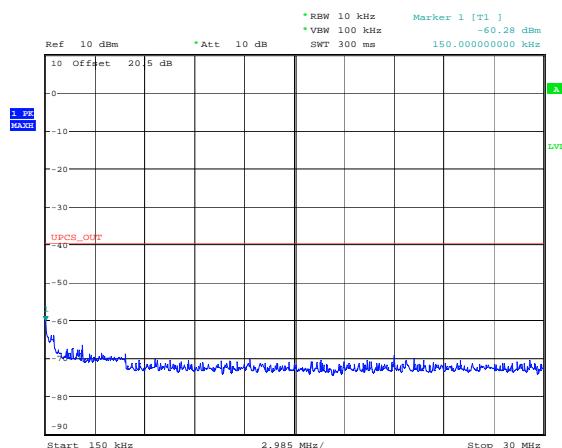
Date: 21.FEB.2007 17:40:03

**ANNEX G**  
**ACKNOWLEDGEMENTS**

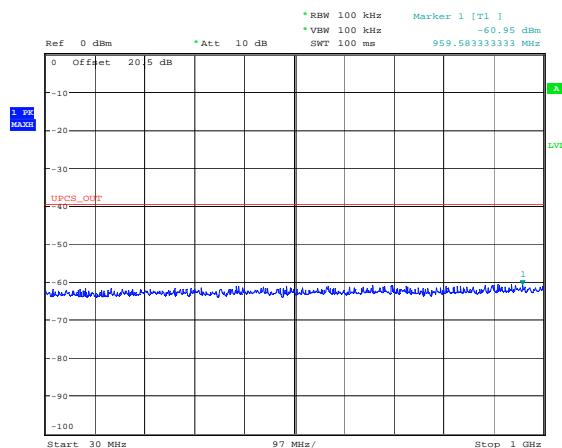
Transmissions on Communications Channel  
Initial Acknowledgement Not Received




