

FCC PART 22, 90

IC RSS-119, ISSUE 11, JUNE 2011 TEST AND MEASUREMENT REPORT

For

Spectra Engineering Pty Ltd.

731 Marshall Road, Malaga,

Western Australia 6090, Australia

FCC ID:OKRMX800TRV IC: 5605A-MX800TRV

Report Type: Product type:

Original Report FM Transmitter

Test Engineer: Quinn Jiang

Report Number: R1109016-2290

Report Date: 2011-11-01

Victor Zhang

Reviewed By: RF/EMC Lead

Prepared By: Bay Area Compliance Laboratories Corp. (SP) 1274 Anvilwood Avenue,

1274 Anvilwood Avenue, Sunnyvale, CA 94085, U.S.A.

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1.	Gen	eral Information	6
1 1 1 1 1	1.1 1.2 1.3 1.4 1.5 1.6	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) MECHANICAL DESCRIPTION OBJECTIVE RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY MEASUREMENT UNCERTAINTY TEST FACILITY em Test Configuration	6 6 7 7
	- 3yst 2.1	JUSTIFICATION	
2 2 2 2 2 2	2.1 2.2 2.3 2.4 2.5 2.6 2.7	EUT EXERCISE SOFTWARE EQUIPMENT MODIFICATIONS INTERNAL CONFIGURATION LOCAL SUPPORT EQUIPMENT LOCAL SUPPORT EQUIPMENT POWER SUPPLY AND LINE FILTERS INTERFACE PORTS AND CABLING	8 8 8 8
2	2.8	TEST SETUP BLOCK DIAGRAM	9
3	Sum	mary of Test Results	11
4	FCC	C §2.1091 - RF Exposure	12
4	1.1 1.2	APPLICABLE STANDARDS	12
5	FCC	C §2.1046, §22.913, §90.205 & IC RSS-119 §5.4 – RF Output Power	14
5 5	5.1 5.2 5.3 5.4 5.5	APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULT	14 14 14
6	FCC	C §2.1047, §90.207 & IC RSS-119 §5.2 – Modulation Characteristic	16
6	5.1 5.2 5.3 5.4 5.5	APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULT	16 16 16
7	FCC	C §2.1049, §90.210 & IC RSS-119 §5.5 – Occupied Bandwidth & Emission Mask	20
77	7.1 7.2 7.3 7.4 7.5	APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULT	21 21 21
8	FCC	C §2.1051, §22.359, §90.210 & IC RSS-119 §5.8 - Spurious Emissions at Antenna Terminals	26
8	3.1 3.2 3.3 3.4 3.5	APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	26 26

9	FCC §2.1055 (d), §22.355, §90.213 & IC RSS-119 §5.3 - Frequency Stability	29
9.	1 Applicable Standard	29
9.2		
9.3		
9.4		
9.5		
10	FCC §2.1053, §22.359, §90.210 & IC RSS-119 §5.8 – Field Strength of Spurious Radiation	31
10		
10		
10		
	0.4 TEST EQUIPMENT LIST AND DETAILS	
11	FCC §90.214 & IC RSS-119 §5.9 -Transient Frequency Behavior	
11		
11	.2 Test Results	34
12	IC RSS-119 §5.11 - Receiver Spurious Radiated Emissions	35
12		
12		
12		
	2.4 TEST BLOCK DIAGRAM	
12		
12		
12	2.7 Summary of Test Results	
13	Exhibit A - FCC ID & IC Labeling Requirements	
13		
13	· · · · · · · · · · · · · · · · · · ·	
13	3.3 FCC AND IC LABEL CONTENTS	
14	Exhibit B - Test Setup Photographs	
14		
14		
14		
14 14	I.4 RECEIVER SPURIOUS EMISSION 30 MHZ TO 1 GHZ - FRONT VIEW	
14		
14		
14		
15	Exhibit C - EUT Photographs	46
15		
	5.2 EUT – BOTTOM VIEW	
15		
15		
	5.5 EUT – Side View 1	
15		
15		
15		
15	,	
	5.10 EUT - RF TX REF OSC INPUT AND MODULATOR PCB BOTTOM VIEW	
	5.12 EUT - RF RECEIVER PCB BOTTOM VIEW	
	5.13 EUT – DIGITAL CONTROLLER PCB TOP VIEW	52
	5.14 EUT - DIGITAL CONTROLLER PCB BOTTOM VIEW	

C 4	т			- D4	_ T 4 -I
Spectra	-Hn	onn	eerin	O PT	V I TO
Spectra	1/11	5111	CULTILI	- I L	y Luu.

FCC ID: OKRMX800TRV, IC: 5605A-MX800TRV

15.15	EUT – DIGITAL APCO CONTROLLER PCB TOP VIEW	53
15.16	EUT - DIGITAL APCO CONTROLLER PCB BOTTOM VIEW	53
15.17	EUT - APCO LINE INTERFACE PCB TOP VIEW	54
15 18	FUT - APCO LINE INTERFACE PCB BOTTOM VIEW	54

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1109016-2290	Original Report	2011-11-01

1. General Information

1.1 Product Description for Equipment under Test (EUT)

The report has been prepared on behalf of *Spectra Engineering Pty Ltd.* and their product FCC ID: OKRMX800TRV, IC: 5605A-MX800TRV, Models: MX 800TRV or the EUT as referred to in the rest of this report. The EUT is a radio station transceiver.

