

RADIO TEST REPORT FCC ID: OKUCAB36410

Product:ALEXA PORTABLE SPEAKER VOICE
ACTIVATED WATER PROOFTrade Mark:MAGNAVOXModel No.:MSH317Serial Model:CAB-36410Report No.:SER180628501002EIssue Date:24 Jul. 2018

Prepared for

Shenzhen Junlan Electronic Ltd No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	3
2	SUN	MMARY OF TEST RESULTS	ŧ
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES	5
4	GEN	NERAL DESCRIPTION OF EUT	5
5	DES	SCRIPTION OF TEST MODES	3
6	SET	UP OF EQUIPMENT UNDER TEST	•
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 9 SUPPORT EQUIPMENT 10 EQUIPMENTS LIST FOR ALL TEST ITEMS 11) 1
7	TES	TREQUIREMENTS13	3
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	CONDUCTED EMISSIONS TEST13RADIATED SPURIOUS EMISSION186DB BANDWIDTH27PEAK OUTPUT POWER30POWER SPECTRAL DENSITY33CONDUCTED BAND EDGE MEASUREMENT36SPURIOUS RF CONDUCTED EMISSIONS38ANTENNA APPLICATION42	37033

1 TEST RESULT CERTIFICATION

Shenzhen Junlan Electronic Ltd			
No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China			
Shenzhen Junlan Electronic Ltd			
No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China			
ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF			
MSH317			
CAB-36410			

Measurement Procedure Used:

APPLICABLE STANDARDS

TEST RESULT
Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 28 Jun. 2018 ~ 24 Jul. 2018	
Testing Engineer	Evileen Wu. (Eileen Liu)	
Technical Manager	(Jason Chen)	
	Sam. Chew	
Authorized Signatory	:(Sam Chen)	

2 SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C **Standard Section Test Item** Verdict Remark 15.207 PASS **Conducted Emission** PASS 15.247 (a)(2) 6dB Bandwidth **Peak Output Power** PASS 15.247 (b) 15.209 (a) **Radiated Spurious Emission** PASS 15.205 (a) 15.247 (d) Power Spectral Density PASS 15.247 (d) Band Edge Emission PASS Spurious RF Conducted Emission PASS 15.247 (d) 15.203 Antenna Requirement PASS

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 **FACILITIES AND ACCREDITATIONS**

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

DEDITATIONO AND LIGTINOO

Site Description					
•	The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.				
IC-Registration	The Certificate Registration Number is 9270A-1.				
FCC- Accredited	Test Firm Registration Number: 463705.				
	Designation Number: CN1184				
A2LA-Lab.	The Certificate Registration Number is 4298.01 This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system				
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).				
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.				
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.				

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification						
Equipment	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF					
Trade Mark	MAGNAVOX					
FCC ID	OKUCAB36410					
Model No.	MSH317					
Serial Model	CAB-36410					
Model Difference	All the model are the same circuit and RF module. Except the model No					
Operating Frequency	2402MHz~2480MHz					
Modulation	GFSK					
Number of Channels	40 Channels					
Bluetooth Version	BT V4.1					
Antenna Type	PCB Antenna					
Antenna Gain	0 dBi					
Power supply	DC supply: DC 3.7V/1800mAh from Battery or DC 5V from USB Port.					
	Adapter supply:					
HW Version V1.0						
SW Version V1.0						

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History					
Report No.	Version	Description	Issued Date		
SER180628501002E	Rev.01	Initial issue of report	Jul 24, 2018		
<u> </u>	<u> </u>				

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

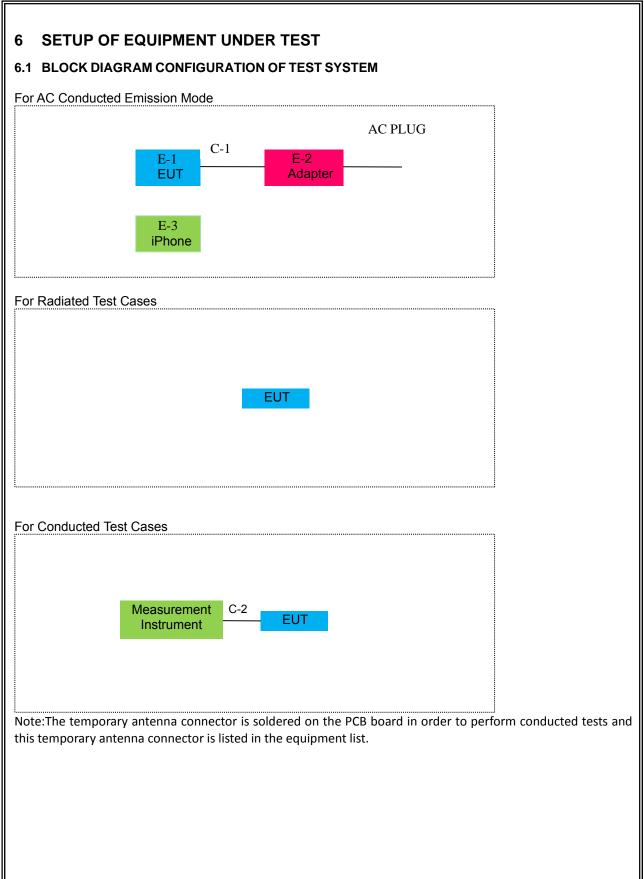
Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases					
Test Item	Data Rate/ Modulation				
	Bluetooth 4.1_LE / GFSK				
AC Conducted Emission	Mode 1: normal link mode				
	Mode 1: normal link mode				
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps				
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps				
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps				
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps				
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps				
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps				

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT is set to continuous transmission mode. duty cycle greater than 98%.

5. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	N/A	MSH317	N/A	EUT
E-2	Adapter	N/A	N/A	N/A	Peripherals
E-3	iPhone	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	0.5m
C-2	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiatio	on& Conducted 1	est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2017.12.06	2018.12.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2017.10.26	2018.10.25	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2017.10.26	2018.10.25	1 year
4	Test Receiver	R&S	ESPI7	101318	2018.05.19	2019.05.18	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2018.04.08	2019.04.07	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.04.08	2019.04.07	1 year
8	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
9	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2017.12.06	2018.12.06	1 year
10	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
11	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
12	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
13	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
14	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
15	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2018.05.19	2019.05.18	1 year
2	LISN	R&S	ENV216	101313	2018.04.18	2019.04.19	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2018.05.19	2019.05.18	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

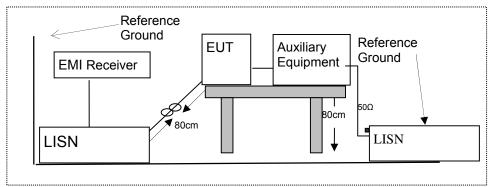
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanov (MHz)	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

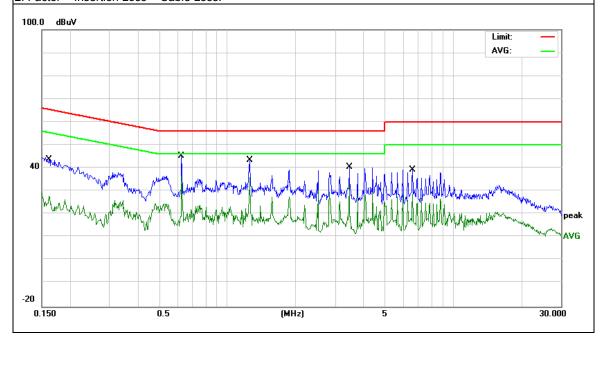
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

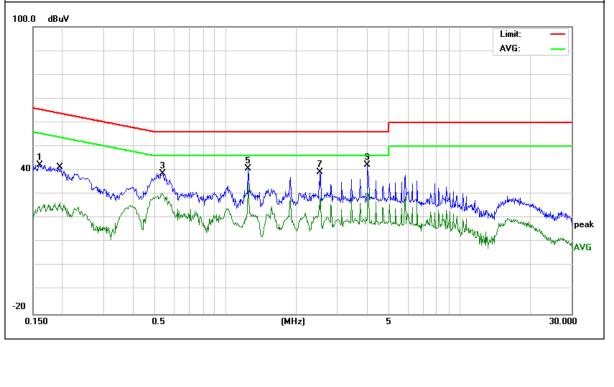

7.1.6 Test Results

	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model Name :	MSH317
Temperature:	26 (Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	34.04	9.76	43.80	65.36	-21.56	QP
0.1620	18.17	9.76	27.93	55.36	-27.43	AVG
0.6260	35.56	9.74	45.30	56.00	-10.70	QP
0.6260	26.81	9.74	36.55	46.00	-9.45	AVG
1.2580	33.66	9.74	43.40	56.00	-12.60	QP
1.2580	26.14	9.74	35.88	46.00	-10.12	AVG
3.4580	30.63	9.84	40.47	56.00	-15.53	QP
3.4580	23.17	9.84	33.01	46.00	-12.99	AVG
6.6018	29.44	9.90	39.34	60.00	-20.66	QP
6.6018	18.99	9.90	28.89	50.00	-21.11	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

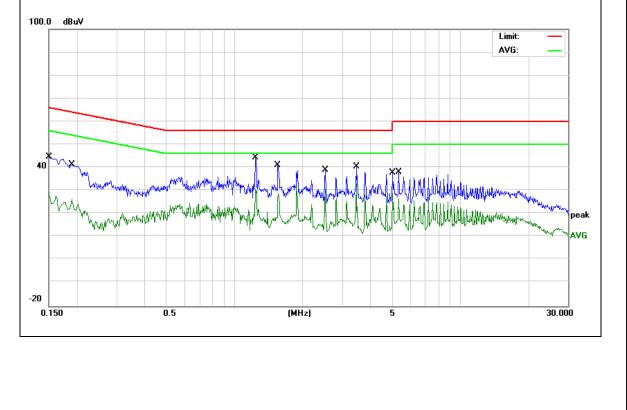

EUT:	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model Name :	MSH317
Temperature:	26 (Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1607	32.67	9.73	42.40	65.42	-23.02	QP
0.1955	16.80	9.73	26.53	53.80	-27.27	AVG
0.5380	28.91	9.75	38.66	56.00	-17.34	QP
0.5380	20.62	9.75	30.37	46.00	-15.63	AVG
1.2459	31.15	9.75	40.90	56.00	-15.10	QP
1.2459	24.59	9.75	34.34	46.00	-11.66	AVG
2.5339	29.38	9.82	39.20	56.00	-16.80	QP
2.5339	19.58	9.82	29.40	46.00	-16.60	AVG
4.0300	32.38	9.92	42.30	56.00	-13.70	QP
4.0300	22.27	9.92	32.19	46.00	-13.81	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