**Cease Of Transmissions on Communications Channel  
Acknowledgements Blocked**

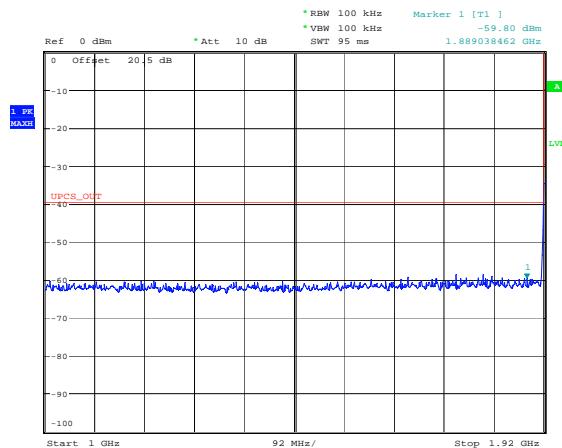



**ANNEX H**  
**EMISSIONS OUTSIDE THE SUB-BAND**

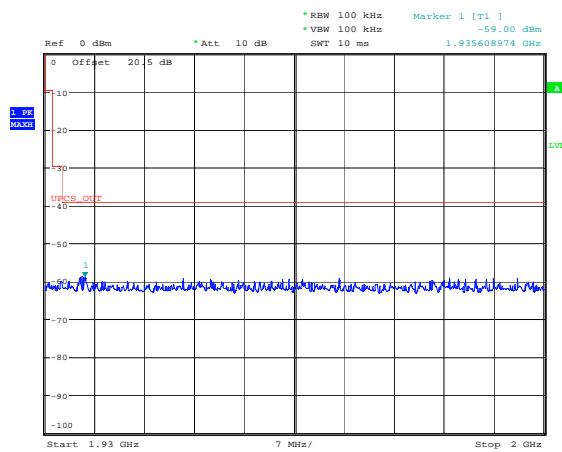

## RF carrier set to the lowest carrier defined by the EUT



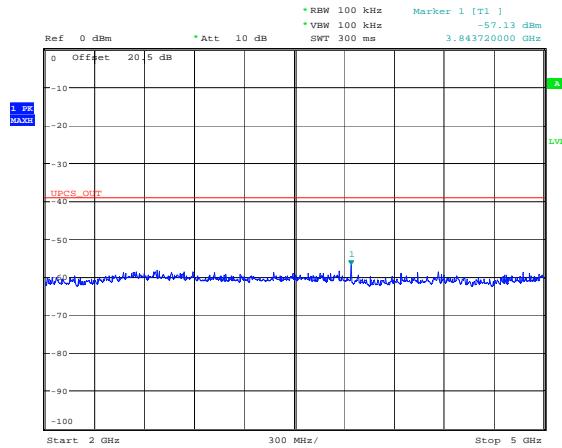
Date: 21.FEB.2007 16:20:49




Date: 21.FEB.2007 16:21:51

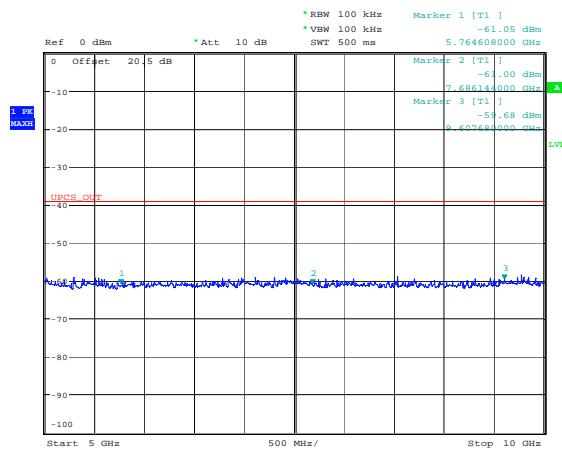



Date: 21.FEB.2007 16:23:14

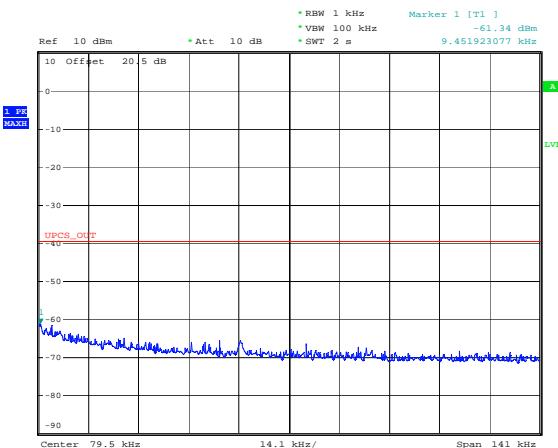

