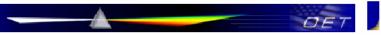


<u>Date(s) of Evaluation</u> March 09 & April 07, 2009

Test Report Issue Date
April 09, 2009

Test Report Serial No. 030409OKC-T954-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)



Test Lab Certificate No. 2470.01

APPENDIX E - DIPOLE CALIBRATION (FCC KDB 250418) & PROBE CALIBRATION

FCC Home | Search | Updates | E-Filing | Initiatives | For Consumers | Find People

Office of Engineering and Technology

Inquiry:

Uploading 300 MHz and 450 MHz Dipole Calibration Reports

Responses

FCC confirmation attached for Celltech Labs Dipoles with following identifications:

Serial #: 136 / 450 MHz / Head Tissue-Equivalent Medium / Expires 02/28/2010 Serial #: 135 / 300 MHz / Head Tissue-Equivalent Medium / Expires 02/28/2010

A copy of the confirmation and corresponding Dipole Report(s) are required to be included in SAR reports of applicable equipment certification filings. Each filing must have KDB tracking number 250418 included on 731 Form.

The dipoles listed below have prior coordination with the FCC Lab for use in SAR system validation and verification by Celltech Labs through February 2010. The SAR target values, specific operating parameters and identifications are indicated below. SAR measurements using these dipoles must be in accordance with the parameters specified below; for example, phantom shell and tissue dielectric requirements etc. These will be verified during each equipment certification by the FCC or TCB, according to measurement protocols required for testing the specific device and wireless technology, to support the test methodologies and measurement results.

This confirmation and copies of the dipole calibration reports are required to be included in SAR reports for equipment certification containing SAR system verification results involving these dipoles. The information is available and can be verified through the KDB inquiry tracking number provided to Celltech Labs. The same tracking number must also be included on the 731 Form of the corresponding equipment certifications.

Dipole Serial Number	136	135			
Calibration Document No.	DC450H-021209-R1.2	DC300H-021209-R1.2			
Frequency	450 MHz	300 MHz			
Dipole Impedance	58.21 + j 5.69 Ohms	46.39 + j 6.25 Ohms			
Dipole Return Loss	-20.7 dB	- 22.6 dB			
Tissue-Equivalent Dielectric Type	He	ead			
Tissue Dielectric Constant	43.5	45.3			
Tissue Conductivity	0.87 S/m	0.87 S/m			
Phantom Shell Thickness	6.0 mm	Plexiglas			
Phantom Shell Dielectric Constant	2	.7			
Dipole Axis to Tissue Medium Separation Distance	15.175 mm				
Numerical Simulation:	FD	TD			
1-g SAR Target Value	4.893 W/kg @ 1.0 W	3.019 W/kg @ 1.0 W			
10-g SAR Target Value	3.263 W/kg @ 1.0 W	2.051 W/kg @ 1.0 W			
SAR at Phantom Surface above Dipole Feed-Point	6.845 W/kg @ 1.0 W	4.046 W/kg @ 1.0 W			
SAR at Phantom Surface at 2.0 cm offset from Dipole Feed- Point	3.101 W/kg @ 1.0 W	2.049 W/kg @ 1.0 W			
Experimental Verification:	SAR Mea	surements			
1-g SAR Target Value	1.21 ~ 1.23 W/kg @ 0.25 W	0.753 ~ 0.765 W/kg @ 0.25 W			
10-g SAR Target Value	0.787 ~ 0.803 W/kg @ 0.25W	0.503 ~ 0.509 W/kg @ 0.25 W			
SAR at Phantom Surface above Dipole Feed-Point	1.93 W/kg (average) @ 0.25 W	1.20 W/kg (average) @ 0.25 W			
SAR at Phantom Surface at 2.0 cm offset from Dipole Feed- Point	0.79 W/kg @ 0.25 W	0.56 W/kg @ 0.25 W			

Expires February 2010

Celltech Labs Inc.

February 13, 2009

Applica	ant:	Thal	es Commu	nications Inc.	FCC ID:	OKC-4102023501	IC:	473C-4102023501	THALES
Model:	Libe	erty 410	2023-501	Portable Multiband Land Mobile Radio Transceiver			VHF:	150.8 - 173.4 MHz	THALLS
2009 Cellt	9 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 47 of 47	

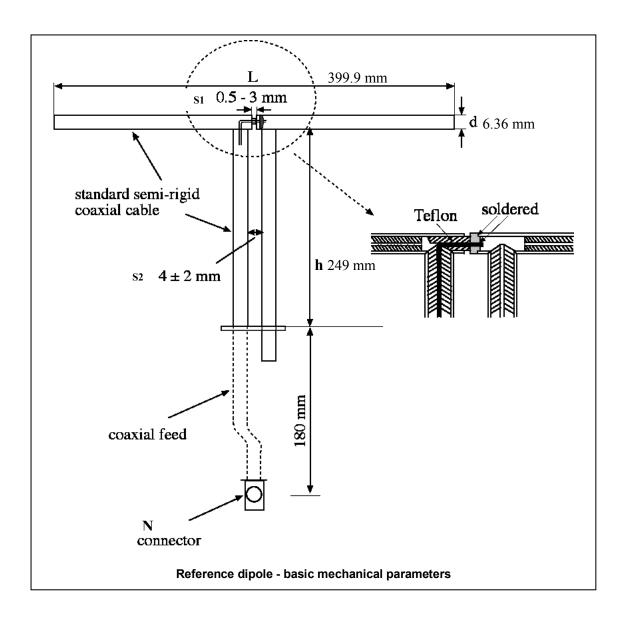
300 MHz Dipole Calibration

Type:	300 MHz Validation Dipole
Asset Number:	00023
Serial Number:	135
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	Jan. 26 & Feb. 09, 2009

Celltech Labs Inc. certifies that the 300 MHz Dipole Calibration was performed on the date(s) indicated above.

Validated by: Sean Johnston

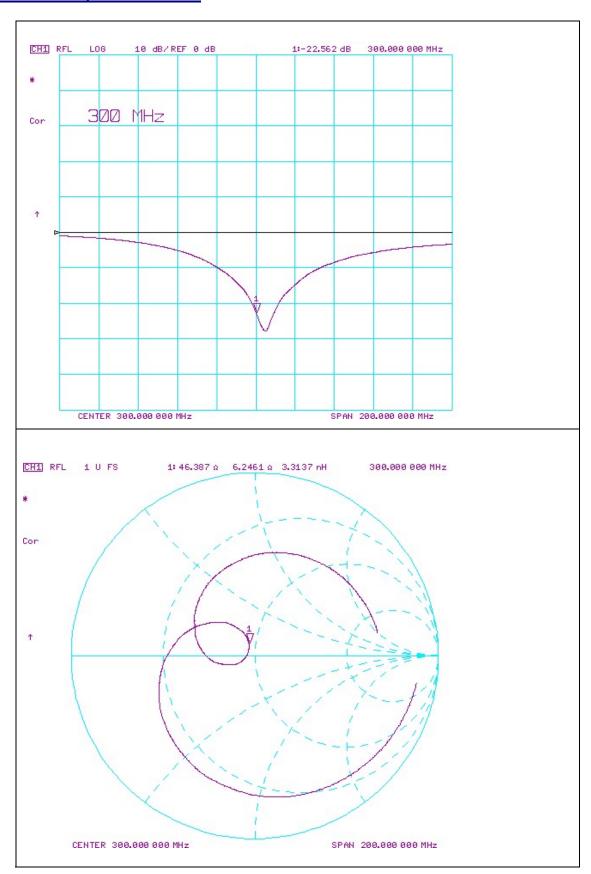
Signature: Sum Sum Sum


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.1mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 300 MHz $Re{Z} = 46.387\Omega$

