

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

STEREO SOUNDBAR

MODEL No.: ITSB-201-37

FCC ID: OKUSBB080FG

Trademark: Innovative Technology

REPORT NO.: ES161219010E-1

ISSUE DATE: September 20, 2017

Prepared for

SHENZHEN JUNLAN ELECTRONIC LTD

No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China

Prepared by

EMTEK (SHENZHEN) CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

TEL: 86-755-26954280 FAX: 86-755-26954282

Table of Contents

1	TES	FRESULT CERTIFICATION	3
2	EUT	TECHNICAL DESCRIPTION	5
3	SUM	MARY OF TEST RESULT	6
4	TES	Γ METHODOLOGY	7
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	7
5	FACI	LITIES AND ACCREDITATIONS	9
	5.1 5.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	9 9
6	TES	T SYSTEM UNCERTAINTY	10
7	SET	JP OF EQUIPMENT UNDER TEST	11
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	11 . 13 . 14
8	FRE	QUENCY HOPPING SYSTEM REQUIREMENTS	
	8.1 8.2 8.3 8.4	STANDARD APPLICABLE	. 15 . 16
9	TES	T REQUIREMENTS	17
	9.1 9.2	RADIATED SPURIOUS EMISSIONCONDUCTED EMISSION TEST	

1 TEST RESULT CERTIFICATION

Applicant:	SHENZHEN JUNLAN ELECTRONIC LTD No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China				
Manufacturer:	SHENZHEN JUNLAN ELECTRONIC LTD No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China				
Product Description:	STEREO SOUNDBAR				
Model Number:	ITSB-201-37				
File Number:	ES161219010E-1				
Date of Test:	December 19, 2016 to December 26, 2016 September 15, 2017 to September 19, 2017				

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247

The test results of this report relate only to the tested sample identified in this report

Date of Test :	December 19, 2016 to December 26, 2016 September 15, 2017 to September 19, 2017			
Prepared by :	Dorts Su			
,	Doris Su/Editor			
Reviewer:	Tue Ha			
	Joe Xia/Supervisor			
Approve & Authorized Signer :	2005			
	Lisa Wang/Manager			

Modified Information

Summary	Date of Rev.	Report No.
Original Report	1	ES161219010E
Add an adapter	1	ES161219010E -1
	Original Report	Original Report /

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description			
Device Type	Bluetooth V4.1+EDR classic model			
Data Rate	1Mbps for BT V4.1 BR GFSK modulation 2Mbps for BT V4.1 EDR pi/4-DQPSK modulation 3Mbps for BT V4.1 EDR 8DPSK modulation			
Modulation:	GFSK modulation for BT V4.1 BR(1Mbps) pi/4-DQPSK modulation for BT V4.1 EDR(2Mbps) 8DPSK modulation for BT V4.1 EDR(3Mbps)			
Operating Frequency Range(s):	2402-2480MHz			
Number of Channels:	79 channels			
Transmit Power Max:	-1.76 dBm			
Antenna Type	PCB Antenna			
Antenna Gain	0dBi;			
Power supply	DC 12V or DC 16V from adapter Adapter1: Model: GKYPB0200120US Input: 100-240~50/60Hz 0.6A Output: DC 12V 2000mA Adapter2: Model: GKYPB0180160US Input: 100-240~50/60Hz 0.8A Output: DC 16V 1800mA			

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark
15.247(d)	Radiated Spurious Emissions	PASS	
15.209	Radiated Spurious Emissions		
15.207	Conducted Emission	PASS	
NOTE1: N/A (Not	Applicable)		

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: OKUSBB080FG filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C DA 00-705

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE MFR		MODEL NUMBER	SERIAL NUMBER	LASTCAL.	CAL. DUE
Test Receiver	Rohde & Schwarz	ESCI	26115-010-0027	May 20, 2017	May 19, 2018
L.I.S.N.	Rohde & Schwarz	ENV216	101161	May 20, 2017	May 19, 2018
50Ω Coaxial Switch	Anritsu	MP59B	6100175589	May 21, 2017	May 20, 2018
Voltage Probe	Rohde & Schwarz	ESH2-Z3	100122	May 21, 2017	May 20, 2018

