MX800 Base Station Test Information

Note: All tests follow TIA / EIA 603 Procedures

<u>Rule Number</u>	Descrription	Page
2.1033(c)	General Information	1
2.1046(a)	Carrier Output Power (Conducted)	2
2.1055 (a) (1)	Frequency Stability) (Voltage)	2
2.1055 (b) (1)	Frequency Stability (Temperature)	2
2.1047 (a)	Audio Frequency Response	3
2.1047 (b)	Modulation Limiting	3
2.1047 (a)	Audio Low Pass Filter	3
2.1053(a)	Field Strength of Spurious Emissions	4
2.1049(a) (1)	Emission Mask (Occupied BW)	4
2.1051	Unwanted Emissions (Tx Conducted)	5
90.214	Transient Frequency Behaviour	5
15	Receiver Conducted Emissions	6
2.202 (g)	Necessary Bandwidth and Emission Bandwidth	11

Measurements made by:

R. McAllan at the R&D Laboratory at Spectra Engineering PTY LTD 9 Trade Road Malaga, Western Australia Australia

or

Walter C Simciak at ADRad Communications 5481 Sand Lake Drive Melbourne, Florida 32934

Radiated Measurements at Control Design And Testing, Inc 6010 Red Fox Drive Spotsylvania, VA 22553

Equipment Measured:

MX800 base station model number MX800FFHNSZ2CD

Serial Number: 01096409

External Power Supply was used as the equipment has no internal power supply and operates on $13.6\ VDC$.

Test Rv · R McAllan File·FIA_FF_0106400 Test date · 10_10_01 Page

Transmitter Requirements:

Test Frequency = 216.000MHz at CH-1 Test Frequency = 219.000MHz at CH-2 Test Frequency = 222.000MHz at CH-3

Results;

2.1046(a) Carrier Output Power:

50.2W

Output level is the same with Channel or DC voltage +/- 10% (corrected by ALC loop)

2.1055 (a) (1) Frequency Stability vs Voltage Variation

Frequency Error: = +6Hz(EIA <2.5ppm
(25—512MHz)

Standard Test Method: EIA 4.2.2.3 Voltage variation +-15%

The power supply voltage was varied from 85% to 115% of the nominal voltage of 13.8vDC as measured at the input to the MX800.

Ambient Temperature = $+24^{\circ}$ C

Measurement Results

Limit, ppm = 2.5Limit, Hz = 547

STV, %	Vdc	Change in Freque	ency, Hz
85	11.7	219000000	0
100	13.8	219000000	0
115	15.9	219000000	0

2.1055 (b) (1) Standard Test Method: EIA 4.2.2.3 Temperature variation –30°C to +60°C

The MX800 was placed in a temperature chamber with the power supply voltage set at 13.8vDC as measured at the input to the MX800.

Measurement Results

Limit, ppm = 2.5Limit, Hz = 547

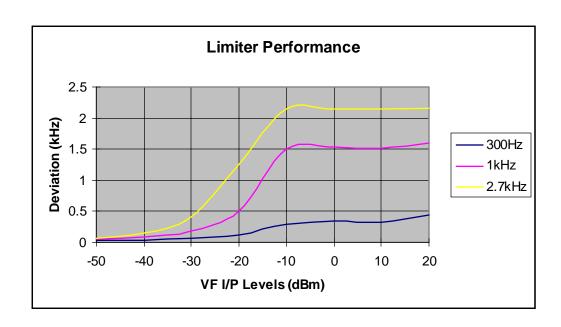
STV, °C	Channel Frequency(Hz)	Frequency Error	Freq Variation, Hz
-30	219000000	300	+87
-20	219000000	287	+74
-10	219000000	300	+87
0	219000000	303	+90
10	219000000	280	+67
20	219000000	213	0
30	219000000	140	-73
40	219000000	54	-159
50	219000000	20	-193
60	219000000	44	-169

Test Rv · R McAllan File·FIA_FF_01096409 Test date · 10_10_01

2.1047 (a) Audio Frequency Response: 300Hz—3kHz

300Hz: -12.7dB

(EIA) +1dB/-3dB from 6dB per Octave 500Hz: -6.2dB


600Hz: -4. 5dB 1200Hz: +1.7dB 1500Hz: +3.7dB 2000Hz: +6.4dB 3000Hz: +7.6dB

2.1047 (b) Maximum Frequency Deviation: = $\pm -2.39KHz$

Standard: EIA 4.2.3.2 Deviation shall not exceed rated system deviation

Measurement Results

Reference Deviation, kHz = 1.5kHz Reference Frequency, Hz = 1000Hz Reference I/p level, dBm = -10dBm