The EUTs are Radio Transceivers that operates under FCC Part 22, 90 and IC RSS-119

Specifications			
Frequency Bands	FCC TX: 850-870 MHz, RX: 805-825 MHz IC TX: 851-869 MHz, RX: 806-824 MHz		
Modulation Type	FM		
Emission Designator	F1D, F3E, F7D, F9W		
RF Output Power	110 Watts		
Channel Spacing	25 kHz, 12.5 kHz		
Dual Power Supply	13.8 V		

1.2 Mechanical Description

The EUTs measures approximately 48cm (L) x 36 cm (W) x 8.5 cm (H) and weighs approximately 7.5kg.

The test data gathered are from production sample, serial number: 11083622, assisgned by Spectra Engineering Pty Ltd.

1.3 Objective

This Type approval report is prepared on behalf of *Spectra Engineering Pty Ltd* in accordance with Part 22, 90 of the Federal Communication Commissions rules.

1.4 Related Submittal(s)/Grant(s)

None.

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 22 – Public Mobile Services

Part 90 – Private Land Mobile Radio Service

Applicable Standards:TIA603-C and ANSI 63.4-2003, American National Standard for Method of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed by Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 Db for Conducted Emissions tests and ± 4.0 Db for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm.

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

The software used, MXTOOLS Version 3.1.8017, provided by client and was verified by BACL (Quinn Jiang) to comply with the standard requirements being tested against.

2.3 Equipment Modifications

No modifications were made to the EUT.

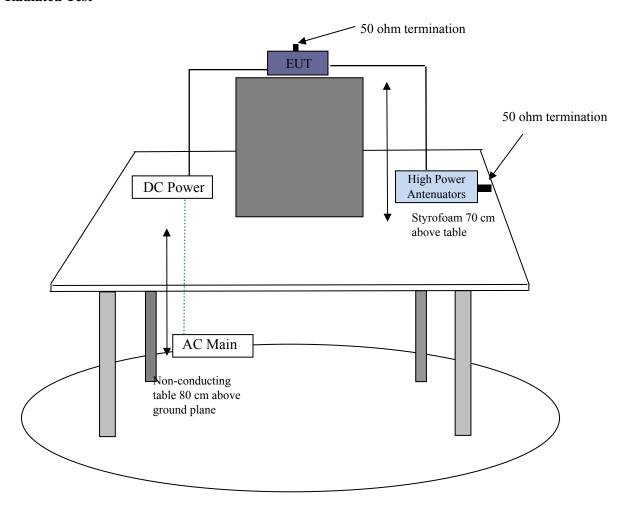
2.4 Internal Configuration

Manufacturer	Description	Model No.	Serial No.
Spectral Engineering Pty Ltd RF Exciter PCB		L053 ReV.F 11-03	TT1Z0000001
Spectral Engineering Pty Ltd	RF TX Ref OSC Input and Modulator PCB	OPT T37 L489 ReV.A	O037000001
Spectral Engineering Pty Ltd	RF Receiver PCB	SEARX REV.K	RR1PZ2000144
Spectral Engineering Pty Ltd	Digital Controller PCB	T13/T32 L538 REV. E	M13Z007518
Spectral Engineering Pty Ltd	Digital APCO Controller PCB	L518 REV A	O082000007

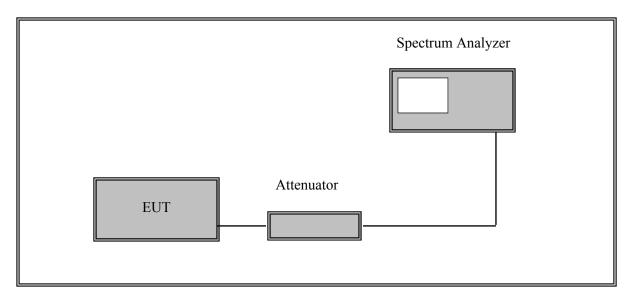
2.5 Local Support Equipment

Manufacturer	Description	Model No.	Serial No.
-	-	-	-

2.6 Local Support Equipment Power Supply and Line Filters


Manufacturer	Description	Model	Serial Number
KEPCO	DC Power Supply	25-10M	H1334526
BK Precision	DC Power Supply	1621A	D185052265

2.7 Interface Ports and Cabling


Cable Description Length (m)		From	То
N Type Cable < 2.0		High Power Attenuator	EUT
RF Cable	< 1.0	High Power Attenuator	PSA

2.8 Test Setup Block Diagram

Radiated Test

Conducted Test

3 Summary of Test Results

FCC and IC Rules	Description of Tests	Results
FCC §1.1310, §2.1091 IC RSS-102	RF Exposure	Compliant
FCC§2.1046, §90.205 IC RSS-119 §5.4	RF Output Power	Compliant
FCC§2.1047, §90.207 IC RSS-119 §5.2	Modulation Characteristics, Audio Frequency Response and Audio Filter Response	Compliant
FCC §2.1049, §90.209/90.210 IC RSS-119 §5.5	Occupied Bandwidth and Emission Mask	Compliant
FCC §2.1051, §90.210 IC RSS-119 §5.8	Spurious Emissions at Antenna Terminals	Compliant
FCC §2.1055, § 90.213 IC RSS-119 §5.3	Frequency Stability	Compliant
FCC §2.1053, §90.210 IC RSS-119 §5.8	Field Strength of Spurious Radiation	Compliant
FCC § 90.214 IC RSS-119 §5.9	Transient Frequency Behavior	Note ¹
IC RSS-119 §5.11	Receiver Spurious Emission	Compliant

Note¹: Transient Frequency Behavior does not apply to 850-870 MHz Band.