 $\text{Im}\{Z\}=6.2461\Omega$


Return Loss at 300 MHz -22.562dB

Date(s) of Evaluations:	Jan. 26 & Feb. 09, 2009	Calibration Docume	DC300H-021	209-R1.2	
Evaluation Type:	Dipole Calibration	Dipole Frequency:	300 MHz	Fluid Type:	Head

2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

Dimension	IEEE 1528 (mm)	Measured (mm)	Difference (mm)	Tolerance (1528 1%)
L (mm)	396.0	399.9	+3.9	+0.98%
h (mm)	250.0	249.0	-1.0	-0.4%
d (mm)	6.35	6.36	+0.01	+0.2%

The L, h and d dimensions should be within ±1% tolerance per 1528-2003.

4. Validation Phantom

The validation phantom (planar) was constructed using relatively low-loss tangent Plexiglas material. The dielectric constant used for the numerical analysis was 2.7. The typical range of 2.5 - 3 was selected and the mean of this value used.

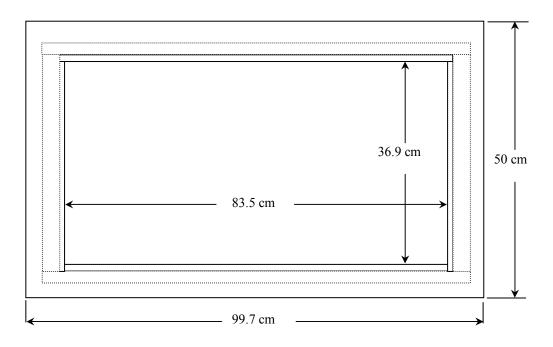
The inner dimensions of the validation phantom are as follows:

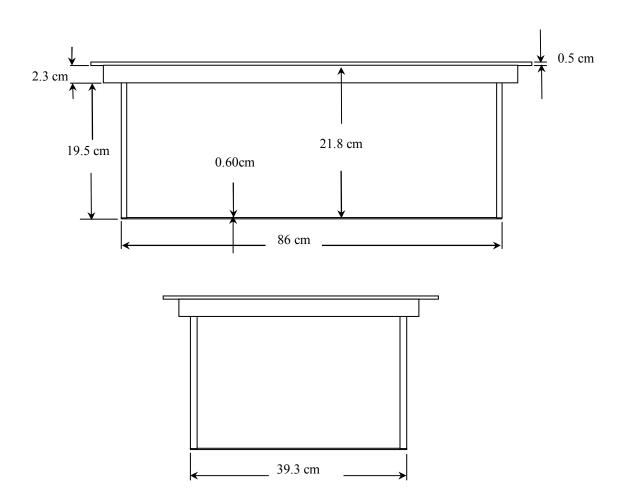
 Length:
 83.5 cm

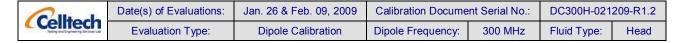
 Width:
 36.9 cm

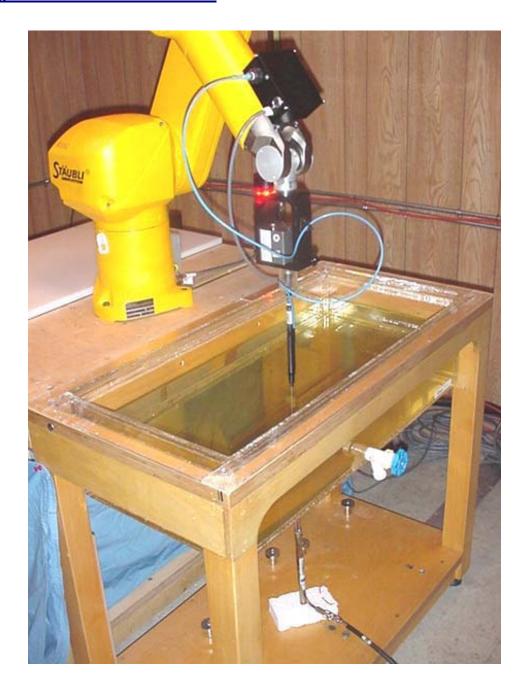
 Height:
 21.8 cm

The bottom section of the validation phantom is constructed of 6.0 ± 0.1 mm Plexiglas.


s = 3.175mm(d/2) + 6.0mm(phantom) + 6.0mm(spacer) = 15.175mm


5. Test Equipment List


TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	CNR	CNR
SPEAG Robot	00046	599396-01	CNR	CNR
SPEAG DAE4	00019	353	22Apr08	22Apr09
SPEAG ET3DV6 E-Field Probe	00017	1590	21Jul08	21Jul09
Plexiglas Validation Planar Phantom	00157	137	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	CNR	CNR
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR
CNR = Calibration Not Required				


6. Dimensions of Plexiglas Planar Phantom

7. Plexiglas Planar Validation Phantom

8. 300 MHz Validation Dipole

9. SAR Target Validation

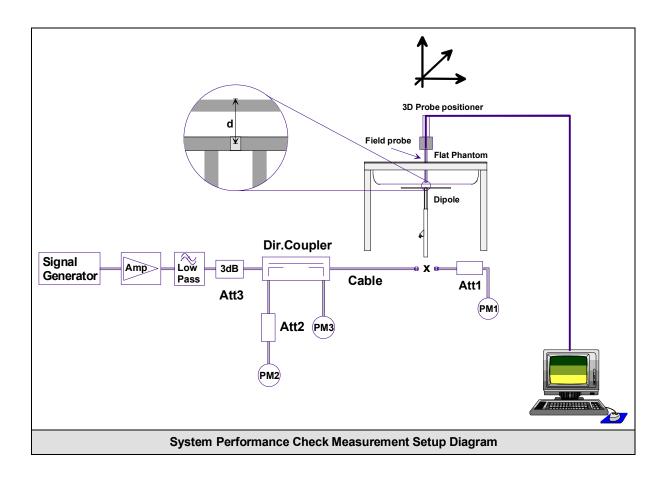
							Para	mete	r									Res	sult	
	Frequency (MHz)	Shell thickness (mm)	Shell permittivity	Shell permeability	Shell Conductivity (σ) (S/m)	Phantom dimensions (mm) [x, y, z]	Liquid Relative permittivity	Liquid Conductivity (σ) (S/m)	Liquid permeability	Reference dipole distances from the liquid (mm)	Spacer (mm)	Dipole L (mm)	Dipole h (mm)	Dipole d (mm)	Distance between dipole feedpoint gap S1 (mm)	Distance between dipole balun elements S2 (mm)	1 g SAR (1 Watt)	10 g SAR (1 Watt)	Local SAR at surface (above feed-point)	Local SAR at surface (y = 2 cm offset from feed-point)
SEMCAD Simulation	300	6	2.7	1	0	1000, 800, 170	45.3	0.87	1	15.175	6	396	250	6.35	1	4	3.019	2.051	4.046	2.049
																	CEL	LTEC	H TAR	GET
																	0.755	W/kg	1g	0.25 W

1. Standard dipole dimensions used in simulation per 1528-2003 mechanical dimensions of the reference dipole.

0.513 W/kg

10g

0.25 W


^{2.} Reference distance from liquid is actual measured distance.

10. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1590, Conversion Factor 8.0). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

11. Measurement Conditions

The validation phantom was filled with 300 MHz Head tissue simulant.

Relative Permittivity: 44.9 (-1.0% deviation from target)

Conductivity: 0.85 mho/m (-2.3% deviation from target)
Fluid Temperature: 21.8 °C (Start of Test) / 22.0 °C (End of Test)

Fluid Depth: \geq 15 cm

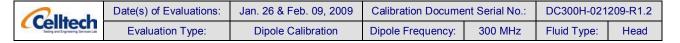
Environmental Conditions:

Ambient Temperature: 23.0 °C
Barometric Pressure: 100.7 kPa
Humidity: 34%

The 300 MHz Head tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight			
Water	37.56%			
Sugar	55.32%			
Salt	5.95%			
HEC		0.98%		
Dowicil 75	0.19%			
IEEE/IEC Target Dielectric Parameters (300 MHz):	ε _r = 45.3 (+/- 5%)	σ = 0.87 S/m (+/- 5%)		

12. System Performance Check SAR Results

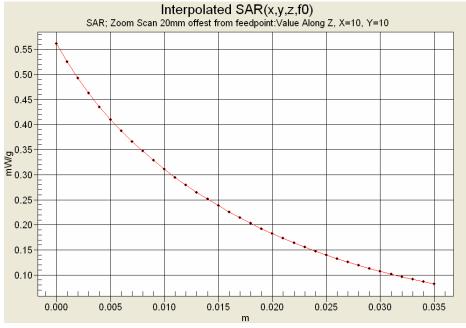

SAR @ 0.	.25W Input av	veraged over	1g (W/kg)	SAR @ 1W Input averaged over 1g (W/kg)				
Validation Target (300)		Measured	Deviation	Validation Target (300)		Measured	Deviation	
0.755	+/- 10%	0.760	+0.7%	3.020 +/- 10%		3.040	+0.7%	
SAR @ 0.2	25W Input av	eraged over	10g (W/kg)	SAR @ 1W Input averaged over 10g (W/kg)				
Validation ⁻	Validation Target (300) Meas		Deviation	Validation	Target (300)	Measured	Deviation	
0.513	+/- 10%	0.506	-1.36%	2.052 +/- 10%		2.024	-1.36%	

Head

Fluid Type:

	300 MHz \$	System Performa	nce Check	@ 250mV	V (1g)
	SAR (mW/g)	Deviation From 300 MHz Numerical Simulation (0.755 mW/g)	STDEV	Mean	Coefficient of Variation
Test 1	0.763	1.73%	0.004	0.760	0.005
Test 2	0.762	1.60%			
Test 3	0.759	1.20%			
Test 4	0.761	1.47%			
Test 5	0.763	1.73%			
Test 6	0.762	1.60%			
Test 7	0.753	0.40%			
Test 8	0.760	1.33%			
Test 9	0.754	0.53%			
Test 10	0.765	2.00%			
	0.760	1.36%			

	300 MHz S	System Performan	nce Check (@ 250mV	/ (10g)	
	SAR (mW/g)	Deviation From 300 MHz Numerical Simulation (0.513 mW/g)	STDEV	Mean	Coefficient of Variation	
Test 1	0.507	-1.17%	0.002	0.506	0.004	
Test 2	0.507	-1.17%				
Test 3	0.505	-1.56%				
Test 4	0.505	-1.56%				
Test 5	0.507	-1.17%				
Test 6	0.507	-1.17%				
Test 7	0.503	-1.95%				
Test 8	0.508	-0.97%				
Test 9	0.504	-1.75%				
Test 10	0.509	-0.78%			· ·	
	0.506	-1.33%				


b) Extrapolation Routine:

The zoom scan routine was used to extrapolate the peak SAR above the feed point and offset at 20mm. Two zoom scans were used, the first centered above the feedpoint and the second offset 20mm. The interpolated SAR at these points are shown in the table below. Note: Center of zoom scan located at x=10, y=10.

Measurement Location	Measured SAR mW/g	SAR 1W Normalized	Peak Target mW/g	Deviation	System Performance Check Expanded Uncertainty +-%
Feed Point	1.20*	4.80	4.05	18.5%	21.98
2 cm Offset	0.56	2.24	2.05	9.3%	21.98

^{*}Note: measured SAR level is the average from the 10 evaluations

Date(s) of Evaluations: Jan. 26 & Feb. 09, 2009 Calibration Document Serial No.: DC300H-021209-R1.2 300 MHz **Evaluation Type: Dipole Calibration** Dipole Frequency: Fluid Type: Head

System Performance Check - 300 MHz Dipole - HSL

DUT: Dipole 300 MHz; Asset: 00023; Serial: 135

Ambient Temp: 23.0°C; Fluid Temp: 21.8°C; Barometric Pressure: 100.7 kPa; Humidity: 34%

Communication System: CW

Frequency: 300 MHz; Duty Cycle: 1:1

Medium: 300 HSL Medium parameters used: f = 300 MHz; σ = 0.85 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(8, 8, 8); Calibrated: 21/07/2008
- Sensor-Surface: 5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Validation Planar; Type: Plexiglas; Serial: TE#137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

300 MHz Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.699 mW/g

300 MHz Zoom Scan 1 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.763 mW/g; SAR(10 g) = 0.507 mW/gMaximum value of SAR (measured) = 0.743 mW/g

300 MHz Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = 0.000 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.507 mW/g

Maximum value of SAR (measured) = 0.740 mW/g

300 MHz Zoom Scan 3 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.759 mW/g; SAR(10 g) = 0.505 mW/g

Maximum value of SAR (measured) = 0.736 mW/g

300 MHz Zoom Scan 4 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.761 mW/g; SAR(10 g) = 0.505 mW/g

Maximum value of SAR (measured) = 0.741 mW/g

300 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.763 mW/g; SAR(10 g) = 0.507 mW/g

Maximum value of SAR (measured) = 0.742 mW/g

300 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.507 mW/gMaximum value of SAR (measured) = 0.741 mW/g

300 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.753 mW/g; SAR(10 g) = 0.503 mW/g

Maximum value of SAR (measured) = 0.715 mW/g

300 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.760 mW/g; SAR(10 g) = 0.508 mW/g

