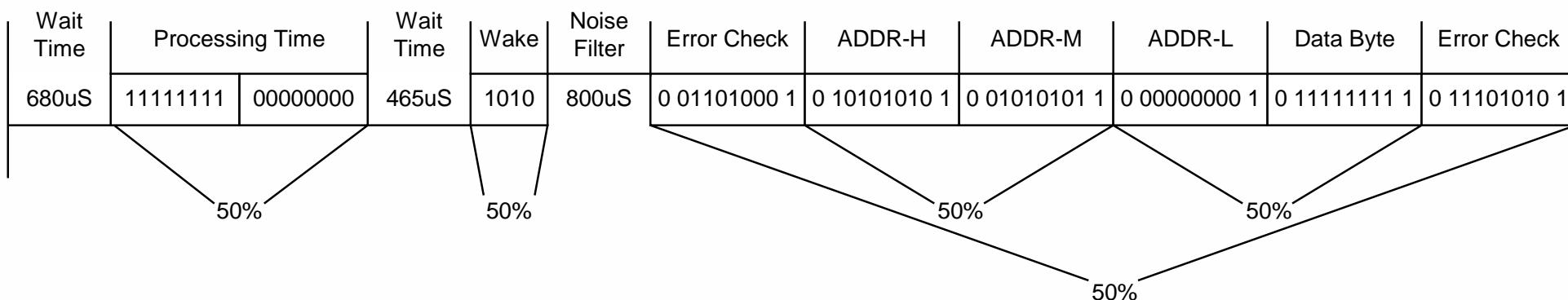
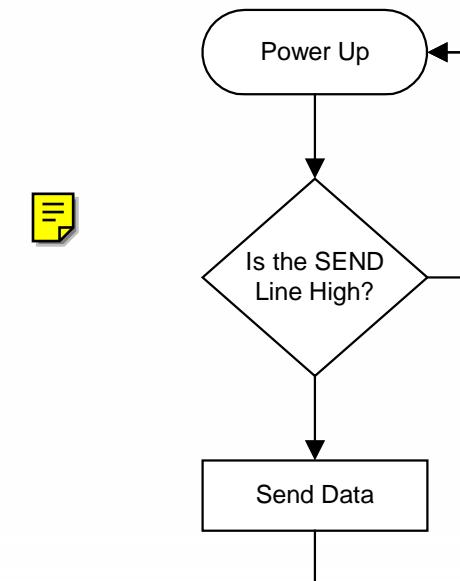


MS Series Encoder Data Structure

The MS Series encoder is designed to securely register button presses or switch closures over a wireless link for remote control applications. It will turn eight parallel input lines into a secure, encoded serial bit stream output.

The MS Series algorithm is designed to create a data stream with a 50% duty cycle by using the same number of high bits and low bits. Two wait times reduce this duty cycle to just below 50%.

Logic State Description:



1 = HIGH
0 = LOW

Total bits, including start and stop bits = 80

Total 1's = 40
Total 0's = 40

Value for each bit per baud rate:

2400bps = 417uS or 1.18% of duty cycle
9600bps = 104uS or 1.01% of duty cycle
19200bps = 52uS or 0.85% of duty cycle
28800bps = 35uS or 0.74% of duty cycle

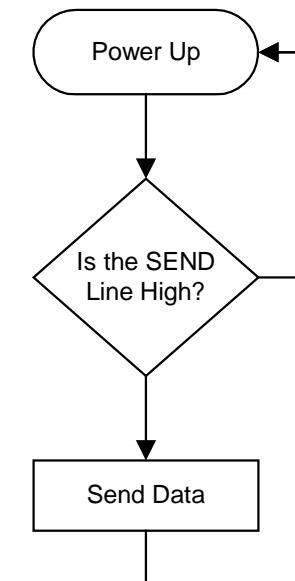
$$\begin{aligned}
 \text{Duty Cycle} = \frac{\text{Time High}}{\text{Total Time}} &\rightarrow \frac{40 \text{ bits} + 800\text{uS}}{80 \text{ bits} + 680\text{uS} + 465\text{uS} + 800\text{uS}} \rightarrow \frac{(40*104\text{uS}) + 800\text{uS}}{(80*104\text{uS}) + 1,945\text{uS}} = \frac{4,960\text{uS}}{10,265\text{uS}} = 48.3\%
 \end{aligned}$$

MS Series Encoder Data Structure

The MS Series encoder is designed to securely register button presses or switch closures over a wireless link for remote control applications. It will turn eight parallel input lines into a secure, encoded serial bit stream output.

The MS Series algorithm is designed to create a data stream with a 50% duty cycle by using the same number of high bits and low bits. Two wait times reduce this duty cycle to just below 50%.

Logic State Description:


1 = HIGH
0 = LOW

Total bits, including start and stop bits = 80

Total 1's = 40
Total 0's = 40

Value for each bit per baud rate:

2400bps = 417uS or 1.18% of duty cycle
9600bps = 104uS or 1.01% of duty cycle
19200bps = 52uS or 0.85% of duty cycle
28800bps = 35uS or 0.74% of duty cycle

$$\begin{aligned}
 \text{Duty Cycle} = \frac{\text{Time High}}{\text{Total Time}} &\rightarrow \frac{40 \text{ bits} + 800\text{uS}}{80 \text{ bits} + 680\text{uS} + 465\text{uS} + 800\text{uS}} &\rightarrow \frac{(37*104\text{uS}) + 800\text{uS}}{(80*104\text{uS}) + 1,945\text{uS}} &= \frac{4,648\text{uS}}{10,265\text{uS}} = 45.27\%
 \end{aligned}$$