4 FCC §2.1091 - RF Exposure

4.1 Applicable Standards

FCC §2.1091, (a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of this chapter, in particular §1.1307(b).

According to §1.1310 and §2.1091 RF exposure is calculated.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)
	(A) Limits for O	ccupational/Control	led Exposures	
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	$*(900/f^2)$	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,00	/	/	1	6
	(B) Limits for Gene	ral Population/Unco	ntrolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	842/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/150	30
1500-100,000	/	/	1	30

f = frequency in MHz

According to IC RSS-102 Issue 2 section 4.4, RF Field Strength Limits for Controlled Use Devices (Controlled Environment).

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averagi ng (min)
0.003 - 1	600	2.19	-	6
1 - 10	600 / f	4.9 / f	-	6
10 - 30	60	4.9 / f	-	6
30 - 300	60	0.163	10*	6
300 – 1 500	3.54 f ^{0.5}	$0.0094f^{0.5}$	f/30	6
1 500 – 15 000	137	0.364	50	6
15 000 – 150 000	137	0.364	50	616000 / f ^{1.2}
150 000- 300 000	$0.354f^{0.5}$	9.4 x10 ⁻⁴ f ^{0.5}	3.33 x 10 ⁻⁴ f	616000 / f ^{1.2}

Note: *f* is frequency in MHz

^{* =} Plane-wave equivalent power density

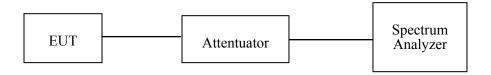
^{* =} Power density limit is applicable at frequencies greater than 100 MHz

4.2 Result

Conclusion

The antenna(s) used for this transmitter must be fixed-mounted on outdoor permanent structures. RF exposure compliance is addressed at the time of licensing, as required by the responsible FCC Bureau(s), including antenna co-location requirements of Para. 1.1307(b)(3).

5 FCC §2.1046, §22.913, §90.205 & IC RSS-119 §5.4 – RF Output Power


5.1 Applicable Standard

According to FCC §2.1046, and §90.205, maximum ERP is dependent upon the station's antenna HAAT and required service area.

According to IC RSS-119 $\S 5.4$, the output power should be within \pm 1.0 dB of the manufacture's rated power.

5.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

5.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10
Agilent	Function Arbitrary Waveform Generator	33220A	MY43004878	2011-07-22

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.4 Test Environmental Conditions

Temperature:	20-25 °C
Relative Humidity:	44 %
ATM Pressure:	101.2 kPa

The testing was performed by Quinn Jiang on 2011-09-21.

5.5 Test Result

Test Mode: Transmitting

Frequency Spacing (kHz)	Frequency (MHz)	Output Power (dBm)	Output Power (Watt)
25 kHz	860	50.59	114.55
12.5 kHz	860	50.54	113.24

6 FCC §2.1047, §90.207 & IC RSS-119 §5.2 – Modulation Characteristic

6.1 Applicable Standard

FCC §2.1047 & §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

IC RSS-119 §5.2

Equipment that operates in frequency bands other than 746-770 MHz and 794-800 MHz may employ any type of modulation. The type of modulation used shall be reported.

6.2 Test Procedure

Test Method: TIA/EIA-603-C 2.2.3

6.3 Test Equipment List and Details

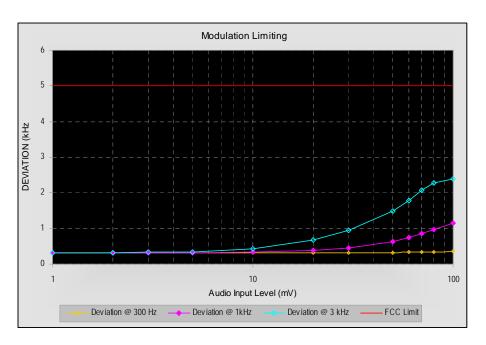
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10
Agilent	Function Arbitrary Waveform Generator	33220A	MY43004878	2011-07-22
HP	RF Communication test set	8920A	3438A05338	2010-05-181

Note¹: 2 year calibration cycle

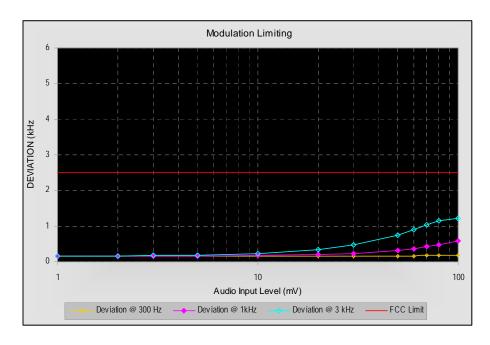
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.4 Test Environmental Conditions

Temperature:	20-25 °C
Relative Humidity:	44 -45%
ATM Pressure:	101.2 kPa

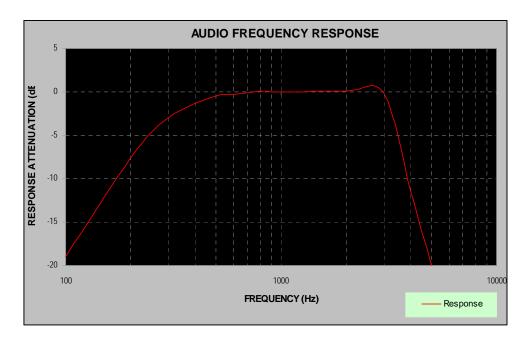

The testing was performed by Quinn Jiang on 2011-09-29 - 2011-10-01.