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL. DUE
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 21, 2017	May 20, 2018
Pre-Amplifier	HP	8447F	2944A07999	May 20, 2017	May 19, 2018
Bilog Antenna	Schwarzbeck	VULB9163	142	May 20, 2017	May 19, 2018
Cable	Schwarzbeck	AK9513	ACRX1	May 21, 2017	May 20, 2018
Cable	Rosenberger	N/A	FP2RX2	May 21, 2017	May 20, 2018
Cable	Schwarzbeck	AK9513	CRPX1	May 21, 2017	May 20, 2018
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 21, 2017	May 20, 2018
Pre-Amplifier	A.H.	PAM-0126	1415261	May 20, 2017	May 19, 2018
Horn Antenna	Schwarzbeck	BBHA 9120	707	May 20, 2017	May 19, 2018
Cable	H+B	0.5M SF104-26.5	289147/4	May 21, 2017	May 20, 2018
Cable	H+B	3M SF104-26.5	295838/4	May 21, 2017	May 20, 2018
Cable	H+B	6M SF104-26.5	295840/4	May 21, 2017	May 20, 2018

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	CAL. DUE
Spectrum Analyzer	Agilent	E4407B	88156318	May 21, 2017	May 20, 2018
Signal Analyzer	Agilent	N9010A	My53470879	May 21, 2017	May 20, 2018
Power meter	Anritsu	ML2495A	0824006	May 21, 2017	May 20, 2018
Power sensor	Anritsu	MA2411B	0738172	May 21, 2017	May 20, 2018

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for Bluetooth V4.1 BR GFSK modulation; 2Mbps for Bluetooth V4.1 EDR pi/4-DQPSK modulation; 3Mbps for Bluetooth V4.1 EDR 8DPSK modulation) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for Bluetooth V4.1:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	39	2441			
1	2403	40	2442	76	2478	
2	2404	41	2443	77	2479	
				78	2480	
Note: fc=2402MHz+(k-1)×1MHz k=1 to 79						

Test Frequency and channel for Bluetooth V4.1:

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441	78	2480

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2016.10.24

The certificate is valid until 2022.10.28

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005)

The Certificate Registration Number is L2291

: Accredited by TUV Rheinland Shenzhen, 2016.5.19

The Laboratory has been assessed according to the requirements

ISO/IEC 17025.

: Accredited by FCC, August 03, 2017

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA, July 31, 2017

The Certificate Registration Number is 4321.01.

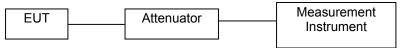
: Accredited by Industry Canada, November 24, 2015

The Certificate Registration Number is 4480A

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

аррагатас.	
Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%


Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

The Bluetooth V4.1 component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

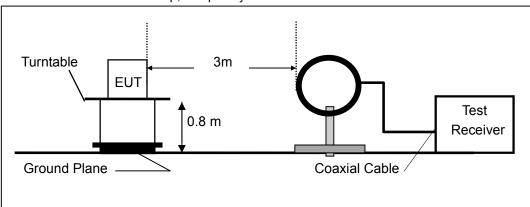
7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

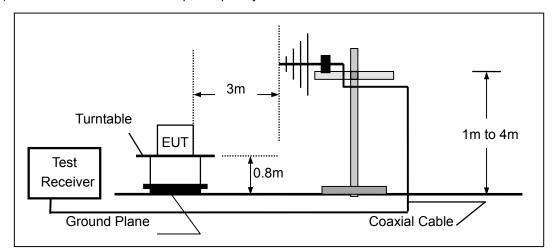
The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

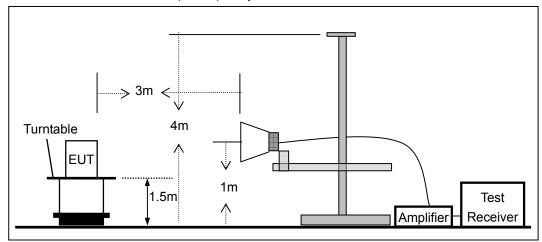

The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.)