## RF carrier set to the lowest carrier defined by the EUT



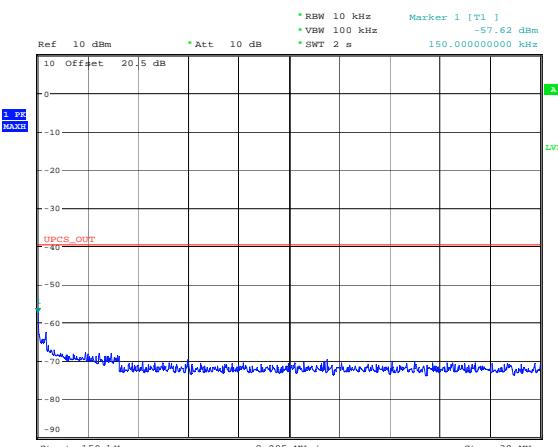
Date: 21.FEB.2007 16:23:42



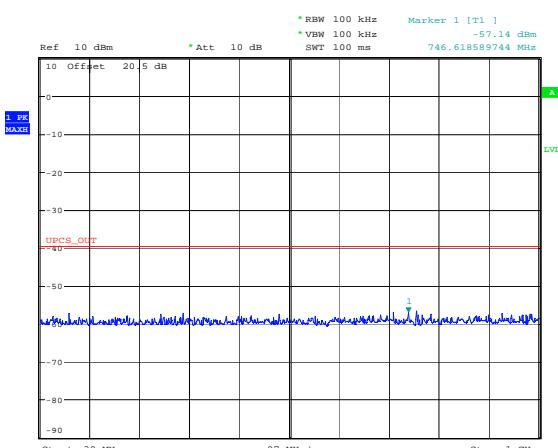

Date: 21.FEB.2007 16:50:50




Date: 21.FEB.2007 16:52:11

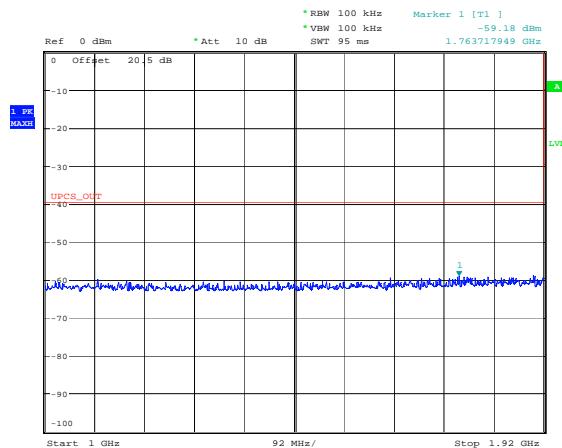

### RF carrier set to the lowest carrier defined by the EUT



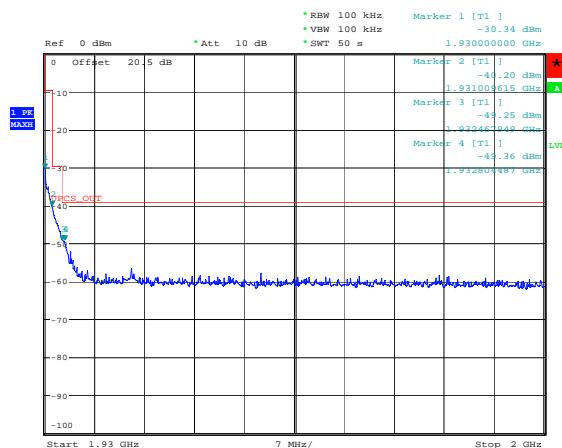

## RF carrier set to the highest carrier defined by the EUT



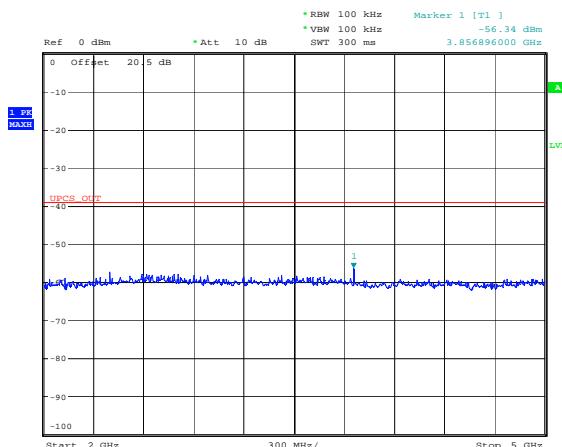
Date: 20.FEB.2007 17:12:55




Date: 20.FEB.2007 17:13:32

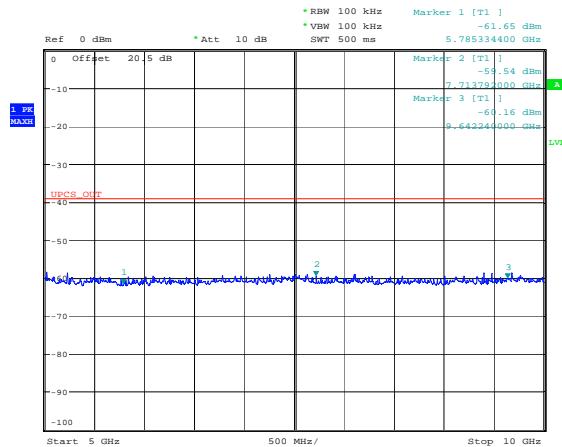