6.5 Test Result

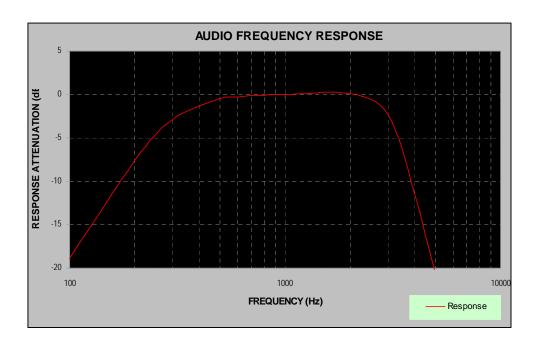

Please refer to the hereinafter plots.

Modulation Limit

Channel Spacing 25 kHz

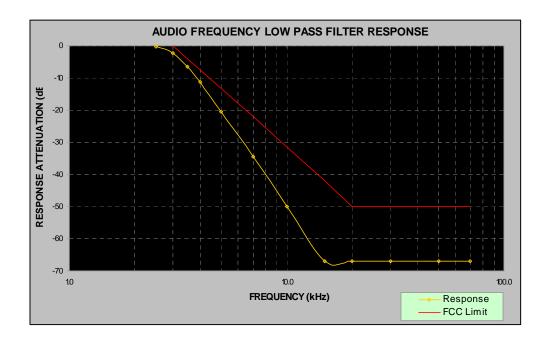


Channel Spacing 12.5 kHz

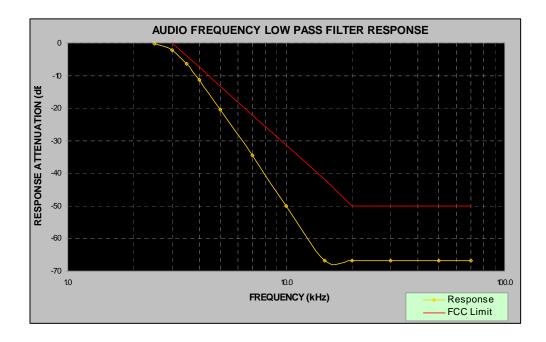


Audio Frequency Response

Channel Spacing 25 kHz



Channel Spacing 12.5 kHz



Audio Filter Response

Channel Spacing 25 kHz

Channel Spacing 12.5 kHz

7 FCC §2.1049, §90.210 & IC RSS-119 §5.5 – Occupied Bandwidth & Emission Mask

7.1 Applicable Standard

FCC §90.209

Operations using equipment using a 25 kHz bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized an 11.25 kHz bandwidth.

FCC §2.1049, §90.210

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- 2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- 3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + log (P) dB.

The resolution bandwidth was 100Hz or greater for measuring up to 250kHz from the edge of the authorized frequency segment, and 30kHz or greater for measuring more than 250kHz from the authorized frequency segment.

FCC § 90.691 Emission mask requirements for EA-based systems.

- (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 $\text{Log}_{10}(f/6.1)$ decibels or 50 + 10 $\text{Log}_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43 + 10\text{Log}_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

IC RSS-119 §5.5

Emission Mask B: The power of any emission shall be attenuated below the transmitter output power P (dBW) as follow:

- 1) Displacement Frequency, fd(kHz): 10\lefteq fd\lefteq 20, Minimum Attenuation(dB): 25.
- 2) Displacement Frequency, fd(kHz): 20\(\leq fd \leq 50\): Minimum Attenuation(dB): 35.
- 3) fd>50: Minimum Attenuation (dB): 43 + log (P).

Emission Mask D: The power of any emission shall be attenuated below the transmitter output power P (dBW) as follow:

- 1) Displacement Frequency, fd(kHz): 5.625\lefteqfd\lefteq12.5 Minimum Attenuation(dB): 25.
- 2) Displacement Frequency, fd(kHz): fd>12.5: Minimum Attenuation(dB): whichever is lesser attenuation: 70 or 50+10log(P)

7.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 50 KHz from the carrier frequency.

7.3 Test Equipment List and Details

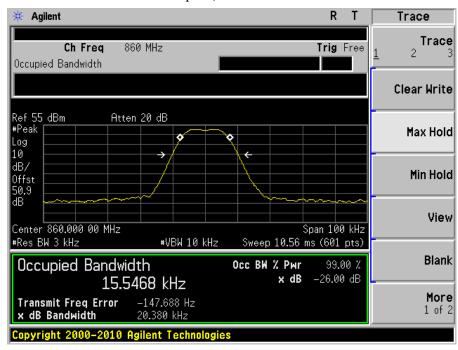
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10
Agilent	Function Arbitrary Waveform Generator	33220A	MY43004878	2011-07-22
HP	RF Communication test set	8920A	3438A05338	2010-05-181