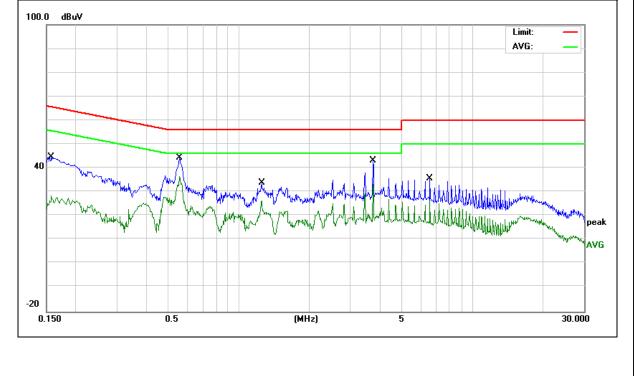


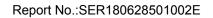
	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model Name :	MSH317
Temperature:	26 0	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1499	34.97	9.75	44.72	66.00	-21.28	QP
0.1900	16.48	9.76	26.24	54.03	-27.79	AVG
1.2379	34.66	9.74	44.40	56.00	-11.60	QP
1.2379	20.99	9.74	30.73	46.00	-15.27	AVG
1.5580	31.33	9.77	41.10	56.00	-14.90	QP
2.5139	20.70	9.79	30.49	46.00	-15.51	AVG
3.4580	30.66	9.84	40.50	56.00	-15.50	QP
5.0297	18.79	9.87	28.66	50.00	-21.34	AVG
5.3418	28.12	9.87	37.99	60.00	-22.01	QP

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.




EUT:	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model Name :	MSH317
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	35.06	9.74	44.80	65.56	-20.76	QP
0.1580	18.68	9.74	28.42	55.56	-27.14	AVG
0.5580	34.75	9.75	44.50	56.00	-11.50	QP
0.5580	26.88	9.75	36.63	46.00	-9.37	AVG
1.2540	24.15	9.75	33.90	56.00	-22.10	QP
3.7580	33.39	9.91	43.30	56.00	-12.70	QP
3.7580	23.39	9.91	33.30	46.00	-12.70	AVG
6.5777	25.81	9.97	35.78	60.00	-24.22	QP
6.5777	16.34	9.97	26.31	50.00	-23.69	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

7.0001 ang 10 1 00 1 art 10.20								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

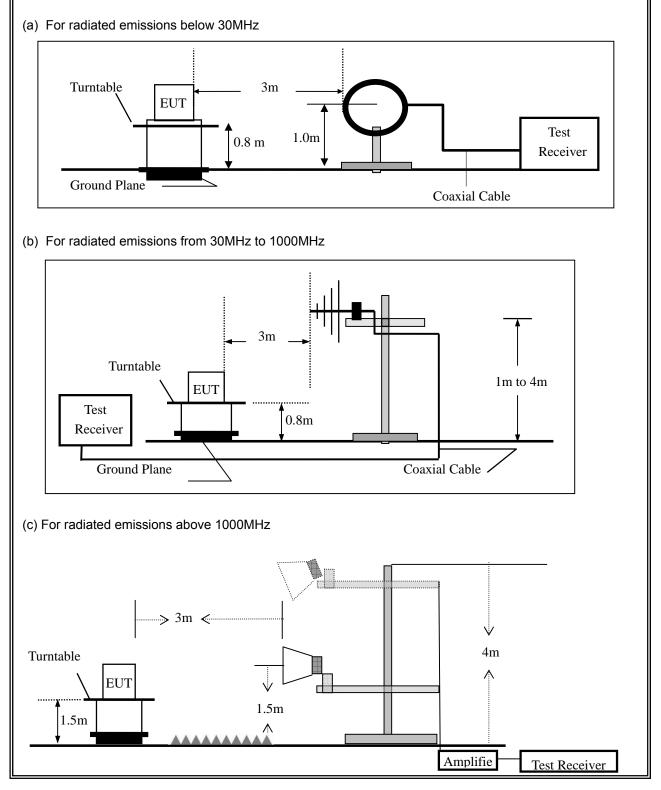
Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
2400/F(KHz)	20 log (uV/m)	300
2400/F(KHz)	20 log (uV/m)	30
30	29.5	30
100	40	3
150	43.5	3
200	46	3
500	54	3
	2400/F(KHz) 2400/F(KHz) 30 100 150 200	2400/F(KHz) 20 log (uV/m) 2400/F(KHz) 20 log (uV/m) 30 29.5 100 40 150 43.5 200 46

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)					
	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.


