

Straubing, September 14, 2006

TEST-REPORT

No. 50235-060611-7 (Edition 1)

for

ACCESS45-M1415-5-232-LB-EQUITRAC

Inductive Tag Reader

Applicant: E

BALTECH AG

Test Specifications: FCC Code of Federal Regulations, CFR 47, Part 15, Sections 15.205, 15.207, 15.215 and 15.225

> Industry Canada Radio Standards Specifications RSS-Gen Issue 1, Section 7.2.2 and RSS-210 Issue 6, Sections 2.2, 2.6, A2.6 (Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	Description of the Equipment Under Test (EUT)		
2	Ad	ministrative Data	4
3	lde	entification of the Test Laboratory	5
4	Su	mmary	6
5	Op	peration Mode and Configuration of EUT	7
6	Me	easurement Procedures	8
	6.1	Bandwidth Measurements	
	6.2	Conducted AC Powerline Emission	
	6.3	Radiated Emission Measurement 9 kHz to 30 MHz	12
	6.4	Radiated Emission in Fully or Semi Anechoic Room	14
	6.5	Radiated Emission at Open Field Test Site	16
	6.6	Carrier Frequency Stability	17
7	Ph	otographs Taken During Testing	19
8	Те	st Results	27
	8.1	Designation of Emissions	
	8.2	Conducted Powerline Emission Measurement 150 kHz to 30 MHz	
	8.3	Spectrum Mask	
	8.4	Radiated Emission Measurement 9 kHz to 30 MHz	
	8.5	Radiated Emission Measurement 30 MHz to 1 GHz	
	8.6	Exposure of Humans to RF Fields	37
9	Re	ferenced Regulations	39
1() Ch	arts taken during testing	

Description of the Equipment Under Test (EUT) 1

General data of EUT			
Type designation ¹ :	ACCESS45-M1415-5-232-LB-EQUITRAC		
Parts ² :			
Serial number(s):	Sample no. 1		
Manufacturer:	BALTECH AG		
Type of equipment:	Inductive Tag Reader		
Version:	Without external demodulator but using built-in demodulator of U380: D690, C690, R690: not mounted (nb); C691 = 1nF, R49 = 6k8 Ω , C641 = 0 Ω		
FCC ID:	OKY1005200251A02B		
Additional parts/accessories:	with Mifare tag		

Technical data of EUT			
Application frequency range:	13.110 – 14.010 MHz		
Frequency range:	13.560 MHz		
Operating frequency:	13.560 MHz		
Type of modulation:	Amplitude Modulation	(AM)	
Number of RF-channels:	1		
Channel spacing:	Not applicable		
Designation of emissions ³ :	212KA1D		
Type of antenna:	Integrated loop antenna (printed board)		
Size/length of antenna:	Rectangle: 72 mm x 37 mm		
Connection of antenna:	detachable	imes not detachable	
Type of power supply:	DC supply		
Specifications for power supply:	nominal voltage: minimum voltage: maximum voltage:	5.00 V DC 4.25 V DC 5.50 V DC	

 $^{^1}$ Type designation of the system if EUT consists of more than one part. 2 Type designations of the parts of the system, if applicable.

³ Also known as "Class of Emission".

2 Administrative Data

Application details		
Applicant (full address):	BALTECH AG Lilienthalstrasse 27 D-85399 Hallbergmoos Germany	
Contact person:	Mr. Jürgen Rösch	
Contract identification:		
Receipt of EUT:	August 28, 2006	
Date(s) of test:	September 6 to 13, 2006	
Note(s):		

Report details		
Report number:	50235-060611-7	
Edition:	1	
Issue date:	September 14, 2006	

3 Identification of the Test Laboratory

Details of the Test Laboratory			
Company name:	Senton GmbH EMI/EMC Test Center		
Address:	Aeussere Fruehlingstrasse 45 D-94315 Straubing Germany		
Laboratory accreditation:	DAR-Registration No. DAT-P-171/94-02		
FCC test site registration number	90926		
Industry Canada test site registration:	IC 3050		
Contact person:	Mr. Johann Roidt		
	Phone: (+49) (0)9421 5522-0 Fax: (+49) (0)9421 5522-99		

4 Summary

Summary of test results

The tested sample complies with the requirements for a class II permissive change set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.205, 15.207, 15.215 and 15.225

of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-Gen Issue 1, Section 7.2.2 and RSS-210 Issue 6, Sections 2.2, 2.6, A2.6 (Category I Equipment)

of Industry Canada (IC).

Personnel involved in this report			
Laboratory Manager:			
	Mr. Johann Roidt		
Responsible for testing:	Ranne feller		
	Mr. Rainer Heller		
Responsible for test report:	Mr. Rainer Heller		

5 Operation Mode and Configuration of EUT

Operation Mode(s)

EUT is transmitting continuously with power switched on.

Configuration(s) of EUT

EUT was tested connected to the serial port of a notebook and supplied by an external dc power supply (120 V AC mains input).

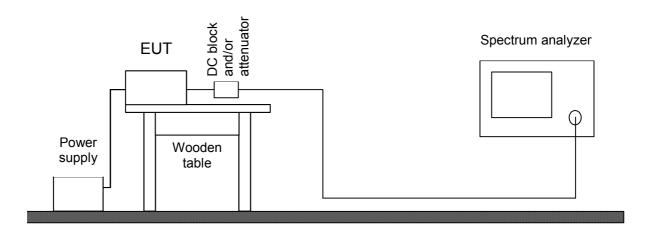
List o	List of ports and cables				
Port	Description	Classification ⁴	Cable type	Cable length	
1	dc power input cable (fixed to power supply)	dc power	Unshielded	1.8 m	
2	serial interface cable	signal/control port	Shielded	1.7 m	
3	parallel interface cable (connected to notebook)	signal/control port	Shielded	2 m	

Listo	List of devices connected to EUT				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	
1	power supply (5 V DC, 1000 mA)	FW7650/05	1406	Friwo	
2	notebook	Latitude D600	GZJBW0J	Dell	

List of support devices					
ltem	Description	Type Designation	Serial no. or ID	Manufacturer	
1	inductive tag	Mifare Standard 1kByte		Mifare	
2	power supply for notebook	AA22850	CN-05U092-16291- 39Q-08MZ	Dell	

⁴ Ports shall be classified as ac power, dc power or signal/control port

6 Measurement Procedures


6.1 Bandwidth Measurements

Measurement Procedure:	Measurement Procedure:			
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) IC RSS-Gen Issue 1, sections 4.4.1 and 4.4.2 IC RSS-210 Issue 6, section A1.1.3 ANSI C63.4, annex H.6			
Guide:	ANSI C63.4 / IC RSS-Gen Issue 1, sections 4.4.1 and 4.4.2			
Measurement setup:	 ☐ Conducted: See below ☑ Radiated: Radiated Emission Measurement 9 kHz to 30 MHz (6.3) 			

If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

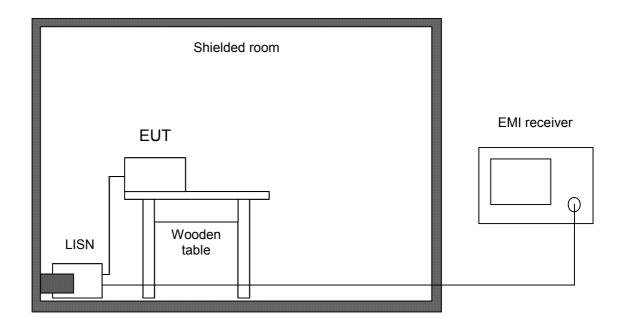
The analyzer settings are specified by the test description of the appropriate test record(s).