Maximum value of SAR (measured) = 0.723 mW/g

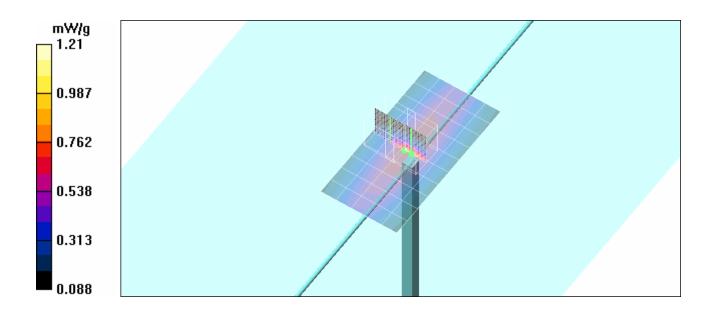
300 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.754 mW/g; SAR(10 g) = 0.504 mW/g

Maximum value of SAR (measured) = 0.707 mW/g


300 MHz Zoom Scan 10 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.5 V/m; Power Drift = 0.001 dB

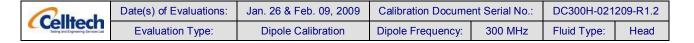
Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.765 mW/g; SAR(10 g) = 0.509 mW/g

Maximum value of SAR (measured) = 0.714 mW/g

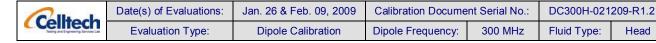
13. Measured Fluid Dielectric Parameters

300 MHz (Head)



Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
26/Jan/2009
Frequency (GHz)
IEEE_eH IEEE 1528-2003 Limits for Head Epsilon
IEEE_sH IEEE 1528-2003 Limits for Head Sigma
Test_e Epsilon of UIM

Test_s Sigma of UIM



Freq	FCC_el-	FCC_sF	lTest_e	Test_s
0.2000	49.97	0.80	50.36	0.75
0.2100	49.50	0.80	48.48	0.78
0.2200	49.03	0.81	48.95	0.77
0.2300	48.57	0.82	47.15	0.79
0.2400	48.10	0.83	46.67	0.79
0.2500	47.63	0.83	47.33	0.80
0.2600	47.17	0.84	47.88	0.81
0.2700	46.70	0.85	47.19	0.81
0.2800	46.23	0.86	46.24	0.83
0.2900	45.77	0.86	44.89	0.83
0.3000	45.30	0.87	44.85	0.85
0.3100	45.18	0.87	44.70	0.85
0.3200	45.06	0.87	45.13	0.88
0.3300	44.94	0.87	44.44	0.87
0.3400	44.82	0.87	43.21	0.87
0.3500	44.70	0.87	43.24	0.89
0.3600	44.58	0.87	43.79	0.91
0.3700	44.46	0.87	43.54	0.91
0.3800	44.34	0.87	42.64	0.91
0.3900	44.22	0.87	42.01	0.92
0.4000	44.10	0.87	41.81	0.94

14. Measurement Uncertainties

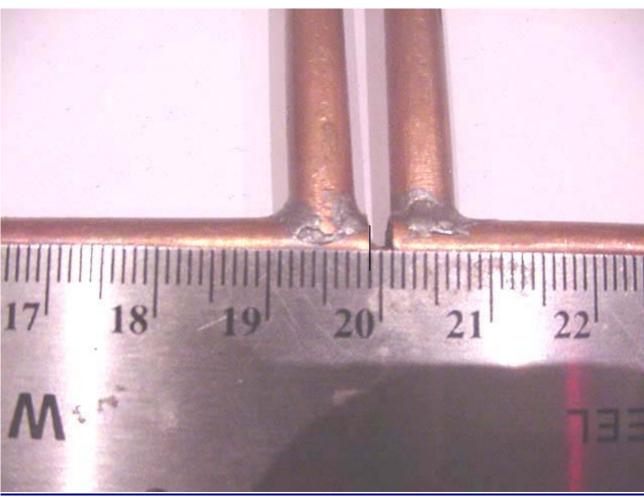
UNCERTAINTY BUDGET FOR SYSTEM PERFORMANCE CHECK									
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (300 MHz)	E.2.1	9	Normal	1	1	1	9	9	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
Hemispherical Isotropy	E.2.2	0	Rectangular	1.732050808	1	1	0.0	0.0	∞
Boundary Effect	E.2.3	2.5	Rectangular	1.732050808	1	1	1.4	1.4	× ×
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	× ×
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0	Rectangular	1.732050808	1	1	0.0	0.0	∞
Integration Time	E.2.8	0	Rectangular	1.732050808	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Dipole									
Dipole Positioning	E.4.2	2	Normal	1.732050808	1	1	1.2	1.2	oo.
SAR Drift Measurement	6.6.2	1.5	Normal	1.732050808	1	1	0.9	0.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	oc
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	×
Liquid Conductivity (measured)	E.3.3	2.3	Normal	1	0.64	0.43	1.5	1.0	∞
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measured)	E.3.3	1	Normal	1	0.6	0.49	0.6	0.5	∞
Combined Standard Uncertainty	RSS				10.99	10.80			
Expanded Uncertainty (95% Confidence	k=2				21.98	21.60			
Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 and IEC International Standard 62209-1:2005									

15. Dipole Calibration History

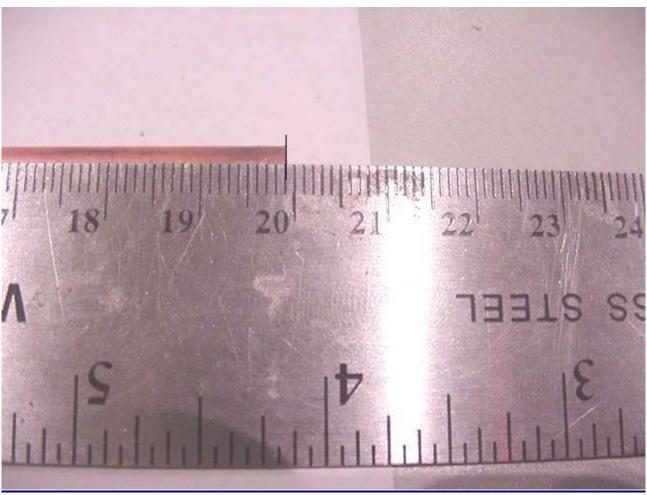
	300 MHz Dipole Calibration History									
SAR Probe Information Celltech Measured Data										
Dipole Calibration Date	Serial Number	Calibration Factor	Calibration Procedure	SAR (W/kg) Measured at 250 mW	% Deviation from IEEE 1528 Target (0.750 W/kg @ 1W)	% Deviation from Target Validated by Celltech (3.019	Dielectric Parameters RL (dB)		Impedance	
				250 11100	(0.750 W/kg @ 1W)	W/kg @ 1W)	ϵ_{r}	σ		
2003	1387	7.9	Numerical	0.782	4.27%		45.7	0.88	-21.70	43.59
2004	1387	7.8	Numerical	0.742	-1.07%		45.9	0.87	-25.00	45.20
2005	1387	7.9	Numerical	0.750	0.00%		44.3	0.84	-24.30	44.40
2006	1387	7.8	Numerical	0.760	1.33%		45.4	0.85	-24.30	44.40
2007	1387	7.3	Numerical	0.768	2.40%		45.2	0.89	-20.30	45.80
2008	1387	7.8	Measured	0.794		5.20%	45.6	0.90	-20.20	46.70
2008	1590	8.0	Measured	0.768		1.76%	43.5	0.89	-22.50	46.70
2008	1590	8.0	Measured	0.777		2.95%	44.9	0.85	-22.50	46.40
	Target Dielectric Parameters: ϵ_r = 45.3, σ = 0.87 s/m									