3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Ab 200	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	10 Hz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

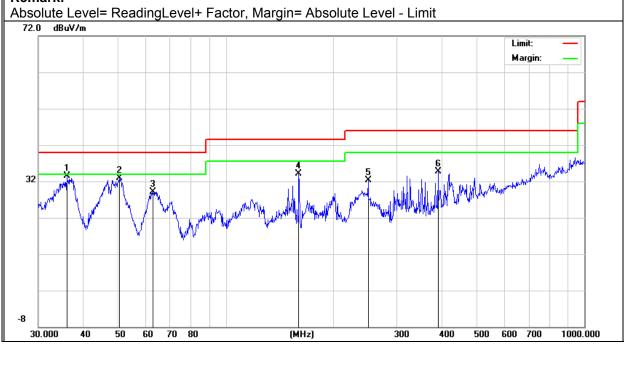
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model No.:	MSH317
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Eileen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:							
EUT:	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model Name :	MSH317				
Temperature:	20 ℃	Relative Humidity:	48%				
Pressure:	1010hPa	Test Mode:	Mode 2(GFSK)				
Test Voltage :	DC 3.7V						

Polar	Frequency	Frequency Meter Reading Factor Emission Level		Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dBuV) (dB)		(dBuV/m)	(dB)	
V	36.0007	17.17	16.33	33.50	40.00	-6.50	QP
V	50.5859	24.05	8.85	32.90	40.00	-7.10	QP
V	62.6507	22.72	6.44	29.16	40.00	-10.84	QP
V	159.7844	22.51	11.61	34.12	43.50	-9.38	QP
V	249.4250	17.55	14.83	32.38	46.00	-13.62	QP
V	390.7225	15.76	19.03	34.79	46.00	-11.21	QP
Remark	:						

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl	
(H/V)	(MHz)			(dBuV/m)	(dBuV/m) (dB)			
Н	30.1053	5.63	18.84	24.47	40.00	-15.53	QP	
Н	103.4420	18.17	12.03	30.20	43.50	-13.30	QP	
Н	191.7450	21.18	10.07	31.25	43.50	-12.25	QP	
Н	230.9068	21.53	12.17	33.70	46.00	-12.30	QP	
Н	607.7866	8.09	24.36	32.45	46.00	-13.55	QP	
	e Level= Readin	igLevel+ Facto	or, Margin= /	Absolute Level	- Limit			
						Limit: Margin:		
				4		5	Martin Mar	
32		2 X	1 1	3 X		worth and a strand or worth	N""	
X41.04,WAD	an water and the second second	. www.witherphintor	aller and Aller Aller	1 March 1 Marc	M. Morande Margan			
	Warkah, M	Her Horgen & March & Her Horgen						
·8 30.000	40 50 60	70 80	(MH	-)	300 400 50	00 600 700	1000.000	

EUT: ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF		Mode	Model No.:		MSH317						
Temperatu	re:	20 °C			Rela	tive Humid	ity:	48%	6		
Test Mode:		Mode2	/Mode3/Mo	ode4	Test	By:		Eile	en Liu		
Frequenc V	Read Level	Cable loss	Antenna Factor	Prea Fac	•	Emission Level	Limi	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dl		(dBµV/m)	(dBµV	′/m)	(dB)	. to maint	
			Low	Chan	nel (2	402 MHz)-/	Above	1G			
4839.80	63.16	5.21	35.59	44.	30	59.66	74.0	0	-14.34	Pk	Vertical
4839.80	43.52	5.21	35.59	44.	30	40.02	54.0	0	-13.98	AV	Vertical
7206.60	63.03	6.48	36.27	44.	60	61.18	74.0	0	-12.82	Pk	Vertical
7206.60	48.04	6.48	36.27	44.	60	46.19	54.0	0	-7.81	AV	Vertical
4804.78	66.76	5.21	35.55	44.	30	63.22	74.0	0	-10.78	Pk	Horizontal
4804.78	47.48	5.21	35.55	44.	30	43.94	54.0	0	-10.06	AV	Horizontal
7206.40	65.00	6.48	36.27	44.	52	63.23	74.0	0	-10.77	Pk	Horizontal
7206.40	43.91	6.48	36.27	44.52		42.14	54.0	0	-11.86	AV	Horizontal
			Mid	Chanı	nel (2	440 MHz)-A	Above '	1G			
4880.54	64.07	5.21	35.66	44.	20	60.74	74.0	0	-13.26	Pk	Vertical
4880.54	44.85	5.21	35.66	44.	20	41.52	54.0	0	-12.48	AV	Vertical
7320.87	62.67	7.10	36.50	44.	43	61.84	74.0	0	-12.16	Pk	Vertical
7320.87	44.00	7.10	36.50	44.	43	43.17	54.0	0	-10.83	AV	Vertical
4880.29	62.99	5.21	35.66	44.	20	59.66	74.0	0	-14.34	Pk	Horizontal
4880.29	46.95	5.21	35.66	44.	20	43.62	54.0	0	-10.38	AV	Horizontal
7320.74	64.91	7.10	36.50	44.		64.08	74.0		-9.92	Pk	Horizonta
7320.74	44.16	7.10	36.50	44.43		43.33	54.0	-	-10.67	AV	Horizonta
						480 MHz)-			T		
4960.27	62.84	5.21	35.52	44.		59.36	74.0	-	-14.64	Pk	Vertical
4960.27	44.46	5.21	35.52	44.		40.98	54.0	-	-13.02	AV	Vertical
7440.89	63.17	7.10	36.53	44.		62.20	74.0		-11.80	Pk	Vertical
7440.89	44.57	7.10	36.53	44.		43.60	54.0	-	-10.40	AV	Vertical
4960.39	64.10	5.21	35.52	44.		60.62	74.0		-13.38	Pk	Horizonta
4960.39	43.83	5.21	35.52	44.		40.35	54.0		-13.65	AV	Horizontal
7440.69	64.75	7.10	36.53	44.		63.78	74.0	-	-10.22	Pk	Horizontal
7440.69	45.91	7.10	36.53	44.	60	44.94	54.0	0	-9.06	AV	Horizonta