Note¹: 2 year calibration cycle

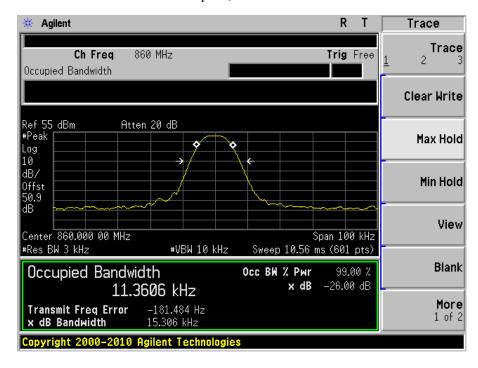
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	20-25 °C
Relative Humidity:	40-45 %
ATM Pressure:	101-102 kPa

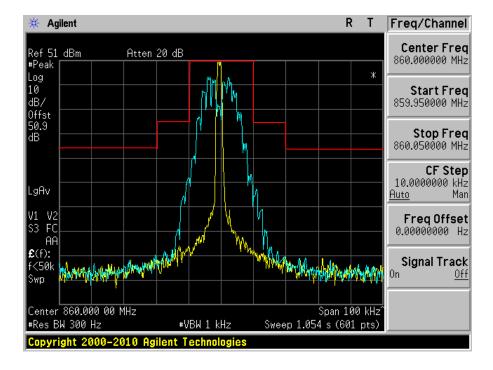

The testing was performed by Quinn Jiang on 2011-09-29 - 2011-10-01.

7.5 Test Result

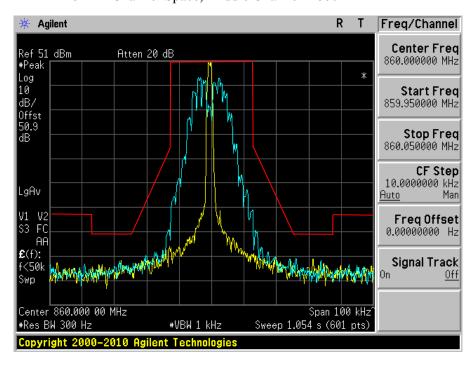

Please refer to the hereinafter plots.

Occupied Bandwidth

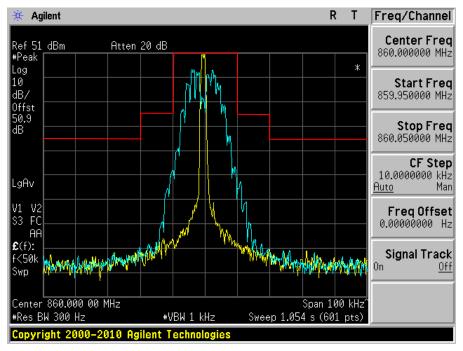
25 kHz Channel Space, Middle Channel – 860 MHz

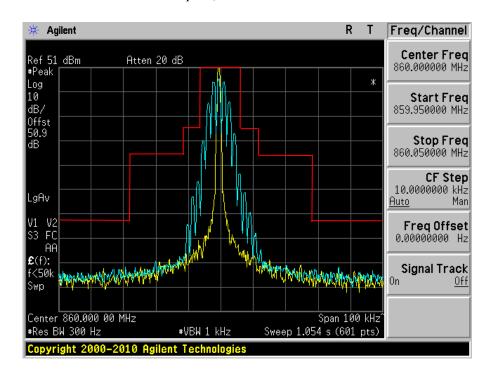


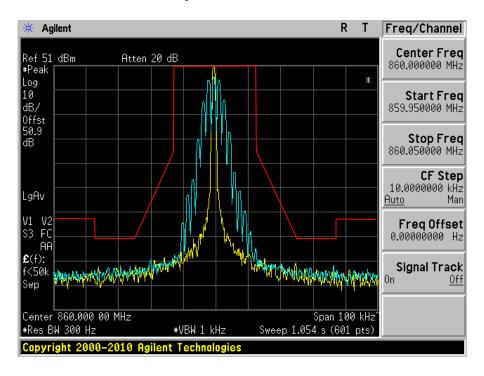
12.5 kHz Channel Space, Middle Channel – 860 MHz



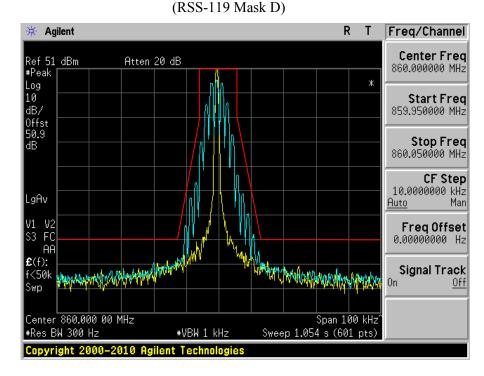
Emission Mask


25 kHz Channel Space, Middle Channel – 860 MHz


25 kHz Channel Space, Middle Channel – 860 MHz


25 kHz Channel Space, Middle Channel – 860 MHz (RSS-119 Mask B)

12.5 kHz Channel Space, Middle Channel – 860 MHz



12.5 kHz Channel Space, Middle Channel – 860 MHz

12.5 kHz Channel Space, Middle Channel – 860 MHz

(DSS 110 Mook D)