APPENDIX A - PHOTOGRAPHS

Date(s) of Evaluations:Jan. 26 & Feb. 09, 2009Calibration Document Serial No.:DC300H-021209-R1.2Evaluation Type:Dipole CalibrationDipole Frequency:300 MHzFluid Type:Head



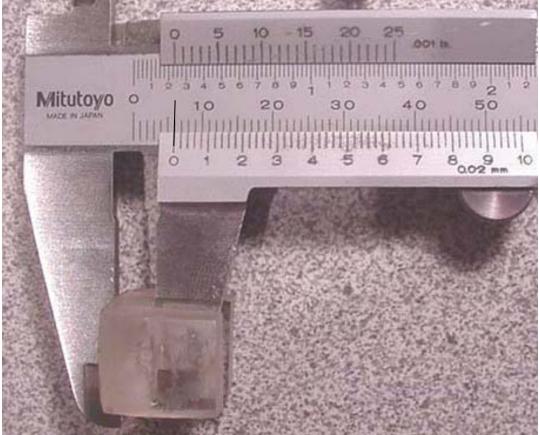
Dipole Dimension h = 249mm



Right Element = 199mm

Left Element = 199mm

Dimension Between Elements = 1.88mm


Total Dimension L: 199mm + 199mm + 1.88mm = 399.9mm

Head

Date(s) of Evaluations:Jan. 26 & Feb. 09, 2009Calibration Document Serial No.:DC300H-021209-R1.2Evaluation Type:Dipole CalibrationDipole Frequency:300 MHzFluid Type:Head

Dipole Spacer Dimension = 6.0mm

APPENDIX B - SEMCAD SIMULATION LOG FILE

Date(s) of Evaluations: Jan. 26 & Feb. 09, 2009 Calibration Document Serial No.: DC300H-021209-R1.2

Evaluation Type: Dipole Calibration Dipole Frequency: 300 MHz Fluid Type: Head

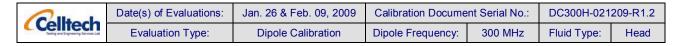
```
iSolve X, Version 13.4, Build 34, 64Bit Windows, Single Precision
Simulation name 'Dielectric Const = 2.7'
Maxwell Solver started the 2009-Feb-09 10:40:13.
Initializing FDTD (x1 CFL) Harmonic Simulation at 300 MHz
Overall discretization:
Smallest number of cells per wavelength = 29.6948, largest = 395.114, average = 163.379
Simulation time-step = 1.257e-012 s
Simulation time-step / minimum of CFL criteria = 0.998584
Maximum of CFL criteria / minimum of CFL criteria = 51.1583
Average of CFL criteria / minimum of CFL criteria = 9.93237
Discretization by solids:
Background: epsr = 1, mur = 1, sigma = 0, sigma* = 0 - smallest number of cells per wavelength =
199.862, largest = 395.114, average = 205.114
Phantom/Shell: epsr = 2.7, mur = 1, sigma = 0, sigma* = 0 - smallest number of cells per
wavelength = 122.674, largest = 240.458, average = 141.978
Phantom/Liquid: epsr = 45.3, mur = 1, sigma = 0.87, sigma* = 0 - smallest number of cells per
wavelength = 29.6948, largest = 64.3059, average = 31.9627
Boundary conditions:
Side X-: U-PML(8)
Side X+: U-PML(8)
Side Y-: U-PML(8)
Side Y+: U-PML(8)
Side Z-: U-PML(8)
Side Z+: U-PML(8)
Grid:
Number of nodes=323x275x177, number of voxels=15528128
Excitations:
Initializing (Voltage) edge source Quelle
Overall duration: 4.33333e-008 s or 34474 iterations
Probes & Sensors:
Initializing near-field sensor 1g
Initializing near-field sensor 10g
Initializing near to far field transformation
Initializing near-field sensor Overall Field
Initializing near-field sensor Unnamed
Initializing port sensor Sensor of Quelle
Initializing port sensor TDSensor
Initializing port sensor FDSensor
Initializing port sensor ObererSensor
Enable monitoring:
Sensor of Quelle, V(t)
Sensor of Quelle, I(t)
TDSensor, V(t)
TDSensor, I(t)
FDSensor, V(t)
FDSensor, I(t)
ObererSensor, V(t)
ObererSensor, I(t)
Checking out the license feature ISOLVEX SOLVER FDTD, expiring the 1-mar-2009, version 10.0, (1).
Calculating update coefficients:
Created thread pool with 2 thread(s).
Calculating update coefficients: completed. Time: 24 seconds.
Hardware acceleration not used, please contact SPEAG for more information.
Yee (explicit) iterations starting using U-PML Boundary Condition.
0% - iterations: 5 / 34473 - [8.47 MCells/s] - Estimated time to completion: 17:33:11
0% - iterations: 11 / 34473 - [7.76 MCells/s] - Estimated time to completion: 19:08:44
0\% - iterations: 17 / 34473 - [7.76 MCells/s] - Estimated time to completion: 19:08:32 0\% - iterations: 23 / 34473 - [8.47 MCells/s] - Estimated time to completion: 17:32:38
0% - iterations: 32 / 34473 - [11.6 MCells/s] - Estimated time to completion: 12:45:21
0\% - iterations: 41 / 34473 - [12.7 MCells/s] - Estimated time to completion: 11:41:23 0\% - iterations: 53 / 34473 - [16.9 MCells/s] - Estimated time to completion: 08:45:51
```