Note: (1) All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).
(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (3)All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz						
FUT	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model No.:	MSH317			
Temperature:	20 ℃	Relative Humidity:	48%			
Test Mode:	Mode2/ Mode4	Test By:	Eileen Liu			

Frequenc	Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	
у	Reading	Loss	Factor	Factor	Level	2	margin	Bottootoi	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
GFSK									
2310.00	65.29	2.97	27.80	43.80	52.26	74	-21.74	Pk	Horizontal
2310.00	45.30	2.97	27.80	43.80	32.27	54	-21.73	AV	Horizontal
2310.00	67.30	2.97	27.80	43.80	54.27	74	-19.73	Pk	Vertical
2310.00	48.13	2.97	27.80	43.80	35.10	54	-18.90	AV	Vertical
2390.00	66.13	3.14	27.21	43.80	52.68	74	-21.32	Pk	Vertical
2390.00	49.49	3.14	27.21	43.80	36.04	54	-17.96	AV	Vertical
2390.00	67.20	3.14	27.21	43.80	53.75	74	-20.25	Pk	Horizontal
2390.00	48.40	3.14	27.21	43.80	34.95	54	-19.05	AV	Horizontal
2483.50	69.11	3.58	27.70	44.00	56.39	74	-17.61	Pk	Vertical
2483.50	46.89	3.58	27.70	44.00	34.17	54	-19.83	AV	Vertical
2483.50	70.11	3.58	27.70	44.00	57.39	74	-16.61	Pk	Horizontal
2483.50	49.42	3.58	27.70	44.00	36.70	54	-17.30	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 3260MMHz-18000MHz							
	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model No.:	MSH317				
Temperature:	20 °C	Relative Humidity:	48%				
Test Mode:	Mode2/ Mode4(GFSK)	Test By:	Eileen Liu				

Frequenc	Readin	Cable	Antenn	Preamp	Emission	Limits	Margin	Detect	
У	g Level	Loss	а	Factor	Level	Linito	wargin	or	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)	(dB)	Туре	
3260	63.47	4.04	29.57	44.70	52.38	74	-21.62	Pk	Vertical
3260	48.36	4.04	29.57	44.70	37.27	54	-16.73	AV	Vertical
3260	66.83	4.04	29.57	44.70	55.74	74	-18.26	Pk	Horizontal
3260	47.49	4.04	29.57	44.70	36.40	54	-17.60	AV	Horizontal
3332	63.59	4.26	29.87	44.40	53.32	74	-20.68	Pk	Vertical
3332	43.98	4.26	29.87	44.40	33.71	54	-20.29	AV	Vertical
3332	63.68	4.26	29.87	44.40	53.41	74	-20.59	Pk	Horizontal
3332	47.32	4.26	29.87	44.40	37.05	54	-16.95	AV	Horizontal
17797	47.01	10.99	43.95	43.50	58.45	74	-15.55	Pk	Vertical
17797	34.71	10.99	43.95	43.50	46.15	54	-7.85	AV	Vertical
17788	46.55	11.81	43.69	44.60	57.45	74	-16.55	Pk	Horizontal
17788	32.11	11.81	43.69	44.60	43.01	54	-10.99	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

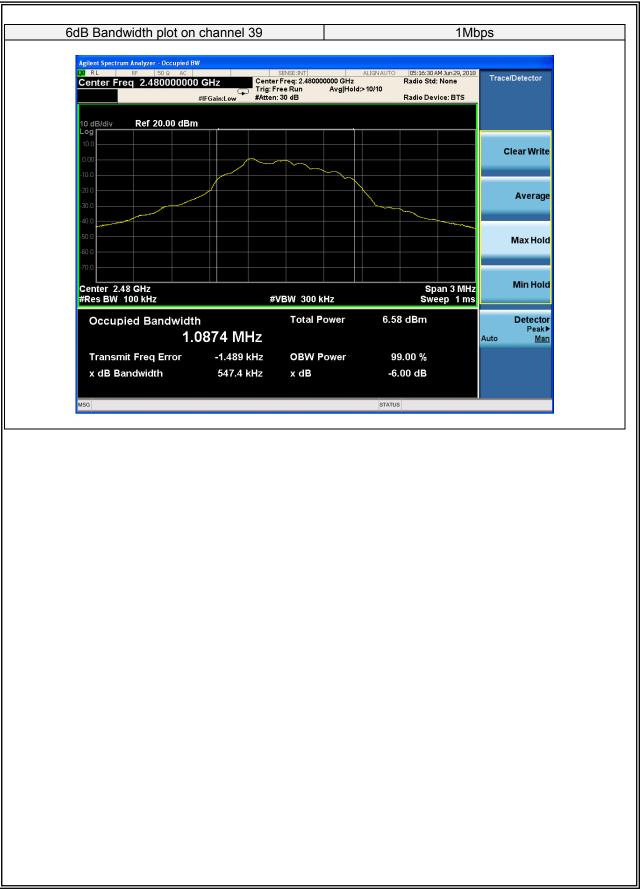
The EUT was operating in controlled its channel.