Date: 20.FEB.2007 17:14:43

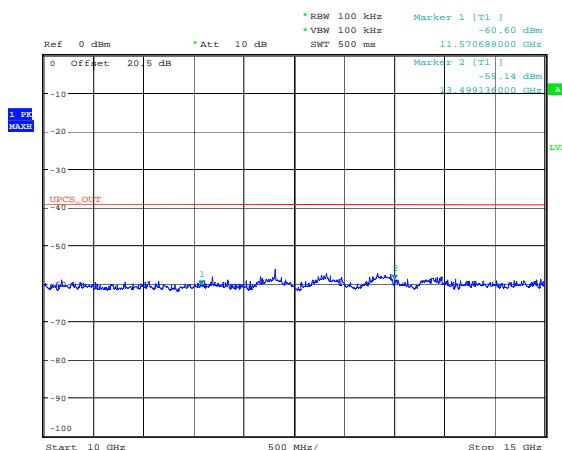

## RF carrier set to the highest carrier defined by the EUT



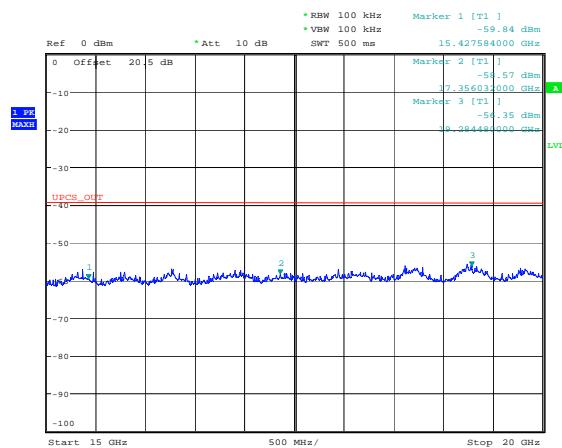
Date: 20.FEB.2007 17:15:58




Date: 21.FEB.2007 09:33:53



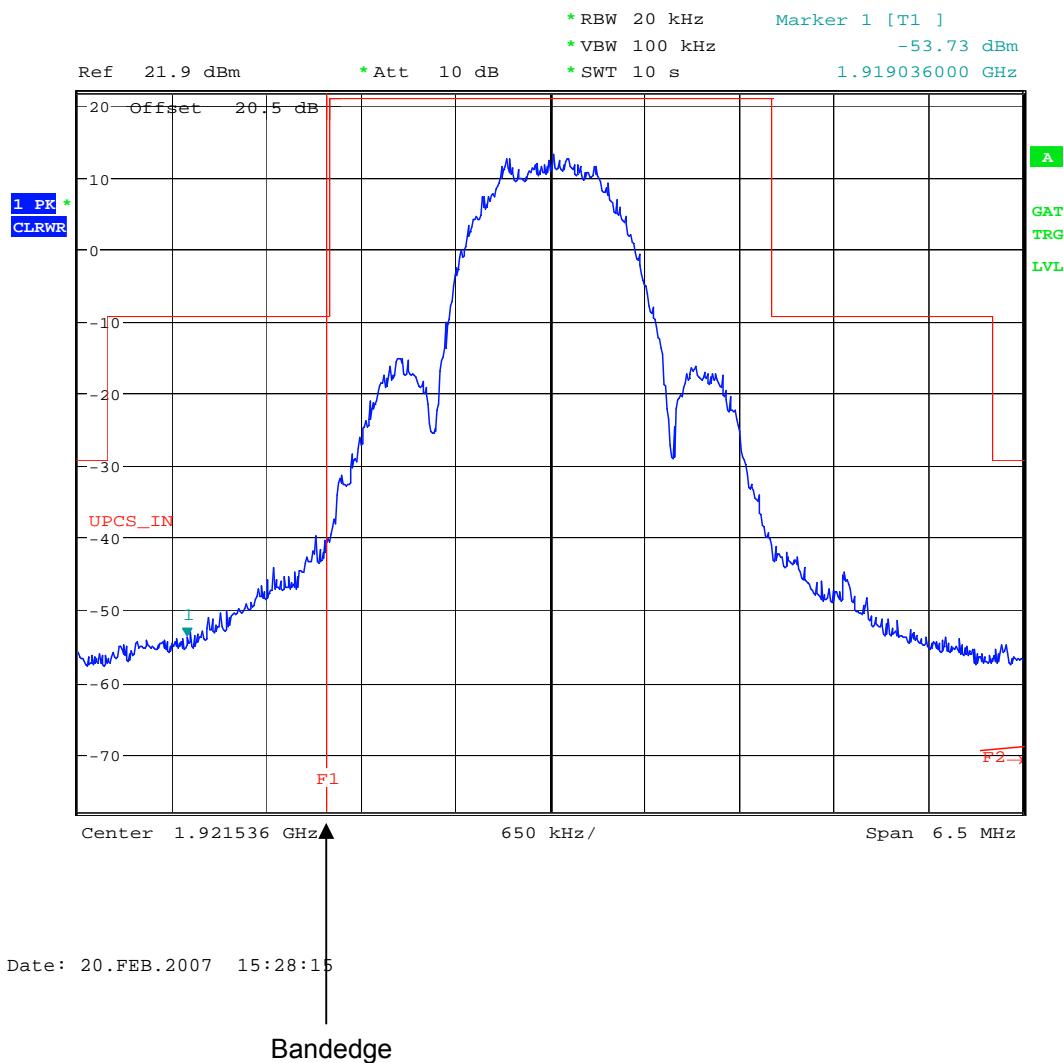

Date: 20.FEB.2007 17:26:24


## RF carrier set to the highest carrier defined by the EUT

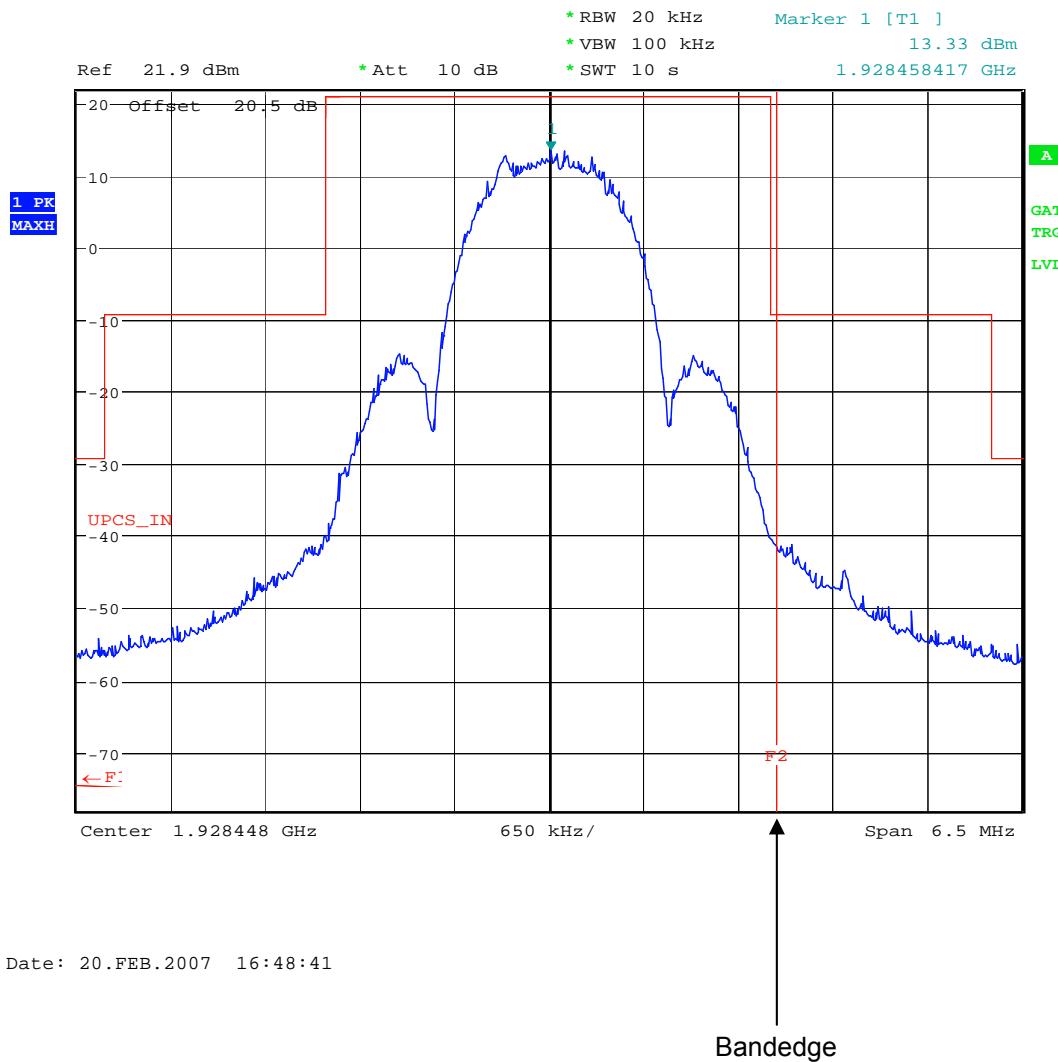


Date: 20.FEB.2007 17:27:47




Date: 20.FEB.2007 17:28:44




Date: 20.FEB.2007 17:29:54

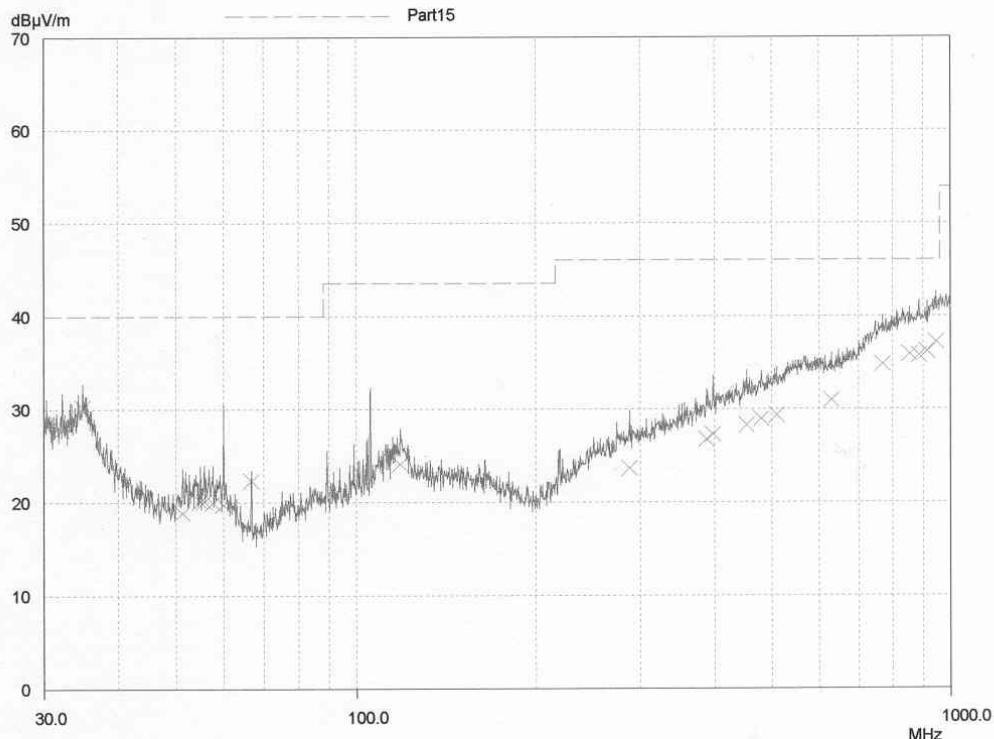