Date(s) of Evaluations:Jan. 26 & Feb. 09, 2009Calibration Document Serial No.:DC300H-021209-R1.2Evaluation Type:Dipole CalibrationDipole Frequency:300 MHzFluid Type:Head

```
0\% - iterations: 63 / 34473 - [14.1 MCells/s] - Estimated time to completion: 10:30:51
0% - iterations: 73 / 34473 - [14.1 MCells/s] - Estimated time to completion: 10:30:40
0% - iterations: 73 / 34473 - [14.1 Mcells/s] - Estimated time to completion: 12:44:14
0% - iterations: 88 / 34473 - [8.47 Mcells/s] - Estimated time to completion: 17:30:39
0% - iterations: 95 / 34473 - [9.88 Mcells/s] - Estimated time to completion: 15:00:22
0% - iterations: 102 / 34473 - [9.88 MCells/s] - Estimated time to completion: 15:00:11
0\% - iterations: 108 / 34473 - [7.17 MCells/s] - Estimated time to completion: 20:40:57 0\% - iterations: 114 / 34473 - [7.76 MCells/s] - Estimated time to completion: 19:05:18
0% - iterations: 120 / 34473 - [7.17 MCells/s] - Estimated time to completion: 20:40:31
0\% - iterations: 126 / 34473 - [7.76 MCells/s] - Estimated time to completion: 19:04:54 0\% - iterations: 131 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:59:12
0% - iterations: 136 / 34473 - [6.47 MCells/s] - Estimated time to completion: 22:53:28
0% - iterations: 140 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:59:42
0% - iterations: 144 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:59:29
0% - iterations: 149 / 34473 - [5.97 MCells/s] - Estimated time to completion: 24:47:22
0% - iterations: 154 / 34473 - [6.47 MCells/s] - Estimated time to completion: 22:52:45
0\% - iterations: 160 / 34473 - [8.47 MCells/s] - Estimated time to completion: 17:28:27 0\% - iterations: 166 / 34473 - [8.47 MCells/s] - Estimated time to completion: 17:28:16
1% - iterations: 173 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:19:59
1% - iterations: 179 / 34473 - [7.76 MCells/s] - Estimated time to completion: 19:03:08
1% - iterations: 184 / 34473 - [6.47 MCells/s] - Estimated time to completion: 22:51:33
1% - iterations: 189 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:57:04
1% - iterations: 194 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:56:53
1% - iterations: 198 / 34473 - [5.18 MCells/s] - Estimated time to completion: 28:33:45
1% - iterations: 203 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:56:34
1% - iterations: 210 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:18:56
1% - iterations: 217 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:18:44
1% - iterations: 223 / 34473 - [7.17 MCells/s] - Estimated time to completion: 20:36:48
1% - iterations: 227 / 34473 - [5.18 MCells/s] - Estimated time to completion: 28:32:18
1% - iterations: 235 / 34473 - [11.3 MCells/s] - Estimated time to completion: 13:04:37
1\% - iterations: 244 / 34473 - [11.6 MCells/s] - Estimated time to completion: 12:40:38
1\% - iterations: 248 / 34473 - [5.18 MCells/s] - Estimated time to completion: 28:31:15 1\% - iterations: 252 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:53:38
1% - iterations: 256 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:53:25
1% - iterations: 261 / 34473 - [6.47 MCells/s] - Estimated time to completion: 22:48:28
1% - iterations: 266 / 34473 - [6.47 MCells/s] - Estimated time to completion: 22:48:16
1% - iterations: 269 / 34473 - [4.23 MCells/s] - Estimated time to completion: 34:50:14
1\% - iterations: 273 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:52:30
1% - iterations: 278 / 34473 - [6.47 MCells/s] - Estimated time to completion: 22:47:48
1% - iterations: 283 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:53:38
1% - iterations: 288 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:53:27
1% - iterations: 293 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:53:16
1% - iterations: 298 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:53:05
1% - iterations: 304 / 34473 - [7.76 MCells/s] - Estimated time to completion: 18:58:58
1\% - iterations: 310 / 34473 - [8.47 MCells/s] - Estimated time to completion: 17:23:52
1% - iterations: 315 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:52:27
1% - iterations: 319 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:50:00
1% - iterations: 323 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:49:47
1% - iterations: 327 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:49:34
1% - iterations: 331 / 34473 - [5.65 MCells/s] - Estimated time to completion: 26:04:50
1% - iterations: 336 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:51:41
1\% - iterations: 340 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:48:52
1% - iterations: 345 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:51:21
1% - iterations: 350 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:51:10
1% - iterations: 355 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:50:59
1% - iterations: 362 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:14:35
1% - iterations: 369 / 34473 - [9.88 MCells/s] - Estimated time to completion: 14:53:12
1% - iterations: 375 / 34473 - [7.76 MCells/s] - Estimated time to completion: 18:56:36
1\% - iterations: 381 / 34473 - [7.76 MCells/s] - Estimated time to completion: 18:56:24
1% - iterations: 388 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:13:51
1% - iterations: 395 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:13:39
1% - iterations: 400 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:49:20
1% - iterations: 405 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:49:09
1% - iterations: 409 / 34473 - [4.44 MCells/s] - Estimated time to completion: 33:07:04
1% - iterations: 413 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:44:55
1% - iterations: 417 / 34473 - [4.78 MCells/s] - Estimated time to completion: 30:44:42
1\% - iterations: 421 / 34473 - [4.78 \text{ MCells/s}] - Estimated time to completion: 30:44:29 1\% - iterations: 425 / 34473 - [4.78 \text{ MCells/s}] - Estimated time to completion: 30:44:16
1% - iterations: 430 / 34473 - [7.06 MCells/s] - Estimated time to completion: 20:48:14
1% - iterations: 437 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:12:27
1% - iterations: 444 / 34473 - [9.06 MCells/s] - Estimated time to completion: 16:12:15
```


Date(s) of Evaluations: Jan. 26 & Feb. 09, 2009 Calibration Document Serial No.: DC300H-021209-R1.2

Evaluation Type: Dipole Calibration Dipole Frequency: 300 MHz Fluid Type: Head


```
72% - iterations: 24653 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:20:02
72% - iterations: 24663 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:59:51
72% - iterations: 24673 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:59:40 72% - iterations: 24683 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:59:29
72% - iterations: 24692 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:19:14
72% - iterations: 24702 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:59:08
72% - iterations: 24712 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:58:57 72% - iterations: 24722 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:58:46
72% - iterations: 24731 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:18:26
72% - iterations: 24741 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:58:25 72% - iterations: 24751 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:58:14
72% - iterations: 24761 / 34473 - [12.9 MCells/s] - Estimated time to completion: 03:14:14
72% - iterations: 24771 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:57:52
72% - iterations: 24781 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:57:41 72% - iterations: 24791 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:57:30
72% - iterations: 24800 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:17:02
72% - iterations: 24810 / 34473 - [14.1 \text{ MCells/s}] - Estimated time to completion: 02:57:09 72% - iterations: 24820 / 34473 - [14.1 \text{ MCells/s}] - Estimated time to completion: 02:56:58
72% - iterations: 24829 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:16:27
72% - iterations: 24839 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:56:37
72% - iterations: 24849 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:56:26
72% - iterations: 24859 / 34473 - [12.9 MCells/s] - Estimated time to completion: 03:12:16
72% - iterations: 24869 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:56:04
72% - iterations: 24879 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:55:53 72% - iterations: 24888 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:15:15
72% - iterations: 24898 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:55:32
72% - iterations: 24908 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:55:21
72% - iterations: 24918 / 34473 - [14.1 \text{ MCells/s}] - Estimated time to completion: 02:55:10 72% - iterations: 24927 / 34473 - [12.7 \text{ MCells/s}] - Estimated time to completion: 03:14:27
72% - iterations: 24937 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:54:49
72% - iterations: 24947 / 34473 - [14.1 Mcells/s] - Estimated time to completion: 02:54:38 72% - iterations: 24957 / 34473 - [14.1 Mcells/s] - Estimated time to completion: 02:54:27 72% - iterations: 24966 / 34473 - [12.7 Mcells/s] - Estimated time to completion: 03:13:39
72% - iterations: 24976 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:54:06
72% - iterations: 24986 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:53:55 73% - iterations: 24995 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:13:04
73% - iterations: 25005 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:53:34
73% - iterations: 25015 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:53:23 73% - iterations: 25025 / 34473 - [12.9 MCells/s] - Estimated time to completion: 03:08:57
73% - iterations: 25035 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:53:01
73% - iterations: 25045 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:52:50
73% - iterations: 25055 / 34473 - [14.1 \text{ MCells/s}] - Estimated time to completion: 02:52:39 73% - iterations: 25064 / 34473 - [12.7 \text{ MCells/s}] - Estimated time to completion: 03:11:39
73% - iterations: 25074 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:52:18
73% - iterations: 25074 / 34473 - [14.1 Mcells/s] - Estimated time to completion: 02:52:07 73% - iterations: 25084 / 34473 - [14.1 Mcells/s] - Estimated time to completion: 02:52:07 73% - iterations: 25094 / 34473 - [12.9 Mcells/s] - Estimated time to completion: 03:07:34 73% - iterations: 25104 / 34473 - [14.1 Mcells/s] - Estimated time to completion: 02:51:45
73% - iterations: 25114 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:51:34
73% - iterations: 25123 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:10:27 73% - iterations: 25133 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:51:14
73% - iterations: 25143 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:51:03
73% - iterations: 25153 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:50:52 73% - iterations: 25162 / 34473 - [12.7 MCells/s] - Estimated time to completion: 03:09:40
73% - iterations: 25172 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:50:31
73% - iterations: 25182 / 34473 - [14.1 MCells/s] - Estimated time to completion: 02:50:20
73% - iterations: 25192 / 34473 - [12.9 MCells/s] - Estimated time to completion: 03:05:37
Steady state detected at iteration: 25195 - the simulation will end shortly.
Please wait ... saving the sensor 'Overall Field' (E-fields) on disk.
Please wait ... saving the sensor 'Overall Field' (H-fields) on disk.
Please wait ... saving the sensor 'Unnamed' (E-fields) on disk.
Please wait ... saving the sensor 'Unnamed' (H-fields) on disk.
97% - iterations: 25195 / 25858 - [0.0214 \text{ MCells/s}] - Estimated time to completion: 133:42:18 97% - iterations: 25205 / 25858 - [14.1 \text{ MCells/s}] - Estimated time to completion: 00:11:58
98% - iterations: 25215 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:11:47
98% - iterations: 25225 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:12:39
98% - iterations: 25235 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:11:25
98% - iterations: 25245 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:11:14
98% - iterations: 25255 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:11:03
98% - iterations: 25264 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:12:06
98% - iterations: 25274 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:10:42
```