8 FCC §2.1051, §22.359, §90.210 & IC RSS-119 §5.8 - Spurious Emissions at Antenna Terminals

8.1 Applicable Standard

FCC §22.359

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

FCC §90.210 (12.5 kHz bandwidth only)

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP or 70 dB

FCC §2.1051and §90.210 (25 kHz bandwidth and 20 kHz bandwith)

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10log (P)

IC RSS-119 §5.8

8.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

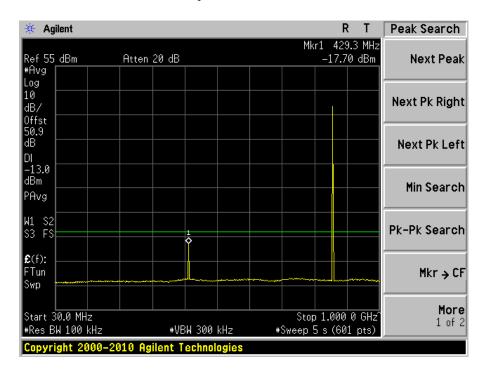
8.3 Test Equipment List and Details

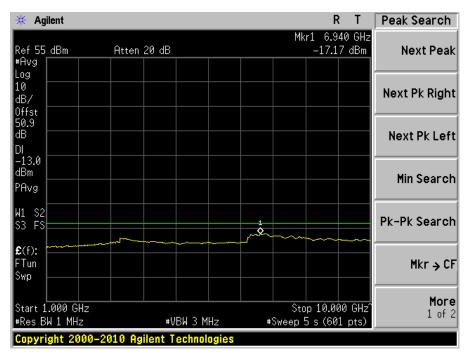
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10
Agilent	Function Arbitrary Waveform Generator	33220A	MY43004878	2011-07-22

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

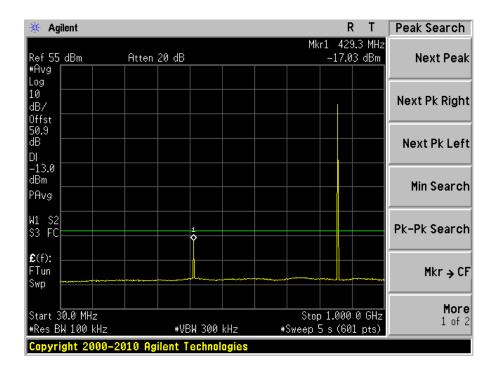
8.4 Test Environmental Conditions

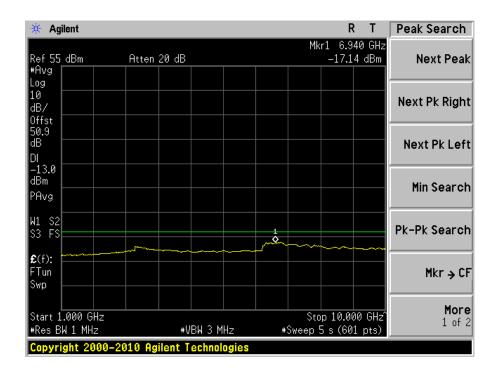
Temperature:	20-25 °C
Relative Humidity:	40-45 %
ATM Pressure:	101-102 kPa


The testing was performed by Quinn Jiang on 2011-09-29 - 2011-10-01.


8.5 Test Results

Please refer to the hereinafter plots.


Transmitter Spurious Emission at Antenna Terminal


25 kHz Channel Space, Middle Channel – 860 MHz

12.5 kHz Channel Space, Middle Channel – 860 MHz

9 FCC §2.1055 (d), §22.355, §90.213 & IC RSS-119 §5.3 - Frequency Stability

9.1 Applicable Standard

FCC §2.1055 (d), §22.355, §90.213

For output power > 2 watts, the limit is ± 1.5 ppm.

IC RSS-119 §5.3

9.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to the Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 110% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10
KEPCO	DC Power Supply	25-10M	H1334526	N/A
BK Precision	DC Power Supply	1621A	D185052265	N/A
Agilent	Function Arbitrary Waveform Generator	33220A	MY43004878	2011-07-22
ESPEC	Oven, Temperature	ESL-4CA	18010	N/A

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	20-25 °C
Relative Humidity:	40-45 %
ATM Pressure:	101-102 kPa

The testing was performed by Quinn Jiang on 2011-09-29 - 2011-10-01.

9.5 Test Result

Frequency vs. Temperature

Test	Test Condition		Measured	Frequency	Limit
Voltage (Vdc)	Temperature (°C)	Frequency (MHz)	Frequency (MHz)	Error (PPM)	(PPM)
13.8	50	860	859.9995	-0.581395349	± 1.0
13.8	40	860	859.99975	-0.290697674	± 1.0
13.8	30	860	859.9995	-0.581395349	± 1.0
13.8	20	860	860.00025	0.290697674	± 1.0
13.8	10	860	860.00025	0.290697674	± 1.0
13.8	0	860	859.99975	-0.290697674	± 1.0
13.8	-10	860	859.9995	-0.581395349	± 1.0
13.8	-20	860	859.99974	-0.302325581	± 1.0
13.8	-30	860	859.99923	-0.895348837	± 1.0

Frequency vs. Voltage

Test Condition		Reference	Measured	Frequency Error	Limit	
Voltage (Vdc)	Temperature (°C)	Frequency (MHz)	Frequency (MHz)	(PPM)	(PPM)	
15.18	20	860	860.0005	0.581395349	± 1.0	
12.42	20	860	860.00025	0.290697674	± 1.0	

10 FCC §2.1053, §22.359, §90.210 & IC RSS-119 §5.8 – Field Strength of Spurious Radiation

10.1 Applicable Standard

FCC §2.1053 (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. and §90.210(b),(d): Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (m) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating in the frequency bands governed under this part.