Test instruments used for conducted measurements:

Used	Туре	Model	Serial No. or ID	Manufacturer
	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESPI7	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
	Power meter	NRVS	836856/015	Rohde & Schwarz
	Peak power sensor	NRV-Z31	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	837901/030	Rohde & Schwarz
	Power sensor	NRV-Z4	863828/015	Rohde & Schwarz
	DC-block	7006	A2798	Weinschel
	Attenuator	4776-10	9412	Narda
	Attenuator	4776-20	9503	Narda

6.2 Conducted AC Powerline Emission

Measurement Procedure:


Rules and specifications:	CFR 47 Part 15, section 15.207 IC RSS-Gen Issue 1, section 7.2.2
Guide:	ANSI C63.4 / CISPR 22
Conducted emission tests in the frequency range 150 kHz to 30 MHz are performed using Line Impedance Stabilization Networks (LISNs). To simplify testing with quasi-peak and average detector the following procedure is used:	

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with detector set to peak using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with detector set to quasi-peak.

If average limit is kept with quasi-peak levels no additional scan with average detector is necessary. In cases of emission levels between quasi-peak and average limit an additional scan with detector set to average is performed.

According to ANSI C63.4, section 13.1.3.1, testing of intentional radiators with detachable antenna shall be performed using a suitable dummy load connected to the antenna output terminals. Otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended.

Testing with dummy load may be necessary to distinguish (unintentional) conducted emissions on the supply lines from (intentional) emissions radiated by the antenna and coupling directly to supply lines and/or LISN. Usage of dummy load has to be stated in the appropriate test record(s) and notes should be added to clarify the test setup.

Test instruments used:

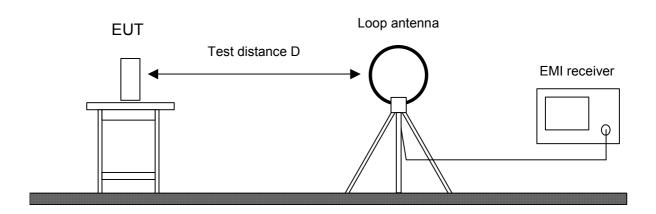
Used	Туре	Model	Serial No. or ID	Manufacturer
\square	EMI receiver	ESHS 10	860043/016	Rohde & Schwarz
\square	LISN	ESH3-Z5	862770/021	Rohde & Schwarz
\square	LISN	ESH3-Z5	830952/025	Rohde & Schwarz
	Artificial mains network	ESH 2-Z5	842966/004	Rohde & Schwarz
	Shielded room	No. 1	1451	Albatross Projects
\square	Shielded room	No. 4	3FD-100 544	Euroshield

6.3 Radiated Emission Measurement 9 kHz to 30 MHz

Measurement Procedure:

Rules and specifications:	CFR 47 Part 15, sections 15.205, 15.215(b) and 15.225(a)-(d) IC RSS-210 Issue 6, sections 2.2, 2.6 and A2.6
Guide:	ANSI C63.4

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.


Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\square	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\square	Test receiver	ESHS 10	860043/016	Rohde & Schwarz
	Preamplifier	CPA9231A	3393	Schaffner
\square	Loop antenna	HFH2-Z2	882964/1	Rohde & Schwarz
\square	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens
\square	Open field test site	EG 1	1450	Senton

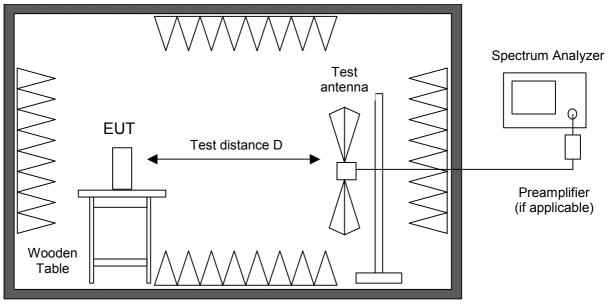
6.4 Radiated Emission in Fully or Semi Anechoic Room

Measurement Procedure:

Rules and specifications:	CFR 47 Part 15, sections 15.205(b) and 15.225(d) IC RSS-210 Issue 6, sections 2.2(b)(c), 2.6 and A2.6
Guide:	ANSI C63.4

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).


Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 18 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance is reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing. During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz an open field test-site is used and the plots recorded in the fully or semi anechoic room are indicated as prescans.

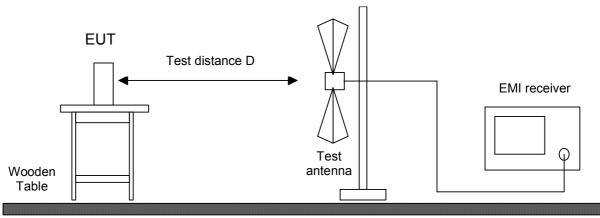
Fully or semi anechoic room

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\square	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	Spectrum analyzer	R 3271	05050023	Advantest
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\square	Preamplifier	CPA9231A	3393	Schaffner
	Preamplifier	R14601		Advantest
	Preamplifier 1-8 GHz	AFS3-00100800-32-LN	847743	Miteq
	Preamplifier 0.5-8 GHz	AMF-4D-005080-25-13P	860149	Miteq
	Preamplifier 8-18 GHz	ACO/180-3530	32641	CTT
	External Mixer	WM782A	845881/005	Tektronix
	Harmonic Mixer Accessories	FS-Z30	843389/007	Rohde & Schwarz
\boxtimes	Trilog broadband antenna	VULB 9163	9163-188	Schwarzbeck
	Horn antenna	3115	9508-4553	EMCO
	Horn antenna	3160-03	9112-1003	EMCO
	Horn antenna	3160-04	9112-1001	EMCO
	Horn antenna	3160-05	9112-1001	EMCO
	Horn antenna	3160-06	9112-1001	EMCO
	Horn antenna	3160-07	9112-1008	EMCO
	Horn antenna	3160-08	9112-1002	EMCO
	Horn antenna	3160-09	9403-1025	EMCO
	Horn antenna	3160-10	399185	EMCO
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens

6.5 Radiated Emission at Open Field Test Site

Measurement Procedure:


Rules and specifications:	CFR 47 Part 15, sections 15.205(b) and 15.225(d) IC RSS-210 Issue 6, sections 2.2(b)(c), 2.6 and A2.6
Guide:	ANSI C63.4

Radiated emission at open field test site is measured in the frequency range 30 MHz to 1 GHz using a biconical antenna up to 300 MHz and a logarithmic periodic antenna above. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in the fully anechoic room. EUT is rotated all around and receiving antenna is raised and lowered within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Ground plane

Test instruments used:

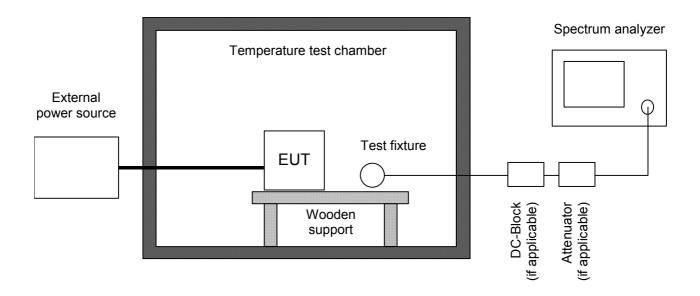
Used	Туре		Model	Serial No. or ID	Manufacturer
\square	EMI receiver		ESVP	881120/024	Rohde & Schwarz
\square	Biconical antenna	EG 1	HK 116	842204/001	Rohde & Schwarz
\square	Log. per. antenna	EG 1	HL 223	841516/023	Rohde & Schwarz
\square	Open field test site		EG 1	1450	Senton

6.6 Carrier Frequency Stability

Measurement Procedure:

Rules and specifications:	CFR 47 Part 15, section 15.225(e) IC RSS-Gen Issue 1, section 4.5 and IC RSS-210 Issue 6, section A2.6
Guide:	ANSI C63.4

The frequency tolerance of the carrier signal is measured over a temperature variation of -20 $^{\circ}$ C to +50 $^{\circ}$ C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 $^{\circ}$ C.


If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). In cases where the EUT does not provide an antenna connector a test fixture is used.

For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- the maximum battery voltage as delivered by a new battery or 115% of the battery nominal voltage
- the battery nominal voltage
- 85% of the battery nominal voltage
- the battery operating end point voltage which shall be specified by the equipment manufacturer

The EUT is operating providing an unmodulated carrier. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to the shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point on the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1% of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance allowed is larger than the uncertainty of the measured frequency tolerance.