Date(s) of Evaluations:Jan. 26 & Feb. 09, 2009Calibration Document Serial No.:DC300H-021209-R1.2Evaluation Type:Dipole CalibrationDipole Frequency:300 MHzFluid Type:Head

```
98% - iterations: 25284 / 25858 - [14.1 \text{ MCells/s}] - Estimated time to completion: 00:10:31 98% - iterations: 25294 / 25858 - [12.9 \text{ MCells/s}] - Estimated time to completion: 00:11:16
98% - iterations: 25304 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:10:09
98% - iterations: 25314 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:09:58
98% - iterations: 25324 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:09:47 98% - iterations: 25333 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:10:41
98% - iterations: 25343 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:09:26
98% - iterations: 25352 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:10:18 98% - iterations: 25362 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:09:05
98% - iterations: 25372 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:08:54
98% - iterations: 25381 / 25858 - [12.7 Mcells/s] - Estimated time to completion: 00:09:43 98% - iterations: 25391 / 25858 - [14.1 Mcells/s] - Estimated time to completion: 00:08:33 98% - iterations: 25401 / 25858 - [14.1 Mcells/s] - Estimated time to completion: 00:08:22
98% - iterations: 25410 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:09:07
98% - iterations: 25420 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:08:01 98% - iterations: 25428 / 25858 - [10.4 MCells/s] - Estimated time to completion: 00:10:45
98% - iterations: 25437 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:08:34
98% - iterations: 25446 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:08:23
98% - iterations: 25456 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:07:22
98% - iterations: 25466 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:07:11
99% - iterations: 25476 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:07:38
99% - iterations: 25486 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:06:49
99% - iterations: 25496 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:06:38
99% - iterations: 25506 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:06:27
99% - iterations: 25515 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:06:59
99% - iterations: 25525 / 25858 - [14.1 \text{ MCells/s}] - Estimated time to completion: 00:06:06 99% - iterations: 25535 / 25858 - [14.1 \text{ MCells/s}] - Estimated time to completion: 00:05:55
99% - iterations: 25544 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:06:23
99% - iterations: 25554 / 25858 - [14.1 \text{ MCells/s}] - Estimated time to completion: 00:05:34 99% - iterations: 25564 / 25858 - [14.1 \text{ MCells/s}] - Estimated time to completion: 00:05:23
99% - iterations: 25574 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:05:40
99% - iterations: 25584 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:05:01
99% - iterations: 25594 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:04:50 99% - iterations: 25604 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:05:04
99% - iterations: 25614 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:04:28
99% - iterations: 25624 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:04:17 99% - iterations: 25634 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:04:06
99% - iterations: 25643 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:04:22
99% - iterations: 25653 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:03:45
99% - iterations: 25663 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:03:34 99% - iterations: 25673 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:03:42
99% - iterations: 25683 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:03:12
99% - iterations: 25693 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:03:01
99% - iterations: 25703 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:03:06
99% - iterations: 25713 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:02:39
99% - iterations: 25723 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:02:28
100% - iterations: 25733 / 25858 - [12.9 MCells/s] - Estimated time to completion: 00:02:30 100% - iterations: 25743 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:02:06
100% - iterations: 25753 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:01:55
100% - iterations: 25763 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:01:44 100% - iterations: 25771 / 25858 - [11.3 MCells/s] - Estimated time to completion: 00:01:59 100% - iterations: 25779 / 25858 - [10.4 MCells/s] - Estimated time to completion: 00:01:58
100% - iterations: 25787 / 25858 - [10.4 MCells/s] - Estimated time to completion: 00:01:46
100% - iterations: 25795 / 25858 - [11.3 MCells/s] - Estimated time to completion: 00:01:26
100% - iterations: 25805 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:00:58
100% - iterations: 25814 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:00:53
100% - iterations: 25824 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:00:37
100% - iterations: 25834 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:00:26 100% - iterations: 25844 / 25858 - [14.1 MCells/s] - Estimated time to completion: 00:00:15
100% - iterations: 25853 / 25858 - [12.7 MCells/s] - Estimated time to completion: 00:00:06
Please wait ... saving the sensor 'Overall Field' (E-fields) on disk.
Please wait ... saving the sensor 'Overall Field' (H-fields) on disk.
Please wait ... saving the sensor 'Unnamed' (E-fields) on disk.
Please wait ... saving the sensor 'Unnamed' (H-fields) on disk.
100% - iterations: 25858 / 25858 - [0.0357 MCells/s] - Estimated time to completion: 00:00:00
```

Maxwell Solver run ended the 2009-Feb-10 00:57:28. Total simulation time was 14:17:15 (hh:mm:ss, wall-clock time).