FCC §22.359: (a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB

IC RSS-119 §5.8

10.2 Test Procedure

The transmitter was placed on a Styrofoam with wooden turntable, and it was normal transmitting with 50ohm termination which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

10.3 Test Environmental Conditions

Temperature:	20-25 °C
Relative Humidity:	40-45 %
ATM Pressure:	101-102 kPa

The testing was performed by Quinn Jiang on 2011-09-29 - 2011-10-01.

10.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
Sunol Science Corp	Combination Antenna	JB1	A020106-1	2011-05-17
A.R.A Inc	Horn antenna	DRG-1181A	1132	2010-11-29
Hewlett Packard	Pre amplifier	8447D	2944A06639	2011-06-09
Mini-Circuits	Pre Amplifier	ZVA-183-S	570400946	2011-05-09
Rhode & Schwarz	Signal Generator	SMIQ 03	DE23746	2010-03-311

Note¹: 2 year calibration cycle

Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

10.5 Test Results

Worst Margin: -1.45 dB at 2575 MHz in the Vertical polarization.

Middle Channel – 860 MHz

Indicated		A41-	Test Antenna		Substituted				T ::4	Manain	
Freq. (MHz)	Amp. (dBuV)	Azimuth Degrees	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Cord. (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
168	34.58	67	1	V	168	-73.82	0	0.1	-73.92	-13	-60.92
168	42.37	221	1.3	Н	168	-66.03	0	0.1	-66.13	-13	-53.13
372	37.74	31	1	V	372	-66.73	0	0.1	-66.83	-13	-53.83
372	36.77	271	1.3	Н	372	-67.7	0	0.1	-67.8	-13	-54.8
2575	78.09	176	202	V	2575	-21.65	9.2	2	-14.45	-13	-1.45
2575	75.24	154	1.5	Н	2575	-24.5	9.2	2	-17.3	-13	-4.3
4300	64.8	160	180	V	4300	-32.87	10.7	2	-24.17	-13	-11.17
4300	63.1	144	1.45	Н	4300	-34.57	10.7	2	-25.87	-13	-12.87
5155	63.9	155	190	V	5155	-30.8	10.8	2	-22	-13	-9
5155	62.2	150	1.6	Н	5155	-32.5	10.8	2	-23.7	-13	-10.7

11 FCC §90.214 & IC RSS-119 §5.9 - Transient Frequency Behavior

11.1 Applicable Standard

FCC §90.214: Transmitters designed to operate in the 150–174 MHz and 421–512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

12	Maximum	All equipment			
Time intervals ^{1,2}	frequency difference ³	150 to 174 MHz	421 to 512 MHz		
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels					
t ₁ ⁴	± 25.0 kHz	5.0 ms	10.0 ms		
t_2	± 12.5 kHz	20.0 ms	25.0 ms		
t ₃ ⁴	± 25.0 kHz	5.0 ms	10.0 ms		
Transient Frequency Behavior for	or Equipment Designed to C	perate on 12.5 kH	z Channels		
t ₁ ⁴	± 12.5 kHz	5.0 ms	10.0 ms		
t_2	± 6.25 kHz	20.0 ms	25.0 ms		
t ₃ ⁴	± 12.5 kHz	5.0 ms	10.0 ms		

As per IC RSS-119 §5.9, When a transmitter is turned on, the radio frequency may take some time to stabilize. During this initial period, the frequency error or frequency difference (i.e. between the instantaneous and the steady state frequencies) must not exceed the limits specified in Table 17.

Maximum Frequency Transient Duration Limit (ms) Channel Time Difference **Spacing** 138-174 406.1-512 Intervals1, 2 (kHz) (kHz) MHz MHz ± 25.0 10 t_1 5 25 ± 12.5 20 25 t_2 ± 25.0 5 10 t_3 ± 12.5 5 10 t_1 25 12.5 ± 6.25 20 t_2 ± 12.5 5 10 t_3 ± 6.25 5 10 t_1 $\pm \overline{3.125}$ 6.25 20 25 t_2 ± 6.25 5 t_3

Table 17 - Transient Frequency Behaviour

1 ton: the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

- t1: the time period immediately following ton.
- t2: the time period immediately following t1.
- t3: the time period from the instant when the transmitter is turned off until toff.
- toff: the instant when the 1 kHz test signal starts to rise.

² If the transmitter carrier output power rating is 6 W or less, the frequency difference during the time periods t1 and t3 may exceed the maximum frequency difference for these time periods. The corresponding plot of frequency versus time during t1 and t3 shall be recorded in the test report.

Spectra Engineering Pty Ltd.	FCC ID: OKRMX800TRV, IC: 5605A-MX800TRV
11.0 T. (D.)	
11.2 Test Results	
N/A, Transient Frequency Behavior does not ap	oply to 850-870 MHz Band.