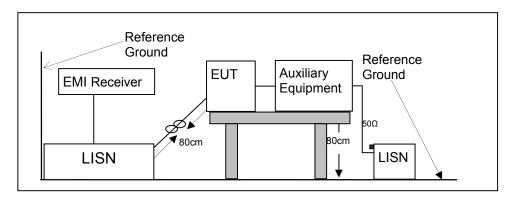

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



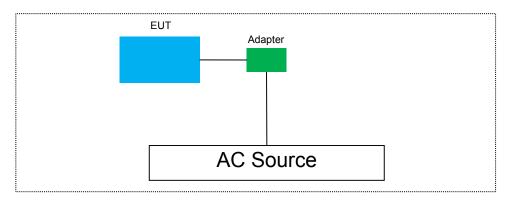
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
N/A	N/A	N/A	N/A	N/A	N/A

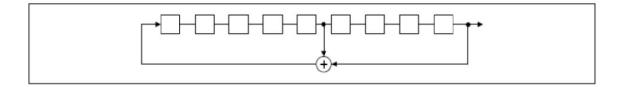
Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

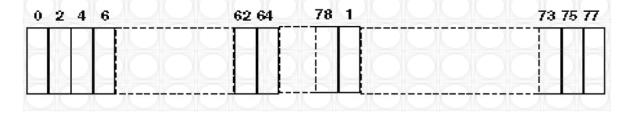
8 FREQUENCY HOPPING SYSTEM REQUIREMENTS

8.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

8.2 EUT Pseudorandom Frequency Hopping Sequence


The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divide into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The normal hop is 1 600 hops/s.

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

TRF No.:FCC 15.247/A Page 15 of 27 Report No.: ES161219010E-1 Ver.1.0

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.3 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode: 35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53

Each Frequency used equally on the average by each transmitter

8.4 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH- enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

9 TEST REQUIREMENTS

9.1 RADIATED SPURIOUS EMISSION

9.1.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

9.1.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

7 toooraing to 1 oo 1 art 10.	200, 11001110104 barrao		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

9.1.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

9.1.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

 $\overrightarrow{RBW} = 9kHz$

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

9.1.5 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature: 24° C Test Date: September 19, 2017 Humidity: 53 % Test By: KK

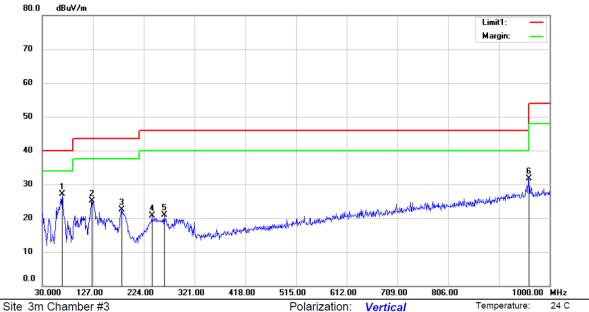
Test mode: TX Mode

Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m((dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK `	ΑÝ	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor



Humidity:

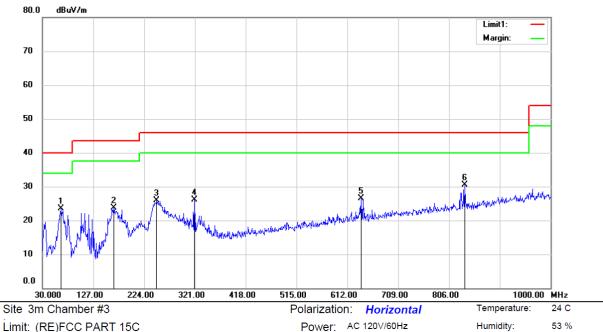
53 %

Spurious Emission below 1GHz (30MHz to 1GHz)

Bluetooth (GFSK, pi/4-DQPSK, 8DPSK) mode have been tested, and the worst result(GFSK) was report as below:

Limit: (RE)FCC PART 15C

Mode: TX LOW


Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	*	67.8300	44.51	-17.42	27.09	40.00	-12.91	QP			
2		125.0600	43.43	-18.38	25.05	43.50	-18.45	QP			
3		181.3200	39.53	-17.11	22.42	43.50	-21.08	QP			
4		239.5200	34.53	-13.92	20.61	46.00	-25.39	QP			
5		262.8000	34.18	-13.37	20.81	46.00	-25.19	QP			
6		960.2300	30.90	0.71	31.61	54.00	-22.39	QP			

Power: AC 120V/60Hz

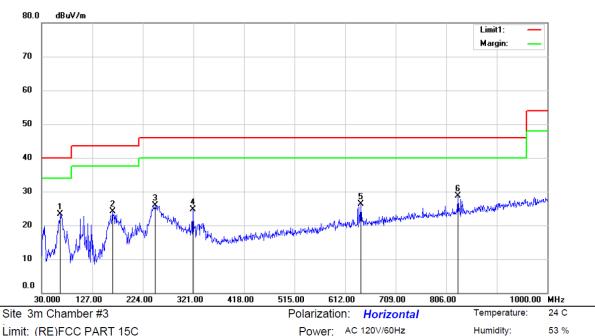
^{*:}Maximum data x:Over limit !:over margin Operator: KK