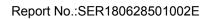
Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.


g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results


	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model No.:	MSH317
Temperature:	20 (Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Eileen Liu


Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	706.4	≥500	Pass
Middle	2440	546.1	≥500	Pass
High	2480	547.4	≥500	Pass

7.4 PEAK OUTPUT POWER

7.4.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v04

7.4.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.4.6 Test Results

EUT:	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model No.:	MSH317
Temperature:	120 ('	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict		
	1Mbps						
00	2402	Default	2.39	30	PASS		
19	2440	Default	2.69	30	PASS		
39	2480	Default	2.79	30	PASS		

10 dBm 0 dBm <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
10 dBm M1[1] 2.33 10 dBm M1 2.4020188 10 dBm M1 2.4020188 10 dBm M1 1 20 dBm M1 2.60 21 dP View M1 2.60					
0 dBm 2.4020188 0 dBm M1 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 30 dBm 40 dBm 50 dBm 91 dBm 10 dBm 91 dBm 10 dBm 11 dBm 10 dBm 11 dBm		1 ms wow bimHz Mode			
0 d8m M1 d8m M1 10 d8m M1 20 d8m M1 20 d8m M1 20 d8m M1 20 d8m M1 40 d8m M1 50 d8m M1 50 d8m M1 50 d8m M1 50 d8m M1 50 d8m M1 51 d8m M1 52 402 GHz Spot 6.5 Mexandra M1 10 d8m M1 10			M1[1]		9 dBm 30 GHz
dBm 10 dBm 20 dBm 20 dBm 40 dBm 50 dBm 5) dBm				
10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 70 dBm 70 dBm 17 dBm 17 dBm 17 dBm 18 F 2.402 GHz 59 ectrum 18 F 2.402 GHz 19 Milli 10 dBm 10 dBm 1	dBm	MI			
20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 60 dBm 70 dBm 10 dBm	dom				
30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 60 dBm 60 dBm 70 dBm 3F 2.402 GHz 691 pts Spectrum Ref Level 20.00 dBm Ref Level 20.00 dBm 9 BW 2 MHz Att 40 dB Spectrum 10 dBm	.0 dBm				
30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 60 dBm 60 dBm 70 dBm 3F 2.402 GHz 691 pts Spectrum Ref Level 20.00 dBm Ref Level 20.00 dBm 9 BW 2 MHz Att 40 dB Spectrum 10 dBm	20 dBm				~
40 dBm 50 dBm 50 dBm 70 dBm 70 dBm 10 dBm					
50 dBm 60 dBm 70 dBm 2F 2.402 GHz 691 pts 8pan 6.5 10 dBm 10 dB	0 dBm				
50 dBm 60 dBm 70 dBm 2F 2.402 GHz 691 pts 8pan 6.5 10 dBm 10 dB	10 dBm				
50 dBm 70 dBm 70 dBm F 2.402 GHz 691 pts Span 6.5 Span 6.5					
70 dBm 691 pts Span 6.5 2F 2.402 GHz 691 pts Span 6.5 utput Power plot on channel 19 1Mbps Spectrum Ref Level 20.00 dBm RBW 2 MHz Att 40 dB SWT 1 ms VBW 6 MHz M1[1] 2.65 0 dBm M1 10 dBm M1	0 dBm				-
Spectrum RBW 2 MHz Att 40 dB SwT 1 ms VBW 6 MHz M1[1] 2.65 0 dBm M1	i0 dBm				
Spectrum RBW 2 MHz Att 40 dB SwT 1 ms VBW 6 MHz M1[1] 2.65 0 dBm M1					
Norweige utput Power plot on channel 19 Spectrum Ref Level 20.00 dBm • RBW 2 MHz Att 40 dB • SWY 1 ms • VBW 6 MHz Mode Sweep • DIPk View • 0 dBm • 0 dBm • 0 dBm	'0 dBm				
Mile utput Power plot on channel 19 IMbps Spectrum Ref Level 20.00 dBm Image: Swr 1 ms VBW 6 MH2 Mode Sweep 1Pk View 0 dBm 10 dBm	E 2 402 CH2	601 ptc		Popp 6 5	MUT
utput Power plot on channel 19 1Mbps Spectrum • RBW 2 MHz • Att 40 dB \$ \$WT 1 ms • VBW 6 MHz Mode Sweep • M1[1] • 2.65 2.4400753 • 0 dBm • 0		091 pts	Measuring		, 14112
0 dBm dBm 10 dBm	Att 40 dB SWT		Sweep		
0 dBm dBm 10 dBm	LPK VIGW		M1[1]		9 dBm
0 dBm 10 dBm) dBm			2.4400753	30 GHZ
10 dBm	10	MI			
	dBm-				
20 dBm	.0 dBm				
	20 dBm				~
	<i>66</i>				1
30 dBm	(0 dBm				-+
40 dBm					
	0 dBm				
SU dism					
60 dBm	10 dBm				
70.49m	50 dBm			1 1	
	50 dBm				
F 2.44 GHz 691 pts Span 6.5	50 dBm				
Measuring (50 dBm 50 dBm 70 dBm	691 pts		Span 6.5	i MHz
	50 dBm 50 dBm 70 dBm	691 pts	Measuring		i MHz