Test instruments used:

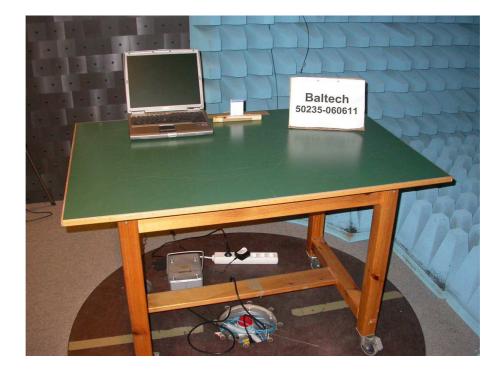
Used	Туре	Model	Serial No. or ID	Manufacturer
	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESPI7	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
	DC-block	7006	A2798	Weinschel
	Attenuator	4776-10	9412	Narda
	Attenuator	4776-20	9503	Narda
	Test probe	TP01	001	Senton
	DC power supply	NGSM 32/10	203	Rohde & Schwarz
	Isolating transformer	RT 5A	10387	Grundig
	Isolating transformer	RT 5A	10416	Grundig
	Temperature test chamber	HT4010	07065550	Heraeus

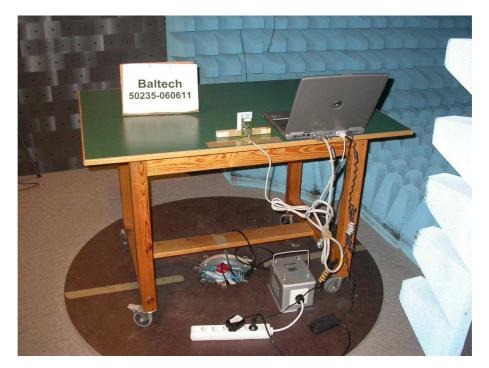
7 Photographs Taken During Testing

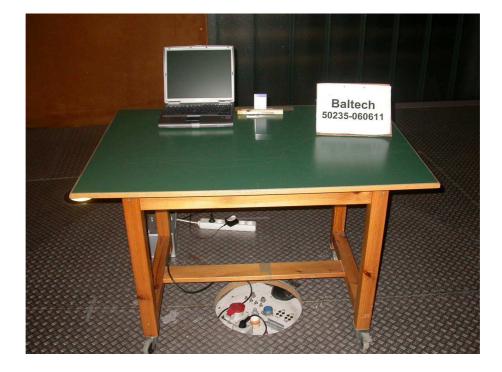
Test setup for conducted AC powerline emission measurement

Test setup for conducted AC powerline emission measurement - continued -

Test setup for radiated emission measurement 9 kHz – 30 MHz (prescan in fully anechoic room)


Test setup for radiated emission measurement 9 kHz - 30 MHz




Test setup for radiated emission measurement (prescan in fully anechoic room)

Test setup for radiated emission measurement (open field test site)

Test setup for radiated emission measurement (open field test site) - continued -

8 Test Results

FCC CFR 47 Parts 2 and 15			
Section(s)	Test	Page	Result
2.1046(a)	Conducted output power		Not applicable
2.202(a)	Occupied bandwidth		Not performed ⁵
15.215(c)	Bandwidth of the emission		Not performed ⁵
2.201, 2.202	Class of emission	29	Calculated
15.35(c)	Pulse train measurement for pulsed operation		Not applicable
15.205(a) 15.205(d)(7)	Restricted bands of operation	6	Test passed
15.207	Conducted AC powerline emission 150 kHz to 30 MHz	30	Test passed
15.225(a)-(d)	Spectrum Mask	31	Test passed
15.205(b) 15.215(b) 15.225(a)(d)	Radiated emission 9 kHz to 30 MHz	33	Test passed
15.205(b) 15.225(d)	Radiated emission 30 MHz to 1 GHz	34	Test passed
15.225(e)	Carrier frequency stability		Not performed ⁵

⁵ Not required for class II permissive change. For details about tested version see "Description of the Equipment Under Test (EUT)" on page 3.

⁶ See "Spectrum Mask" for the 13.36 to 13.41 MHz band. For all other restricted bands see "Radiated Emission".

IC RSS-Gen I	IC RSS-Gen Issue 1				
Section(s)	Test	Page	Result		
4.6	Transmitter output power (conducted)		Not applicable		
4.4.1	Occupied Bandwidth		Not performed ⁷		
3.2(h), 8	Designation of emissions	29	Calculated		
4.3	Pulsed operation		Not applicable		
7.2.2	Transmitter AC power lines conducted emissions 150 kHz to 30 MHz	30	Test passed		
5.5	Exposure of Humans to RF Fields	37	Exempted from SAR and RF evaluation		

IC RSS-210 Issue 6					
Section(s)	Test	Page	Result		
2.2(a)	Restricted bands and unwanted emission frequencies	8	Test passed		
A2.6	Spectrum Mask	31	Test passed		
2.2(b)(c), 2.6 A2.6	Unwanted emissions 9 kHz to 30 MHz	33	Test passed		
2.2(b)(c), 2.6 A2.6	Unwanted emissions 30 MHz to 1 GHz	34	Test passed		
A2.6	Carrier frequency stability		Not performed ⁷		

 ⁷ Not required for class II permissive change. For details about tested version see "Description of the Equipment Under Test (EUT)" on page 3.
 ⁸ See "Spectrum Mask" and "Unwanted emissions".

8.1 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202 IC RSS-Gen Issue 1, sections 3.2(h) and 8
Guide:	ANSI C63.4 / TRC-43

Amplitude Modulation
B _n = 2BK
B = 106 kbps
K = 1
$B_n = 2 \cdot (106 \text{ kHz}) \cdot 1 = 212 \text{ kHz}$

Designation of Emissions:

212KA1D

8.2 Conducted Powerline Emission Measurement 150 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, section 15.207 IC RSS-Gen Issue 1, section 7.2.2			
Guide:	ANSI C63.4 / CISPR 22			
Limit:	Frequency of Emission	Conducted Limit (dBµV)		
	(MHz)	Quasi-peak	Average	
	0.15 - 0.5	66 to 56	56 to 46	
-	0.5 - 5	56	46	
	5 - 30 60 50			
Measurement procedure:	Conducted AC Powerline Emission (6.2)			

Comment:	transmitting continuously (without tag)
Date of test:	September 13, 2006
Test site:	Shielded room, cabin no. 4

Test Result:	Test passed
--------------	-------------

Tested on:		AC mains input port of power supply, phase L1				
Freewyeney	Detector	Deeding	Correction	Final	Lingit	Marain
Frequency	Detector	Reading	Correction	Final	Limit	Margin
		Value	Factor	Value		
(MHz)		(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
13.560	Quasi-Peak	46.0	0.0	46.0	60.0	14.0

Tested on:

27.120

AC mains input port of power supply, phase N

0.0

40.5

60.0

19.5

Frequency	Detector	Reading	Correction	Final	Limit	Margin
		Value	Factor	Value		
(MHz)		(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
13.560	Quasi-Peak	42.1	0.0	42.1	60.0	17.9
27.121	Quasi-Peak	38.7	0.0	38.7	60.0	21.3

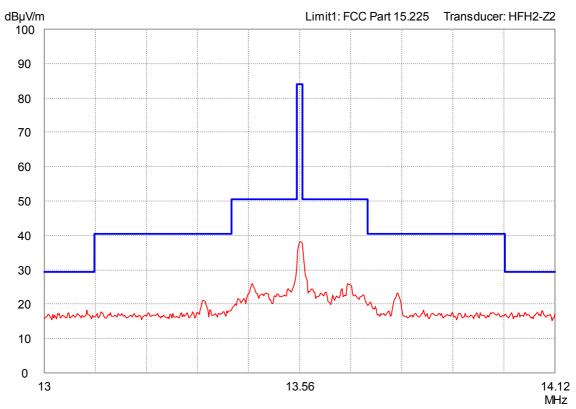
Sample calculation of final values:

Quasi-Peak

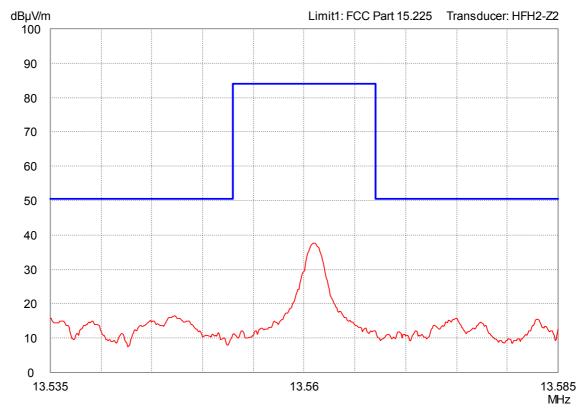
40.5

Final Value ($dB\mu V$) = Reading Value ($dB\mu V$) + Correction Factor (dB)

8.3 Spectrum Mask


Rules and specifications:	CFR 47 Part 15, section 15.225(a)-(d) IC RSS-210 Issue 6, section A2.6				
Guide:	ANSI C63.4	ANSI C63.4			
Description:	Compliance with the spectrum mask is tested using a spectrum analyzer with resolution bandwidth set to a 1 kHz for the band 13.553 to 13.567 MHz and to 10 kHz outside this band. The video bandwidth shall be at least three times greater than the resolution bandwidth.				
Limit:	Frequency of Emission (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance d (meters)	
	1.705 - 13.110	30	29.5	30	
	13.110 - 13.410	106	40.5	30	
	13.410 - 13.553	334	50.5	30	
	13.553 - 13.567	15848	84.0	30	
	13.567 - 13.710	334	50.5	30	
	13.710 - 14.010	106	40.5	30	
	14.010 - 30.000	30	29.5	30	
Measurement procedure:	Radiated Emission	Measurement 9	kHz to 30 MHz (6.3)		
Comment:	transmitting continu	ously (reading ta	lg)		
Date of test:	September 7, 2006				
Test site:	Fully anechoic room, cabin no. 2				
Test distance:	3 meters				
Extrapolation Factor:	-31.2 dB/decade				

Test Result:


Test passed

8.4 Radiated Emission Measurement 9 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, sections 15.205 and 15.225(a)-(d) IC RSS-210 Issue 6, sections 2.2(b)(c), 2.6 and A2.6				
Guide:	ANSI C63.4				
Limit:	Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance d (meters)	
	0.009 - 0.490	2400/F(kHz)	67.6 - 20 · log(F(kHz))	300	
	0.490 - 1.705	24000/F(kHz)	87.6 - 20 · log(F(kHz))	30	
	1.705 - 13.110	30	29.5	30	
	13.110 - 13.410	106	40.5	30	
-	13.410 - 13.553	334	50.5	30	
-	13.553 - 13.567	15848	84.0	30	
-	13.567 - 13.710	334	50.5	30	
	13.710 - 14.010	106	40.5	30	
	14.010 - 30.000	30	29.5	30	
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.				
Measurement procedure:	Radiated Emission Measurement 9		kHz to 30 MHz (6.3)		
Comment:	transmitting continu	transmitting continuously (without tag)			
Date of test:	September 7, 2006	September 7, 2006			

Toot	Result:
ICOL	itesuit.

Test site:

Test passed

Open field test site

Frequency	Detector	Distance		Reading Value		Correction	Extrapolation		Pulse Train	Final	Limit	Margin	
		d1	d2	d	d1	d2	Factor	Factor		Correction	Value		
(MHz)		(m)	(m)	(m)	(dBµV)	(dBµV)	(dB/m)	(dB/dec)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
13.56050	QP	10	20	30	34.8	25.4	20.0	-31.2	-5.5		39.9	84.0	44.1

Sample calculation of final values:

		-40 (dB/decade)	if $d_1 = d_2$
Extrapolation Factor (dB/decade)	= -	$ \begin{array}{r} \hline Reading Value d_2 (d\mu V) - Reading Value d_1 (dB\mu V) \\ Log(d_2) - Log(d_1) \end{array} $	if $d_1 \neq d_2$
Extrapolation Factor (dB)	=	$(Log(d) - Log(d_2)) \cdot Extrapolation Factor (dB/decade)$	
Final Value (dBµV/m)	=	Reading Value $d_2 (dB\mu V)$ + Correction Factor (dB/m) + Extrapolation Factor (dB) + Pulse Train Correction (dB)	

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

Test Result:

8.5 Radiated Emission Measurement 30 MHz to 1 GHz

Test passed

Rules and specifications:	CFR 47 Part 15, sections 15.205(b) and 15.225(d) IC RSS-210 Issue 6, sections 2.2(b)(c), 2.6 and A2.6							
Guide:	ANSI C63.4							
Limit:	Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)					
	30 - 88	100	40.0					
	88 - 216	150	43.5					
	216 - 960	200	46.0					
	Above 960	500	54.0					
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.							
Measurement procedures:	easurement procedures: Radiated Emission in Fully or Semi Anechoic Room (6.4) Radiated Emission at Open Field Test Site (6.5)							
Date of test:	September 8, 2006							
Test site:	$\begin{array}{lll} \mbox{Frequencies} \leq 1 \mbox{ GHz:} & \mbox{Open field test site} \\ \mbox{Frequencies} > 1 \mbox{ GHz:} & \mbox{Fully anechoic room, cabin no. 2} \end{array}$							
Test distance:	3 meters							

Comment:

transmitting continuously (without tag)

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
40.684	vertical	Quasi-Peak	24.3	11.8		36.1	40.0	3.9
108.490	vertical	Quasi-Peak	18.6	11.3		29.9	43.5	13.6
122.050	vertical	Quasi-Peak	24.7	12.8		37.5	43.5	6.0
135.610	vertical	Quasi-Peak	19.8	13.5		33.3	43.5	10.2
149.170	horizontal	Quasi-Peak	20.6	13.9		34.5	43.5	9.0
162.731	vertical	Quasi-Peak	13.1	14.6		27.7	43.5	15.8
176.294	vertical	Quasi-Peak	26.1	15.2		41.3	43.5	2.2
203.415	horizontal	Quasi-Peak	26.0	16.7		42.7	43.5	0.8
216.975	horizontal	Quasi-Peak	17.3	16.9		34.2	46.0	11.8
230.537	horizontal	Quasi-Peak	21.5	17.3		38.8	46.0	7.2
257.658	horizontal	Quasi-Peak	18.2	18.4		36.6	46.0	9.4
284.778	vertical	Quasi-Peak	16.9	21.0		37.9	46.0	8.1
298.341	vertical	Quasi-Peak	11.3	23.0		34.3	46.0	11.7
311.903	horizontal	Quasi-Peak	22.6	16.2		38.8	46.0	7.2
325.463	horizontal	Quasi-Peak	28.0	16.6		44.6	46.0	1.4
339.023	horizontal	Quasi-Peak	17.3	17.1		34.4	46.0	11.6
352.585	horizontal	Quasi-Peak	18.6	17.5		36.1	46.0	9.9
366.145	horizontal	Quasi-Peak	11.8	17.9		29.7	46.0	16.3
379.708	horizontal	Quasi-Peak	18.8	18.2		37.0	46.0	9.0
406.829	horizontal	Quasi-Peak	15.6	18.5		34.1	46.0	11.9
515.314	vertical	Quasi-Peak	9.8	20.8		30.6	46.0	15.4
528.877	horizontal	Quasi-Peak	12.7	21.1		33.8	46.0	12.2
555.999	horizontal	Quasi-Peak	13.5	21.1		34.6	46.0	11.4

Comment:

transmitting continuously (reading tag)