**ANNEX I**  
**EMISSIONS INSIDE THE SUB-BAND – CONDUCTED**

**RF carrier set to the lowest carrier defined by the EUT**



### RF carrier set to the highest carrier defined by the EUT




**ANNEX J**  
**SPURIOUS EMISSIONS – RADIATED**

TRL Compliance Ltd  
E-Field Radiation (30MHz-1GHz)

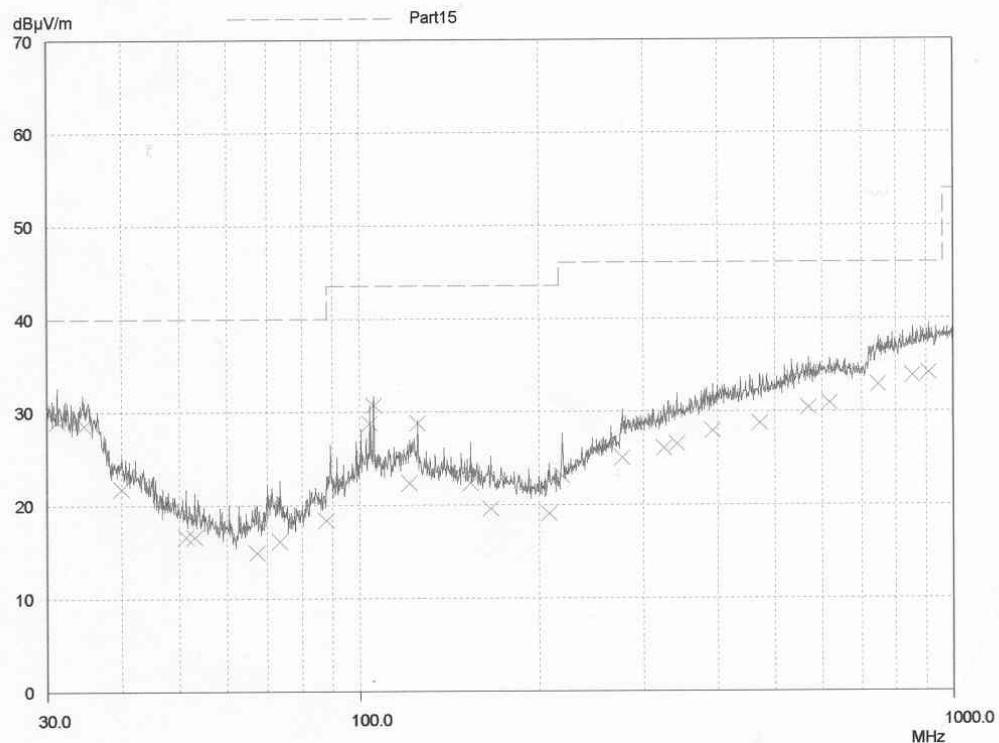
09 Mar 2007 13:23

EUT: MR400  
Manuf: Alcatel-Lucent  
Op Cond: Prescan 30MHz - 1000MHz  
Operator: D Winstanley  
Test Spec: Part15  
Comment: EUT on Rx Mode. Seated in single charger. +110Vac 60Hz  
RX Antenna Vertical