Mode:TX LOW

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		65.8900	40.03	-16.58	23.45	40.00	-16.55	QP			
2		166.7700	41.84	-18.20	23.64	43.50	-19.86	QP			
3	2	248.2500	39.73	-13.82	25.91	46.00	-20.09	QP			
4	(320.0300	37.98	-11.97	26.01	46.00	-19.99	QP			
5	(638.1900	31.21	-4.70	26.51	46.00	-19.49	QP			
6	* (836.0700	32.11	-1.55	30.56	46.00	-15.44	QP			

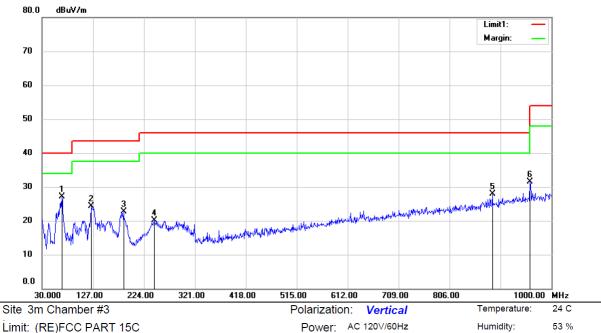
^{*:}Maximum data x:Over limit !:over margin Operator: KK


Mode:TX MID

Note:

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		67.8300	43.13	-17.42	25.71	40.00	-14.29	QP			
2		127.9700	43.54	-18.77	24.77	43.50	-18.73	QP			
3		138.6400	40.69	-19.20	21.49	43.50	-22.01	QP			
4		181.3200	39.72	-17.11	22.61	43.50	-20.89	QP			
5		274.4400	33.26	-13.05	20.21	46.00	-25.79	QP			
6	*	959.2600	31.60	0.70	32.30	46.00	-13.70	QP			

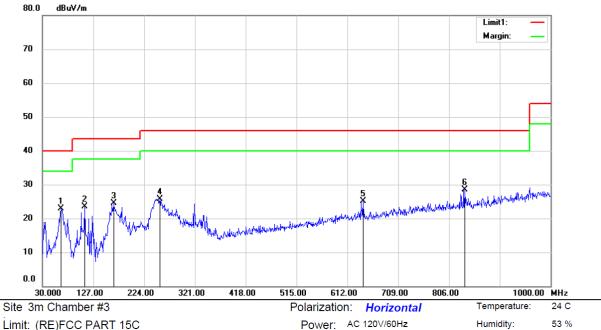
^{*:}Maximum data x:Over limit !:over margin Operator: KK



Mode:TX MID Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	65.8900	39.90	-16.58	23.32	40.00	-16.68	QP			
2		165.8000	42.38	-18.25	24.13	43.50	-19.37	QP			
3		247.2800	39.83	-13.87	25.96	46.00	-20.04	QP			
4		320.0300	36.75	-11.97	24.78	46.00	-21.22	QP			
5		642.0700	30.98	-4.67	26.31	46.00	-19.69	QP			
6		828.3100	30.40	-1.77	28.63	46.00	-17.37	QP			

^{*:}Maximum data x:Over limit !:over margin Operator: KK


Mode:TX HIGH

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	67.8300	44.53	-17.42	27.11	40.00	-12.89	QP			
2		124.0900	42.50	-18.20	24.30	43.50	-19.20	QP			
3		185.2000	39.29	-16.63	22.66	43.50	-20.84	QP			
4		243.4000	34.05	-13.96	20.09	46.00	-25.91	QP			
5		887.4800	28.66	-0.73	27.93	46.00	-18.07	QP			
6		959.2600	30.85	0.70	31.55	46.00	-14.45	QP			

^{*:}Maximum data x:Over limit !:over margin Operator: KK

Limit: (RE)FCC PART 15C Mode:TX HIGH

Note:

No.	Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	65.8900	39.44	-16.58	22.86	40.00	-17.14	QP			
2		110.5100	39.15	-15.71	23.44	43.50	-20.06	QP			
3		165.8000	42.78	-18.25	24.53	43.50	-18.97	QP			
4		254.0700	39.26	-13.57	25.69	46.00	-20.31	QP			
5		642.0700	29.87	-4.67	25.20	46.00	-20.80	QP			
6		836.0700	29.97	-1.55	28.42	46.00	-17.58	QP			