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
40.684	vertical	Quasi-Peak	24.1	11.8		35.9	40.0	4.1
108.490	vertical	Quasi-Peak	18.8	11.3		30.1	43.5	13.4
122.050	vertical	Quasi-Peak	26.6	12.8		39.4	43.5	4.1
135.610	vertical	Quasi-Peak	19.6	13.5		33.1	43.5	10.4
149.170	horizontal	Quasi-Peak	22.3	13.9		36.2	43.5	7.3
162.731	vertical	Quasi-Peak	11.5	14.6		26.1	43.5	17.4
176.294	horizontal	Quasi-Peak	25.2	15.2		40.4	43.5	3.1
203.415	horizontal	Quasi-Peak	25.1	16.7		41.8	43.5	1.7
216.975	horizontal	Quasi-Peak	17.3	16.9		34.2	46.0	11.8
230.537	horizontal	Quasi-Peak	20.8	17.3		38.1	46.0	7.9
257.658	horizontal	Quasi-Peak	17.3	18.4		35.7	46.0	10.3
284.778	horizontal	Quasi-Peak	16.0	21.0		37.0	46.0	9.0
298.341	vertical	Quasi-Peak	9.7	23.0		32.7	46.0	13.3
311.903	horizontal	Quasi-Peak	22.6	16.2		38.8	46.0	7.2
325.463	horizontal	Quasi-Peak	26.6	16.6		43.2	46.0	2.8
339.023	horizontal	Quasi-Peak	16.8	17.1		33.9	46.0	12.1
352.585	horizontal	Quasi-Peak	17.3	17.5		34.8	46.0	11.2
366.145	horizontal	Quasi-Peak	11.8	17.9		29.7	46.0	16.3
379.708	horizontal	Quasi-Peak	18.1	18.2		36.3	46.0	9.7
406.829	horizontal	Quasi-Peak	14.2	18.5		32.7	46.0	13.3
515.314	vertical	Quasi-Peak	9.2	20.8		30.0	46.0	16.0
528.877	horizontal	Quasi-Peak	11.7	21.1		32.8	46.0	13.2
555.999	horizontal	Quasi-Peak	12.0	21.1		33.1	46.0	12.9

Sample calculation of final values:

Final Value (dBµV/m)

Reading Value (dBµV) + Correction Factor (dB/m)
 + Pulse Train Correction (dB)

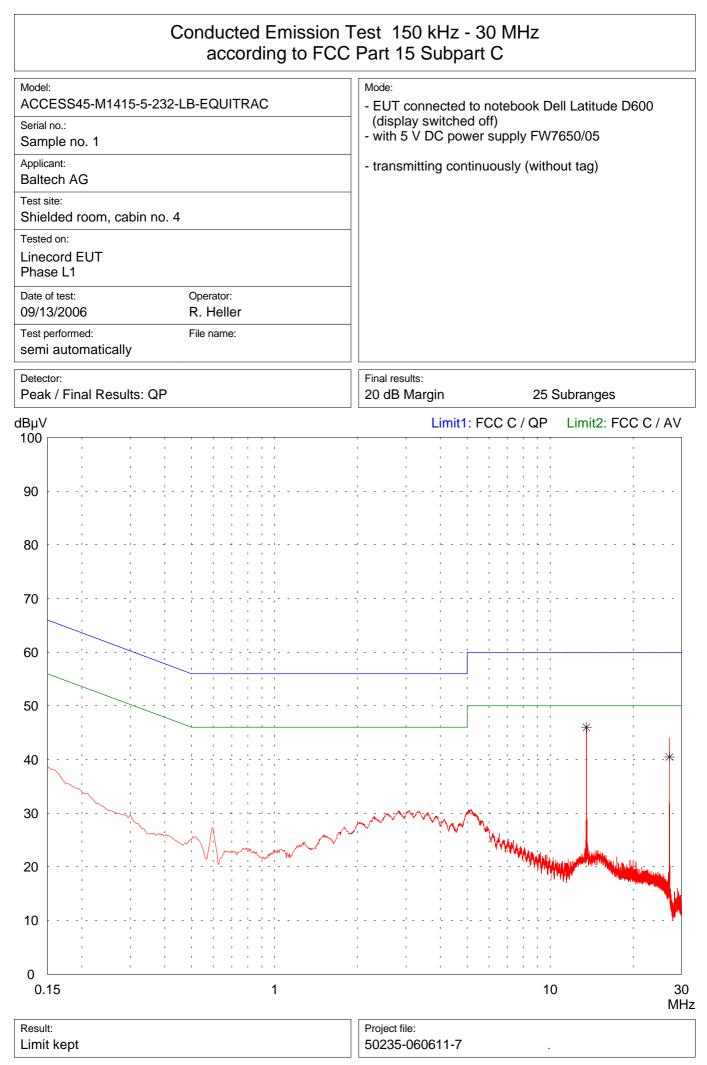
8.6 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 1, section 5.5
Guide:	IC RSS-102 Issue 2, section 2.5

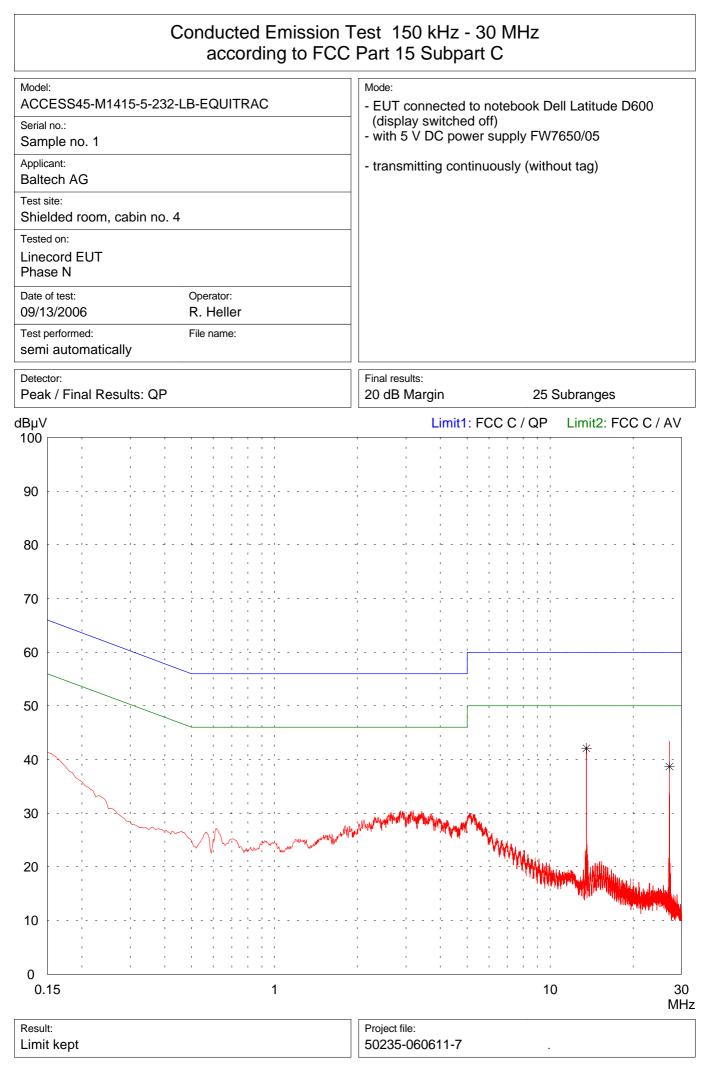
Exposure of Humans to RF Fields				Exemption
The antenna is				
detachable				
The conducted output power (CP in watts) is measured at the antenna connector:				
<i>CP</i> = W				
The effective isotropic radiated power (EIRP in watts) is calculated using				
the numerical antenna gain: $G = \dots$ $EIRP = G \cdot CP \Rightarrow EIRP = \dots$ W				
\Box the field strength ⁹ in V/m: $FS = \dots V/m$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP = \dots $ W				
with:				
Distance between the antennas in m: $D = \dots m$				
⊠ not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by ⁹ :				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP = 3.95 \cdot 10^{-6} \text{ W}$				
with:				
Field strength in V/m: $FS = 0.0036 \text{ V/m}$			\square	
Distance between the two antennas in m: $D = 3 \text{ m}$			\square	
Selection of output power	1			
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
$TP = 3.95 \cdot \mathbf{10^{-6}} \mathbf{W}$				