| Scan Settings      |       | (1 Range)   |         |       |        |          | Receiver Settings |       |        |       |
|--------------------|-------|-------------|---------|-------|--------|----------|-------------------|-------|--------|-------|
|                    |       | Frequencies |         | Step  | IF BW  | Detector | M-Time            | Atten | Preamp | OpRge |
|                    | Start | Start       | Stop    |       |        |          |                   |       |        |       |
|                    | 30MHz | 30MHz       | 1000MHz | 50kHz | 120kHz | PK       | 1msec             | Auto  | ON     | 60dB  |
| Transducer         | No.   | Start       | Stop    |       |        | Name     |                   |       |        |       |
| 1                  | 21    | 30MHz       | 1000MHz |       |        | UH72     |                   |       |        |       |
|                    | 22    | 30MHz       | 1000MHz |       |        | UH191    |                   |       |        |       |
| Final Measurement: |       | Detector:   | X QP    |       |        |          |                   |       |        |       |
|                    |       | Meas Time:  | 2sec    |       |        |          |                   |       |        |       |
|                    |       | Subranges:  | 50      |       |        |          |                   |       |        |       |
|                    |       | Acc Margin: | 10 dB   |       |        |          |                   |       |        |       |

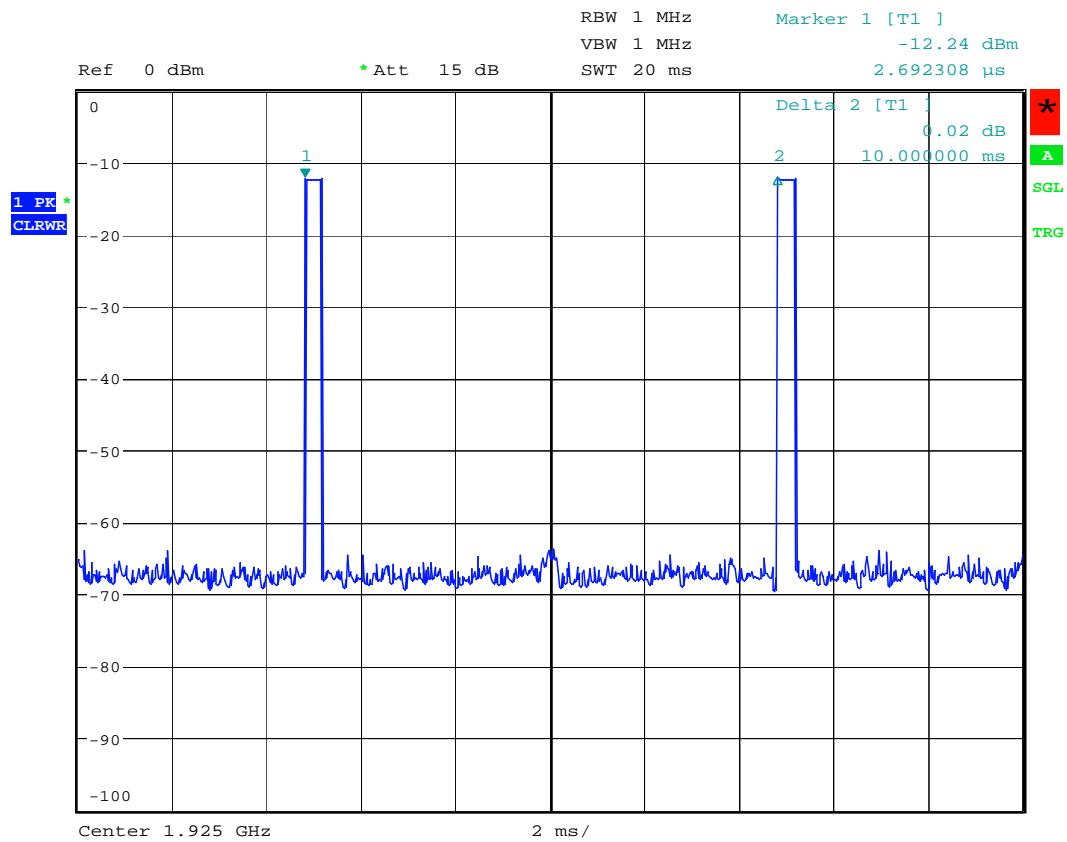


PAGE 1


TRL Compliance Ltd

23 Feb 2007 10:35

E-Field Radiation (30MHz-1GHz)