APPENDIX C - PROBE CALIBRATION REPORT

Page 29 of 29

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Issued: July 21, 2008

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celiteci

Certificate No: ET3-1590_Jul08

Accreditation No.: SCS 108

ET3DV6 - SN:1590 Object QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes July 21, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date (Certificate No.) Primary Standards Apr-09 1-Apr-08 (No. 217-00788) Power meter E4419B GB41293874 Apr-09 MY41495277 1-Apr-08 (No. 217-00788) Power sensor E4412A Apr-09 1-Apr-08 (No. 217-00788) Power sensor E4412A MY41498087 Jul-09 SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Reference 3 dB Attenuator Apr-09 31-Mar-08 (No. 217-00787) Reference 20 dB Attenuator SN: S5086 (20b) Jul-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jan-09 SN: 3013 2-Jan-08 (No. ES3-3013_Jan08) Reference Probe ES3DV2 Sep-08 3-Sep-07 (No. DAE4-660_Sep07) DAE4 SN: 660 Scheduled Check Check Date (in house) ID# Secondary Standards 4-Aug-99 (in house check Oct-07) In house check: Oct-09 US3642U01700 RF generator HP 8648C In house check: Oct-08 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) Signature Function Name **Technical Manager** Calibrated by: Katja Pokovic

Niels Kuster

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Quality Manager

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Last calibrated:

May 20, 2005

Recalibrated:

July 21, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.81 ± 10.1%	μ V/(V/m) ²	DCP X	87 mV
NormY	2.00 ± 10.1%	μ V/(V/m) ²	DCP Y	92 mV
NormZ	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	85 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

835 MHz

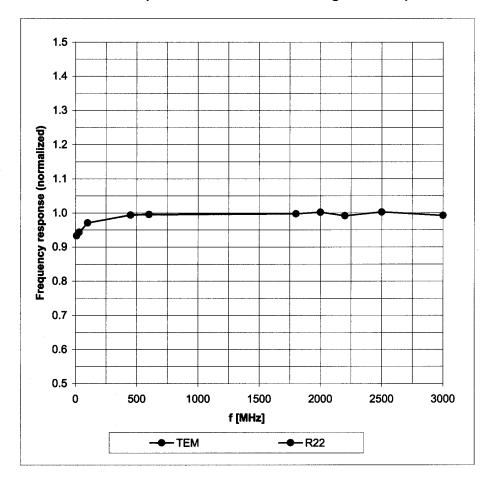
Typical SAR gradient: 5 % per mm

Sensor Center t	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	10.7	7.2
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

Sensor Offset

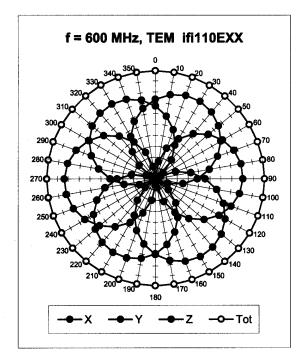
Probe Tip to Sensor Center

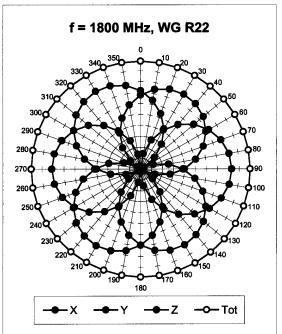
2.7 mm

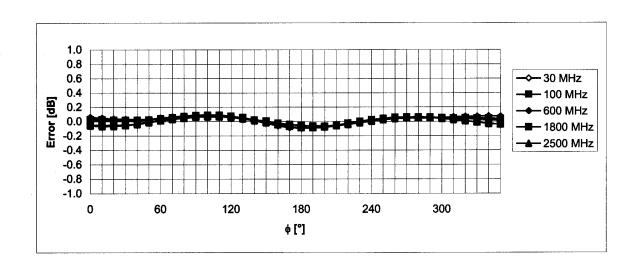

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

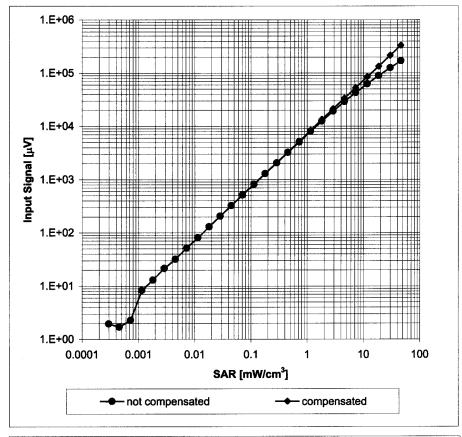

Frequency Response of E-Field

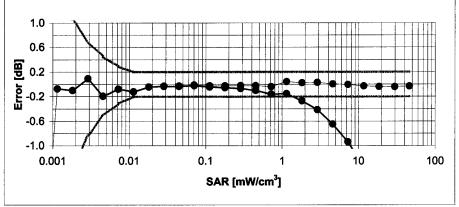

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

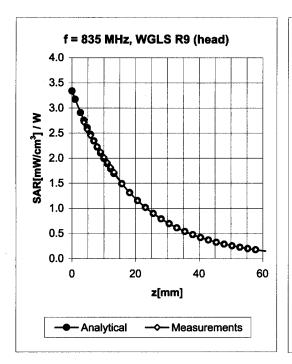
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

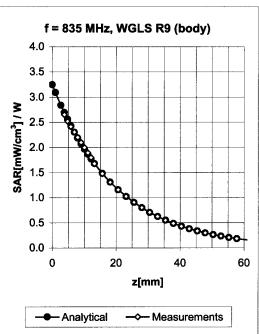




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

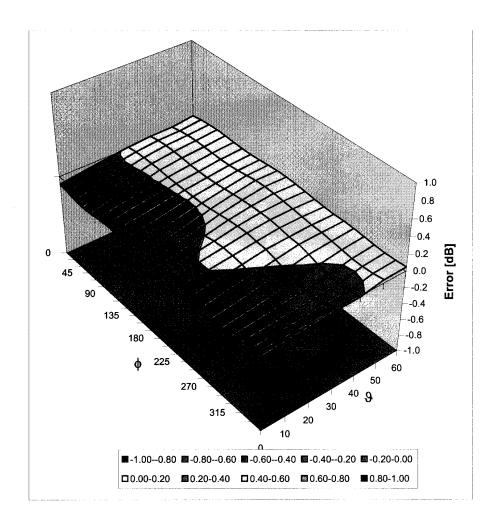
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.34	1.75	7.66	± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.32	3.52	6.54	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	$0.94 \pm 5\%$	0.28	1.77	8.27	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.36	3.31	6.39	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	July 23, 2008
Probe Calibration Date:	July 21, 2008

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450 and 835 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz

ConvF

 $8.9 \pm 10\%$

 $\varepsilon_r = 52.3$

 $\sigma = 0.76 \text{ mho/m}$

(head tissue)

300 MHz

ConvF

 $8.0 \pm 9\%$

 $\varepsilon_r = 45.3$

 $\sigma = 0.87 \text{ mho/m}$

(head tissue)

150 MHz

ConvF

 $8.5 \pm 10\%$

 $\varepsilon_r = 61.9$

 $\sigma = 0.80 \text{ mho/m}$

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.