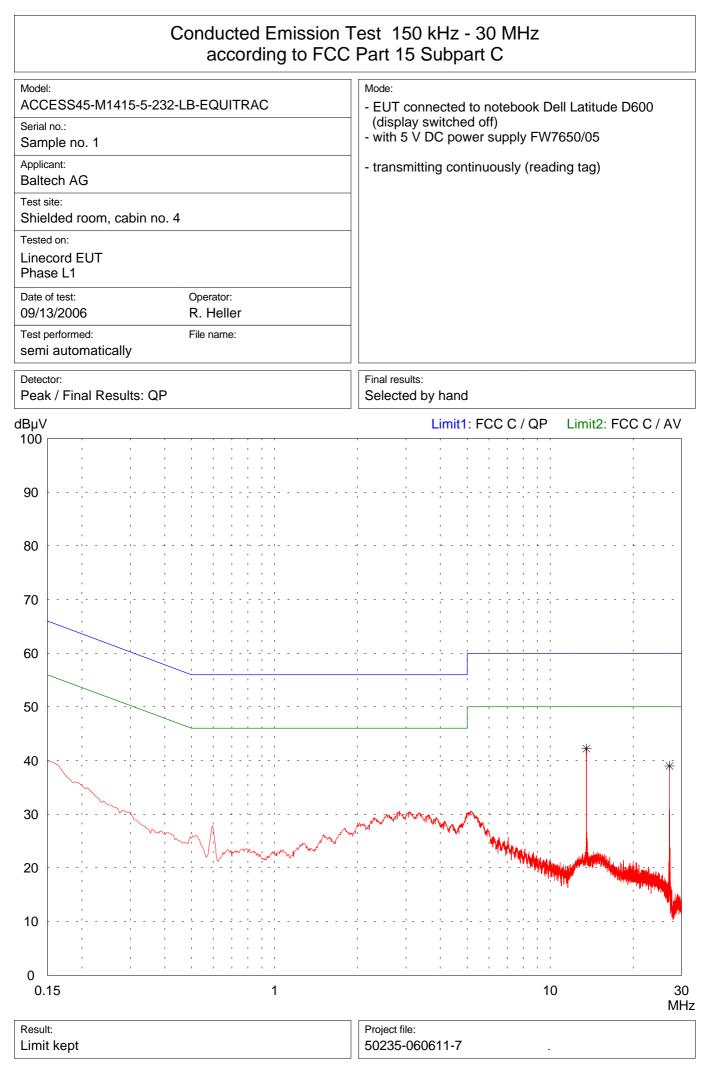
⁹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

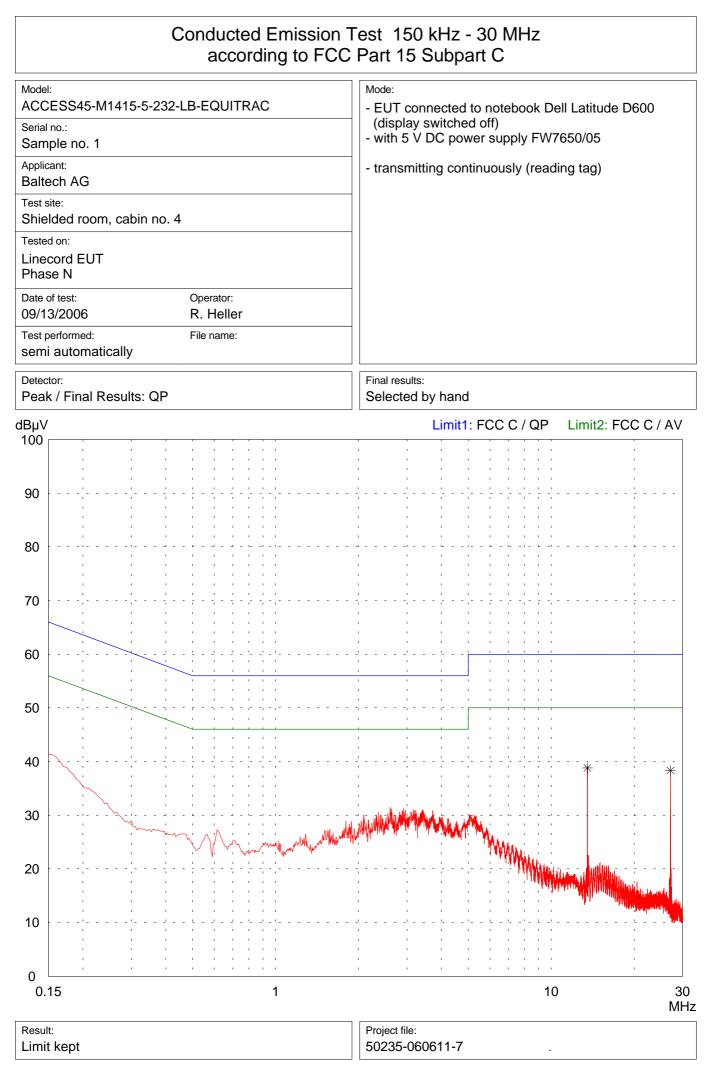
Exposure of Humans to RF Fields (continued)					Measured	Exemption
Separation distance between the use	er and the tra	nsmitting device is				
less than or equal to 20 cm	\triangleright	d greater than 20 cm		\boxtimes		
Transmitting device is	· · ·					
in the vicinity of the human	head] body-worn		\square		
SAR evaluation						
SAR evaluation is required if t device is less than or equal to		n distance between the user and the				
	er is less tha	1 GHz inclusively and its source-based n, or equal to 200 mW for General d Use.				
	ut power is le	o 2.2 GHz inclusively and its source- ess than, or equal to 100 mW for ontrolled Use.				
	ut power is le	o to 3 GHz inclusively and its source- ess than, or equal to 20 mW for ontrolled Use.				
	ut power) is l	o 6 GHz inclusively and its source- less than, or equal to 10 mW for ntrolled Use.				
SAR evaluation is docume	nted in test r	eport no				
RF exposure evaluation						
RF exposure evaluation is req and the device is greater than		eparation distance between the user				
The device operates below 2.5 W.	/ 1.5 GHz an	d its e.i.r.p. is equal to or less than				\boxtimes
The device operates at or equal to or less than 5 W.	above 1.5 Gł	Hz and the e.i.r.p. of the device is				
RF exposure evaluation is	documented	l in test report no				