Peak output Power plot on channel 39	1Mbps
Spectrum	
Ref Level 20.00 dBm	
	ode Sweep
	M1[1] 2.79 dBm
10 dBm	2.48000940 GHz
0 dBm	1
o dom	
-10 dBm	
-20 dBm	
-30 dBm	
-40 dBm	
-50 dBm	
Att 4U dB SWT 1 ms VBW 6 MH2 Mi ● 1Pk View 10 dBm 0	
-70 dBm	
CF 2.48 GHz 693	Lpts Span 6.5 MHz
	Mexaning

7.5 POWER SPECTRAL DENSITY

7.5.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v04

7.5.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Measurement Procedure 10.2 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.5.6 Test Results

EUT:	T: ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATE PROOF		Model No.:		MSH317		
Temperature:	20 ℃		Relative Hur	nidity:	48%		
Test Mode:	Mode2/Mode	e3/Mode4	Test By:		Eileen Liu		
Test Channel	Frequency (MHz)		r Density n/3KHz)	(dl	Limit 3m/3KHz)	Verdict	
	0.400		1Mbps			5400	
00 19	2402 2440		7.03 6.62		8	PASS PASS	
39	2440		6.27		<u> </u>	PASS	
00					0	17,66	
Power spectral density plot on channel 00 1Mbps							
10 g⊟/c 10.0 0.00 -10.0 -20.0 -20.0 -30.0 -40.0 -60.0		<u>MAN</u>			-17.03 dBm	Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→Ref Lvl	
-70.0 Center #Res I	r 2.4020000 GHz 3W 3.0 kHz	#VBW 10 kH	z	Sweep 7	Span 1.000 MHz 105 ms (1001 pts)	More 1 of 2	

7.6 CONDUCTED BAND EDGE MEASUREMENT

7.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v04

7.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.

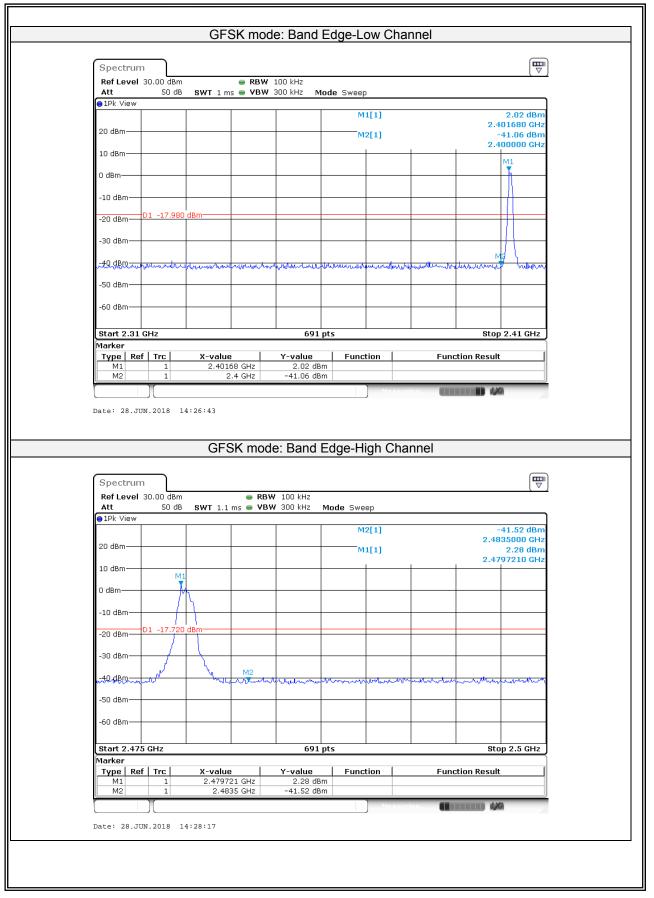
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.6.6 Test Results

FUT	ALEXA PORTABLE SPEAKER VOICE ACTIVATED WATER PROOF	Model No.:	MSH317
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Eileen Liu