EUT: Mobile 300  
Manuf: Alcatel-Lucent  
Op Cond: Prescan 30MHz - 1000MHz  
Operator: D Winstanley  
Test Spec: Part15  
Comment: EUT On, RX mode, No transmissions.  
Seated in Dual Charger with second Battery. RX Antenna Horizontal. VERTICAL

| Scan Settings      |       | (1 Range)   |         |       |        |          | Receiver Settings |       |        |       |
|--------------------|-------|-------------|---------|-------|--------|----------|-------------------|-------|--------|-------|
|                    |       | Frequencies |         | Step  | IF BW  | Detector | M-Time            | Atten | Preamp | OpRge |
|                    | Start | Start       | Stop    | Step  | IF BW  | Detector | M-Time            | Atten | Preamp | OpRge |
|                    | 30MHz | 30MHz       | 1000MHz | 50kHz | 120kHz | PK       | 1msec             | Auto  | ON     | 60dB  |
| Transducer         | No.   | Start       | Stop    |       |        | Name     |                   |       |        |       |
| 1                  | 21    | 30MHz       | 1000MHz |       |        | UH72     |                   |       |        |       |
|                    | 22    | 30MHz       | 1000MHz |       |        | UH93     |                   |       |        |       |
| Final Measurement: |       | Detector:   | X QP    |       |        |          |                   |       |        |       |
|                    |       | Meas Time:  | 2sec    |       |        |          |                   |       |        |       |
|                    |       | Subranges:  | 50      |       |        |          |                   |       |        |       |
|                    |       | Acc Margin: | 10 dB   |       |        |          |                   |       |        |       |



PAGE 1

**ANNEX K**  
**FRAME PERIOD**



Date: 1.MAR.2007 12:25:22

**ANNEX L**  
**EQUIPMENT DETAILS & CALIBRATION**

| TYPE OF EQUIPMENT     | MAKER/ SUPPLIER | MODEL No      | SERIAL No   | TRL No | ACTUAL EQUIPMENT USED |
|-----------------------|-----------------|---------------|-------------|--------|-----------------------|
| TEMPERATURE CHAMBER   | SHARTREE        | TCC 125-815P  | CS 203      | 11     | X                     |
| RESISTIVE COUPLER     | ELCOM           | RC-3-50       | N/A         | 119    | X                     |
| HORN ANTENNA          | EMCO            | 3115          | 9010-3581   | 139    | X                     |
| RESISTIVE COUPLER     | ELCOM           | RC-4-50       | N/A         | 170    | X                     |
| ATTENUATOR            | BIRD            | 8304-200-N    | N/A         | 221    | X                     |
| RECEIVER              | ROHDE & SCHWARZ | ESVS 10       | 844594/003  | 352    | X                     |
| TEMPERATURE INDICATOR | FLUKE           | 52 Series II  | 74700044    | 426    | X                     |
| SPECTRUM ANALYSER     | ANRITSU         | MS2665C       | MT26089     | 479    | X                     |
| PRE AMP               | AGILENT         | 8449B         | 3008A016    | 572    | X                     |
| FUNCTION GENERATOR    | WAVETEK         | 178           | V644080     | 638    | X                     |
| RECEIVER              | ROHDE & SCHWARZ | ESHS 10       | 830051/01   | UH03   | X                     |
| LISN                  | ROHDE & SCHWARZ | ESH3-Z5       | 863906/018  | UH05   | X                     |
| RANGE 1               | TRL             | 3 METRE       | N/A         | UH06   | X                     |
| RANGE 1               | TRL             | 10 METRE      | N/A         | UH07   | X                     |
| MULTIMETER            | AVOMeter        | M3004         | M3270006    | UH41   | X                     |
| OSCILLOSCOPE          | TEKTRONIX       | TDS520B       | B020491     | UH122  | X                     |
| RECEIVER              | ROHDE & SCHWARZ | ESVS 10       | 841431/014  | UH186  | X                     |
| RECEIVER              | ROHDE & SCHWARZ | ESHS 10       | 841429/012  | UH187  | X                     |
| BILOG ANTENNA         | YORK            | CBL611/A      | 1618        | UH191  | X                     |
| LISN                  | ROHDE & SCHWARZ | ESH3-Z5.831.5 | 8470 31/015 | UH195  | X                     |
| FUNCTION GENERATOR    | WAVETEK         | 271           | C6841078    | UH221  | X                     |
| SPECTRUM ANALYSER     | ROHDE & SCHWARZ | FSU 46        | 200034      | UH281  | X                     |

| TYPE OF EQUIPMENT   | MAKER/ SUPPLIER | MODEL No | SERIAL No  | TRL No | ACTUAL EQUIPMENT USED |
|---------------------|-----------------|----------|------------|--------|-----------------------|
| SIGNAL GENERATOR    | ROHDE & SCHWARZ | SML 03   | 102268     | UH297  | X                     |
| CRYSTAL DETECTOR    | HP              | 8472A    | 1822A00897 | UH307  | X                     |
| SIGNAL GENERATOR    | HP              | 83630B   | 3722A00588 | UH340  | X                     |
| MODULATION ANALYSER | ROHDE & SCHWARZ | CMD 60   | N/A        | N/A    | X                     |