2.1047 (a) Audio Low Pass Response: 3KHz: = -2.5dB

6KHz: = -11.6dB 8KHz: = -21.0dB 10KHz: = -30.5dB 15KHz: = -45.6dB

=

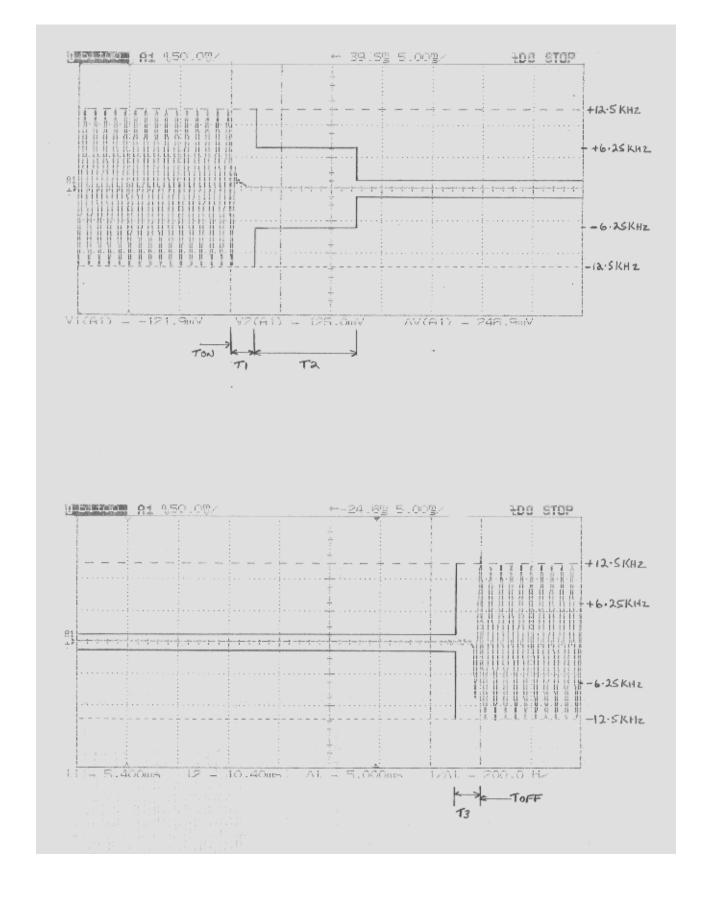
50kHz < fd Att.= > 80dB

80dB

85dB

2.1051 Conducted Spurious Emissions: <-13dBm -43dBm

At Ch-1 = Less than $-43 \, dBm$ (Measurement of : RF Carrier 2nd Harmonic up to 10th Harmonic) At Ch-1 = Less than $-43 \, dBm$ (Measurement of : RF Carrier 2nd Harmonic up to 10th Harmonic) At Ch-2 = Less than $-43 \, dBm$ (Measurement of : RF Carrier 2nd Harmonic up to 10th Harmonic) At Ch-2 = Less than $-43 \, dBm$ (Measurement of : RF Carrier 2nd Harmonic up to 10th Harmonic) At Ch-3 = Less than $-43 \, dBm$ (Measurement of : RF Carrier 2nd Harmonic up to 10th Harmonic) At Ch-3 = Less than $-43 \, dBm$ (Measurement of : RF Carrier 2nd Harmonic up to 10th Harmonic)


90.214 Transient Frequency Behavior of Transmitter

$$t1 = 10 \text{ms}$$
 $< \pm 12.5 \text{kHz}$ = **Pass**

$$t2 = 25 \text{ms}$$
 $< \pm 6.25 \text{kHz}$ = **Pass**

$$t3 = 10 \text{ms}$$
 $< \pm 12.5 \text{kHz}$ = $Pass$

=

Receiver Tests:

Test Frequency = 210.000MHz at CH-2

15 Conducted Spurious Radiation: (< -57dBm)
(EIA <-87dBW = -57dBm)

Results; -100dBm

Test Ry · R McAllan File · FIA - FF-01096409 Test date · 10-10-01 Page 6