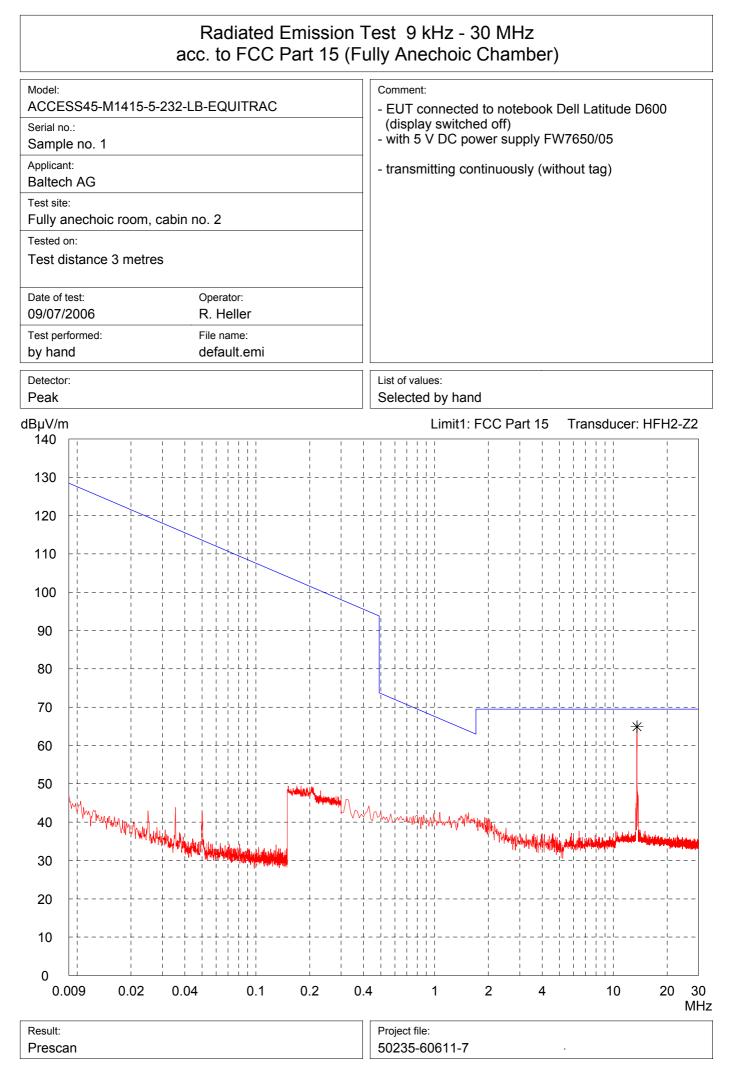

9 Referenced Regulations

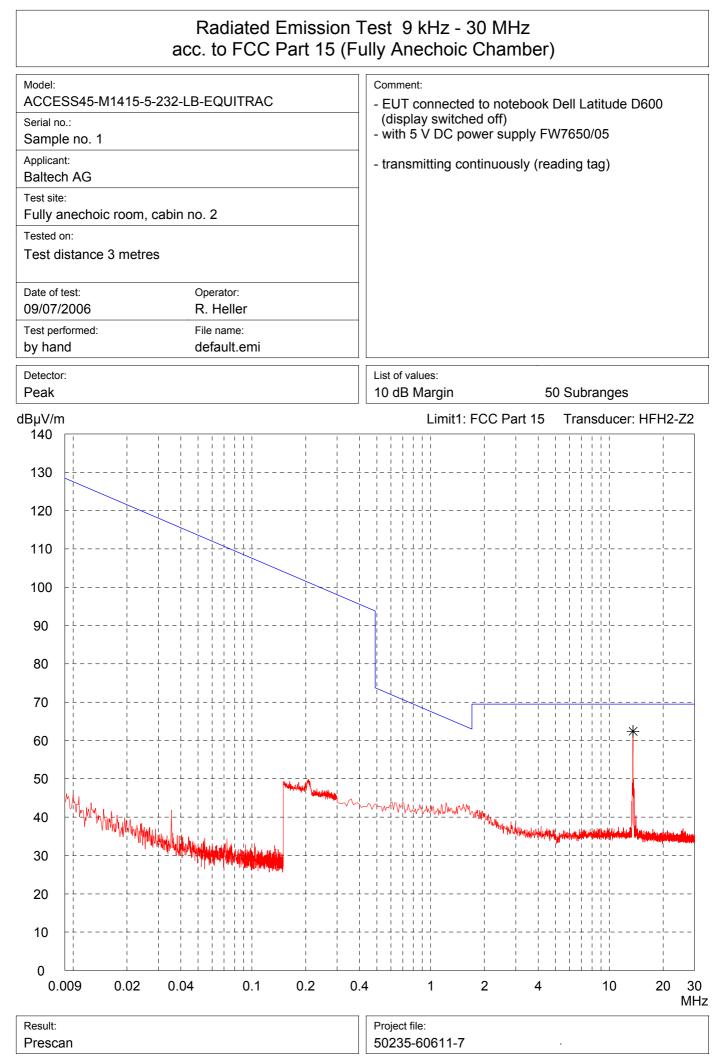
All tests were performed with reference to the following regulations and standards:

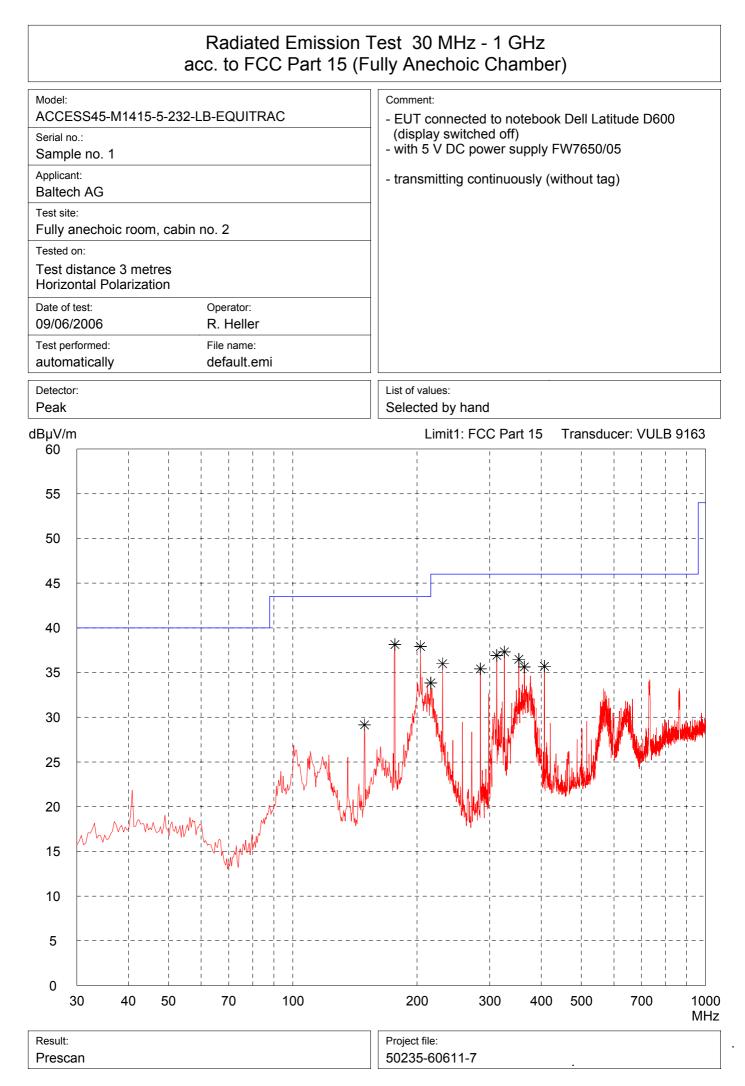

	CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 10, 2004
\square	CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	February 16, 2006
	ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
	RSS-Gen	Radio Standards Specification RSS-Gen Issue 1 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	September 2005
	RSS-210	Radio Standards Specification RSS-210 Issue 6 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	September 2005
	RSS-310	Radio Standards Specification RSS-310 Issue 1 for Low Power Licence-Ecempt Radiocommunicaton Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	September 2005
	RSS-102	Radio Standards Specification RSS-102 Issue 2: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	November 2005
	ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
	CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997
	CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
	TRC-43	Notes Regarding Designation of Emission (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October 9, 1982