| TRL Number | Equipment Type        | Manufacturer | Last Cal Calibration                 | Calibration Period   | Due For Calibration |
|------------|-----------------------|--------------|--------------------------------------|----------------------|---------------------|
| L011       | Temperature chamber   | Shartree     | Use Calibrated Temperature Indicator |                      |                     |
| L119       | Combiner              | Elcom        | Calibrate in use                     |                      |                     |
| L139       | 1-18GHz Horn          | EMCO         | 03/05/2005                           | 24                   | 03/05/2007          |
| L170       | Combiner              | Elcom        | Calibrate in use                     |                      |                     |
| L221       | Attenuator            | Bird         | Calibrate in use                     |                      |                     |
| L352       | Receiver              | R&S          | 07/08/2006                           | 12                   | 07/08/2007          |
| L426       | Temperature Indicator | Fluke        | 09/01/2007                           | 12                   | 09/01/2008          |
| L479       | Analyser              | Anritsu      | 09/01/2007                           | 12                   | 09/01/2008          |
| L572       | Pre Amp               | Agilent      | Calibrate in use                     |                      |                     |
| L638       | Function Generator    | Wavetek      | Use Calibrated oscilloscope          |                      |                     |
| UH003      | Receiver              | R&S          | 24/07/2006                           | 12                   | 24/07/2007          |
| UH005      | LISN/AMN              | R&S          | 11/04/2006                           | 12                   | 11/04/2007          |
| UH006      | 3m Range CAL          | TRL          | 23/01/2007                           | 12                   | 23/01/2008          |
| UH007      | 10 Range CAL          | TRL          | 23/01/2007                           | 12                   | 23/01/2008          |
| UH041      | Multimeter            | AVometer     | 04/01/2007                           | 12                   | 04/01/2008          |
| UH122      | Oscilloscope          | Tektronix    | 07/06/2005                           | 24                   | 07/06/2007          |
| UH177      | Power supply          | Manson       | Use Calibrated Multimeter            |                      |                     |
| UH186      | Receiver              | R&S          | 01/02/2006                           | 12                   | 01/02/2007          |
| UH187      | Receiver              | R&S          | 11/10/2006                           | 12                   | 11/10/2007          |
| UH191      | Bilog Antenna         | Schaffner    | 11/08/2006                           | 24                   | 11/08/2008          |
| UH195      | LISN/AMN              | R&S          | 09/01/2007                           | 12                   | 09/01/2008          |
| UH221      | Function Generator    | Wavetek      | Use Calibrated oscilloscope          |                      |                     |
| UH281      | Spectrum Analyser     | R&S          | 24/07/2006                           | 12                   | 24/07/2007          |
| UH297      | Signal Generator      | R&S          | 21/04/2006                           | 12                   | 21/04/2007          |
| UH307      | Crystal Detector      | R&S          |                                      | For Information Only |                     |
| UH340      | Signal Generator      | HP           | 29/06/2006                           | 12                   | 29/06/2007          |
| N/A        | CMD60                 | R&S          |                                      |                      |                     |

**ANNEX M**

**MEASUREMENT UNCERTAINTY**

## Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

### **[1] Adjacent Channel Power**

Uncertainty in test result = **1.86dB**

### **[2] Carrier Power**

Uncertainty in test result (Equipment - TRLUH120) = **2.18dB**  
Uncertainty in test result (Equipment – TRL05) = **1.08dB**  
Uncertainty in test result (Equipment – TRL479) = **2.48dB**

### **[3] Effective Radiated Power**

Uncertainty in test result = **4.71dB**

### **[4] Spurious Emissions**

Uncertainty in test result = **4.75dB**

### **[5] Maximum frequency error**

Uncertainty in test result (Equipment - TRLUH120) = **119ppm**  
Uncertainty in test result (Equipment – TRL05) = **0.113ppm**  
Uncertainty in test result (Equipment – TRL479) = **0.265ppm**

### **[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field**

Uncertainty in test result (14kHz – 30MHz) = **4.8dB**, Uncertainty in test result (30MHz – 1GHz) = **4.6dB**, Uncertainty in test result (1GHz-18GHz) = **4.7dB**

### **[7] Frequency deviation**

Uncertainty in test result = **3.2%**

### **[8] Magnetic Field Emissions**

Uncertainty in test result = **2.3dB**

### **[9] Conducted Spurious**

Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = **3.31dB**  
Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = **4.43dB**  
Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = **5.34dB**  
Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = **3.14dB**

### **[10] Channel Bandwidth**

Uncertainty in test result = **15.5%**

### **[11] Amplitude and Time Measurement – Oscilloscope**

Uncertainty in overall test level = **2.1dB**, Uncertainty in time measurement = **0.59%**, Uncertainty in Amplitude measurement = **0.82%**

### **[11] Power Line Conduction**

Uncertainty in test result = **3.4dB**

**[12] Spectrum Mask Measurements**

Uncertainty in test result = **2.59% (frequency)**  
Uncertainty in test result = **1.32dB (amplitude)**

**[13] Adjacent Sub Band Selectivity**

Uncertainty in test result = **1.24dB**

**[14] Receiver Blocking – Listen Mode, Radiated**

Uncertainty in test result = **3.42dB**

**[15] Receiver Blocking – Talk Mode, Radiated**

Uncertainty in test result = **3.36dB**

**[16] Receiver Blocking – Talk Mode, Conducted**

Uncertainty in test result = **1.24dB**

**[17] Receiver Threshold**

Uncertainty in test result = **3.23dB**

**[18] Transmission Time Measurement**

Uncertainty in test result = **7.98%**