^{*:}Maximum data x:Over limit !:over margin Operator: KK

9.2 CONDUCTED EMISSION TEST

9.2.1 Applicable Standard

According to FCC Part 15.207(a)

9.2.2 Conformance Limit

Conducted Emission Limit							
Frequency(MHz)	Quasi-peak	Average					
0.15-0.5	66-56	56-46					
0.5-5.0	56	46					
5.0-30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies

9.2.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

9.2.4 Test Procedure

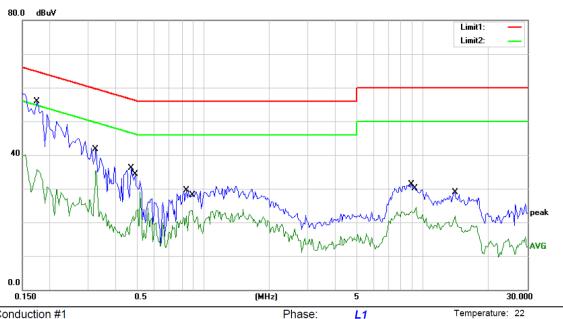
The EUT was placed on a table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.

9.2.5 Test Results

Pass


We test the EUT at 120V and 240V, and show the worst result as bellow.

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

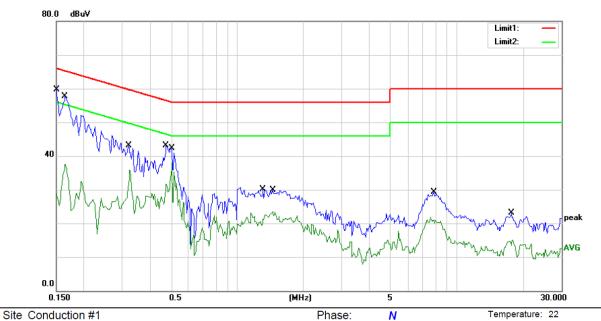
Humidity:

55 %

Power: AC 120V/60Hz

Site Conduction #1

Note:


Limit: (CE)FCC PART 15 class B_QP Mode: BT ON

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1750	55.92	0.00	55.92	64.72	-8.80	QP	
2		0.1750	35.68	0.00	35.68	54.72	-19.04	AVG	
3		0.3250	41.69	0.00	41.69	59.58	-17.89	QP	
4		0.3250	35.39	0.00	35.39	49.58	-14.19	AVG	
5		0.4700	36.08	0.00	36.08	56.51	-20.43	QP	
6		0.4950	23.29	0.00	23.29	46.08	-22.79	AVG	
7		0.8350	29.52	0.00	29.52	56.00	-26.48	QP	
8		0.8950	23.51	0.00	23.51	46.00	-22.49	AVG	
9		8.8800	31.25	0.00	31.25	60.00	-28.75	QP	
10		9.3400	24.53	0.00	24.53	50.00	-25.47	AVG	
11		14.0200	28.83	0.00	28.83	60.00	-31.17	QP	
12		14.0200	21.91	0.00	21.91	50.00	-28.09	AVG	

*:Maximum data Comment: Factor build in receiver. Operator: WQG x:Over limit !:over margin

Humidity:

Power: AC 120V/60Hz

Limit: (CE)FCC PART 15 class B_QP

Mode: BT ON

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1	*	0.1500	59.62	0.00	59.62	66.00	-6.38	QP	
2		0.1650	37.53	0.00	37.53	55.21	-17.68	AVG	
3		0.3200	43.02	0.00	43.02	59.71	-16.69	QP	
4		0.3250	35.89	0.00	35.89	49.58	-13.69	AVG	
5		0.4750	43.10	0.00	43.10	56.43	-13.33	QP	
6		0.5050	37.95	0.00	37.95	46.00	-8.05	AVG	
7		1.3150	30.19	0.00	30.19	56.00	-25.81	QP	
8		1.4500	23.52	0.00	23.52	46.00	-22.48	AVG	
9		7.8600	29.29	0.00	29.29	60.00	-30.71	QP	
10		7.8600	21.96	0.00	21.96	50.00	-28.04	AVG	
11		17.6800	23.07	0.00	23.07	60.00	-36.93	QP	
12		17.9000	15.14	0.00	15.14	50.00	-34.86	AVG	

*:Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator: WQG