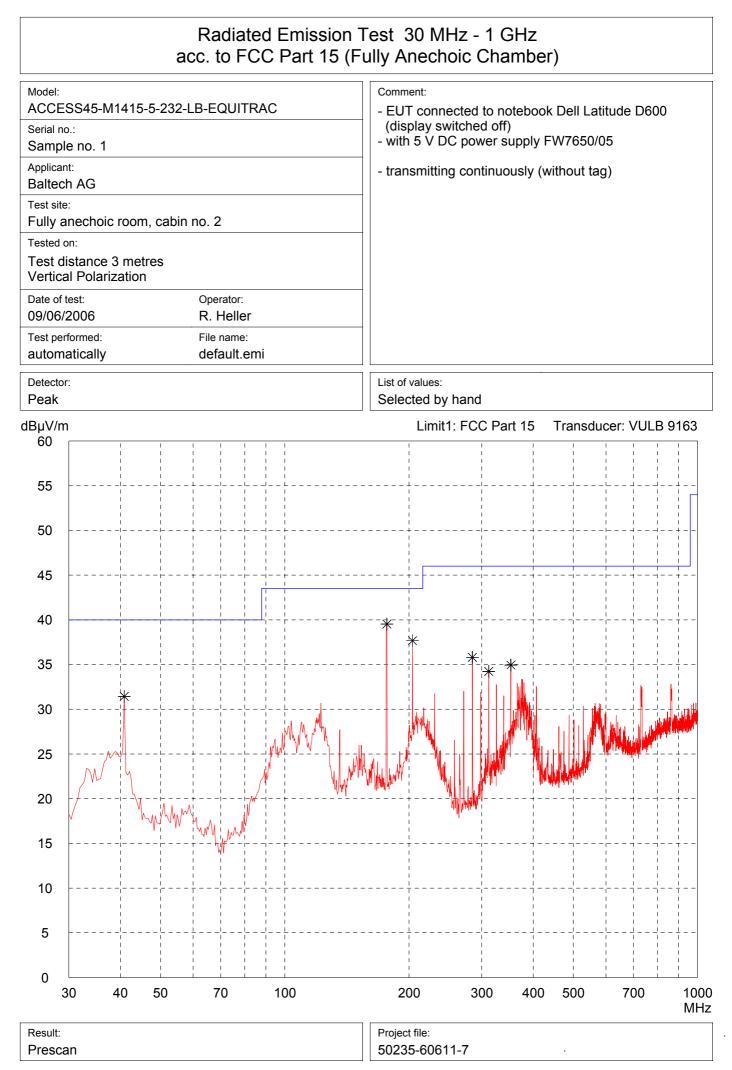

10 Charts taken during testing

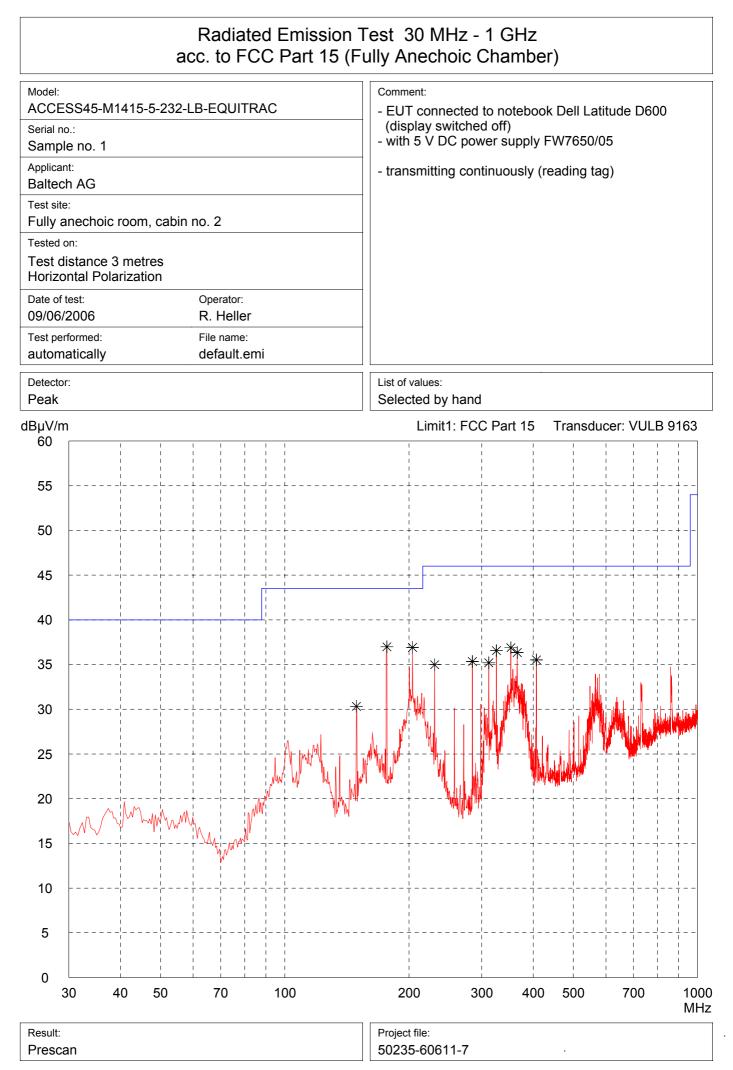

Senton GmbH / EMI/EMC Laboratories / Aeussere Fruehlingsstrasse 45 / D-94315 Straubing / Tel. +49 9421 55220

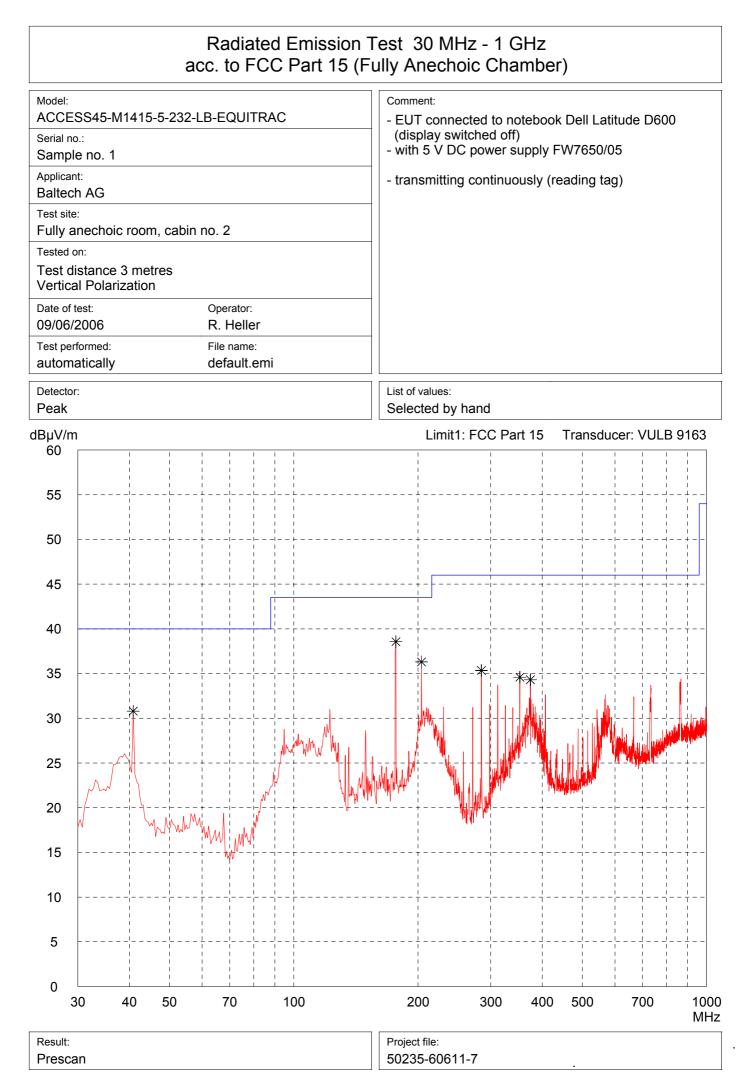

Senton GmbH / EMI/EMC Laboratories / Aeussere Fruehlingsstrasse 45 / D-94315 Straubing / Tel. +49 9421 55220


Senton GmbH / EMI/EMC Laboratories / Aeussere Fruehlingsstrasse 45 / D-94315 Straubing / Tel. +49 9421 55220


Senton GmbH / EMI/EMC Laboratories / Aeussere Fruehlingsstrasse 45 / D-94315 Straubing / Tel. +49 9421 55220




Senton GmbH / Aeussere Fruehlingstrasse 45 / D-94315 Straubing / Germany / Tel. +49 (0)9421 5522-0 / Fax +49 (0)9421 5522-99


Senton GmbH / Aeussere Fruehlingstrasse 45 / D-94315 Straubing / Germany / Tel. +49 (0)9421 5522-0 / Fax +49 (0)9421 5522-99

Senton GmbH / Aeussere Fruehlingstrasse 45 / D-94315 Straubing / Germany / Tel. +49 (0)9421 5522-0 / Fax +49 (0)9421 5522-99