12 IC RSS-119 §5.11 - Receiver Spurious Radiated Emissions

12.1 Applicable Standard

IC RSS-119 §5.11, and RSS-Gen §6

The following receiver spurious emission limits shall be complied with:

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Table 1 - Spurious Emission Limits for Receivers

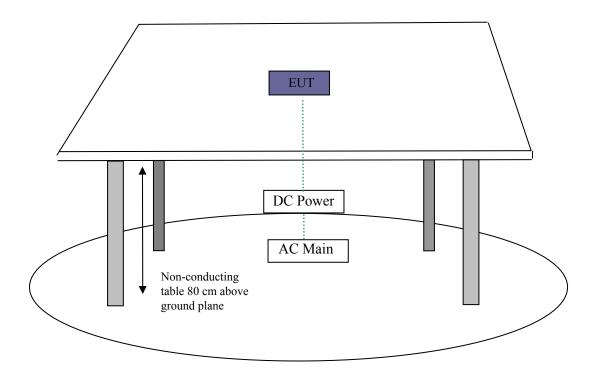
Frequency (MHz)	Field Strength Microvolts/m at 3 meters Receivers
30-88	100
88-216	150
216-960	200
Above 960	500

12.2 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

12.3 Test Equipment Lists and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Hewlett Packard	Pre amplifier	8447D	2944A07030	2011-04-11
Rohde & Schwarz	rarz EMI Test Receiver ESCI 1166.5950K 03		100044	2011-04-14
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
Sunol Science Corp	Combination Ante nna	JB3	A020106-3	2011-06-29
НР	Pre Amplifier	8449B	3147A00400	2011-02-03
Agilent	PSA Series Spectr um Analyzer	E4440A	MY44303352	2011-05-10
A.R.A Inc.			1132	2010-11-29


Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Block Diagram

Conducted Spurious Emissions:

Radiated Spurious Emissions:

12.5 Test Environmental Conditions

Temperature:	22~24 °C	
Relative Humidity:	44 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Hieu Song Nguyen Pham 2011-09-28 10 meter chamber 1.

12.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emissions are 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

12.7 Summary of Test Results

According to the test data, the EUT <u>complied RSS-119</u>, RSS-Gen, with the worst margins from the limit listed below:

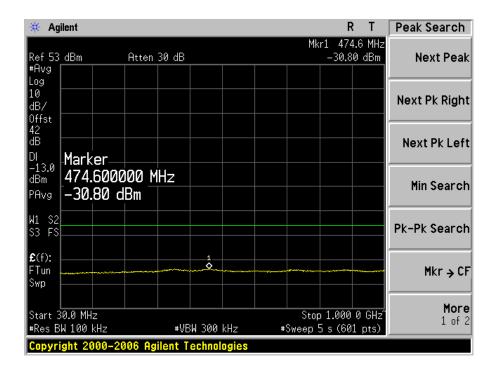
Model: Receiving			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Test Range
-14.62	156.0175	Vertical	30 MHz-1 GHz
-17.77	8838.198	Vertical	1 GHz – 12.75 GHz

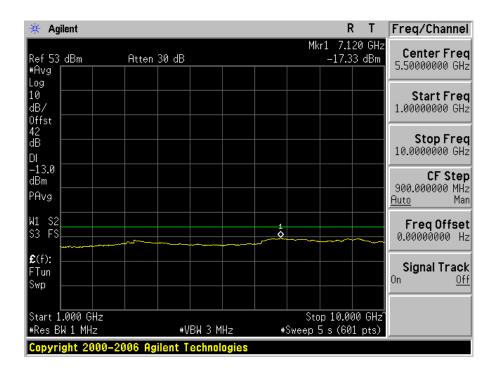
12.8 Radiated Spurious Emissions Data

30 MHz – 1 GHz, Measured at 3 Meter distance:

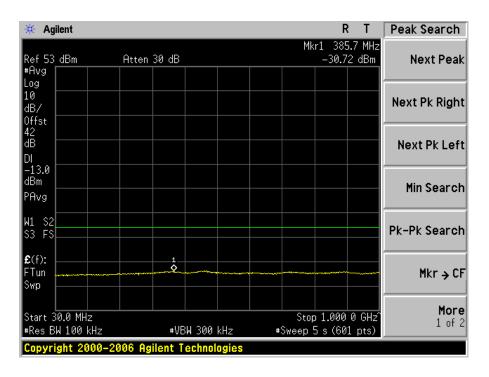
Quasi-Peak Measurements:

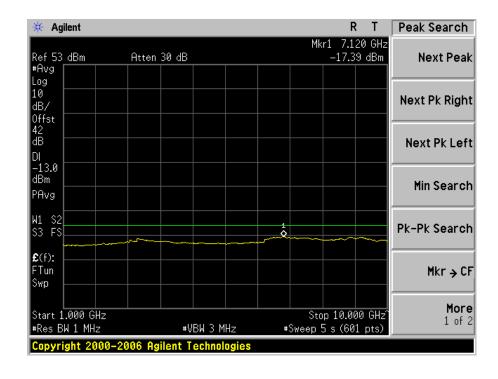
Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
156.0175	28.88	144	V	272	43.5	-14.62


Above 1GHz, Measured at 3 Meter distance:


Average Measurements:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
8838.198	36.23	98	V	286	54	-17.77
2457.844	28.34	121	V	108	54	-25.66


Receiver Spurious Emission at Antenna Terminal


25 kHz Channel Space, Middle Channel – 860 MHz

12.5 kHz Channel Space, Middle Channel – 860 MHz