7.7 SPURIOUS RF CONDUCTED EMISSIONS

7.7.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

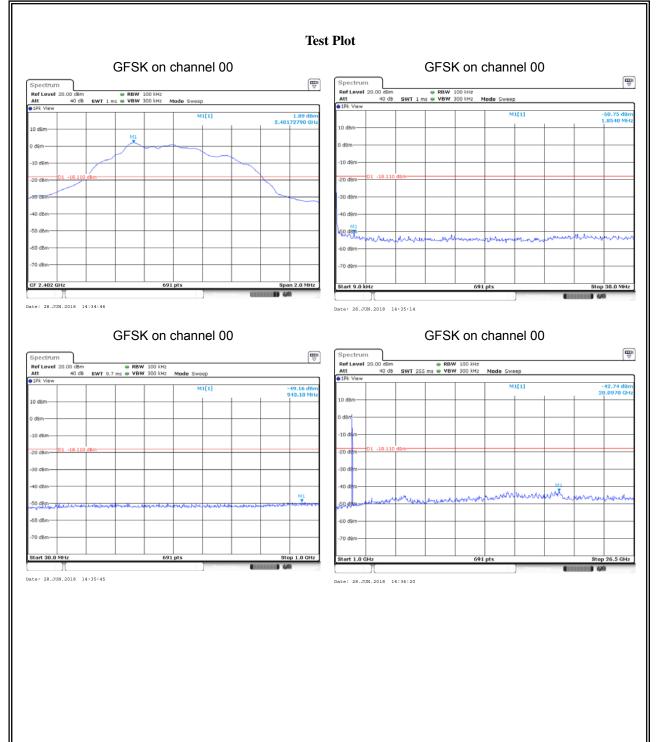
2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.7.2 Measuring Instruments

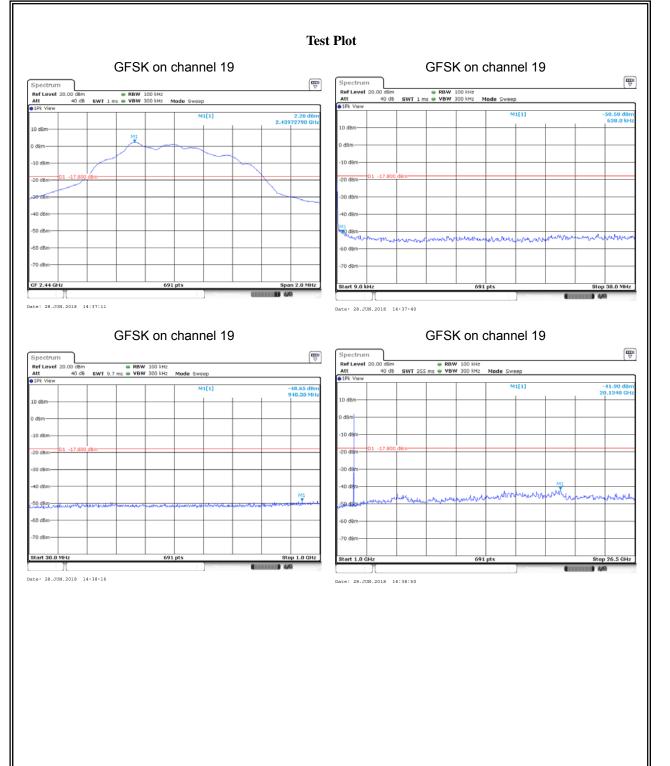
The Measuring equipment is listed in the section 6.3 of this test report.

7.7.3 Test Setup

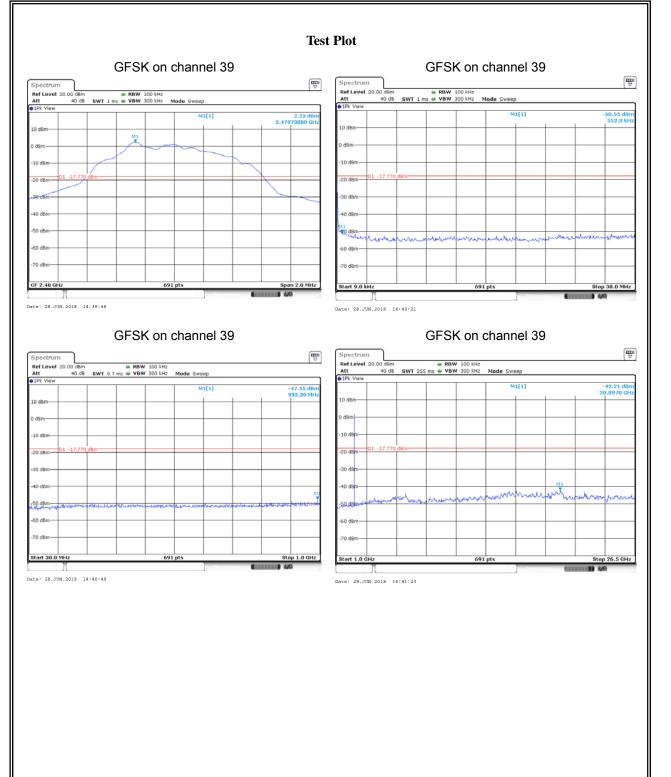
Please refer to Section 6.1 of this test report.


7.7.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequeny range from 9KHz to 26.5GHz.


7.7.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 Result

The EUT antenna is permanent attached PCB antenna(Gain:0dBi). It comply with the standard requirement.

END OF REPORT