



## FCC RADIO TEST REPORT

FCC ID : OJFRN610

Equipment : Corning 5G Sub-6 N77 Radio Node, Corning

5G Sub-6 N77 External Antenna Radio Node

Brand Name Everon RAN
Model Name : SCRN-610-77

Applicant : Corning Optical Communications LLC

6 Concord Road, Shrewsbury, MA 01545

Manufacturer Corning Optical Communications LLC

6 Concord Road, Shrewsbury, MA 01545

Standard : FCC 47 CFR Part 2, 27

The product was received on Jun. 17, 2022 and testing was performed from Jul. 04, 2022 to Nov. 14, 2022. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

 TEL: 886-3-327-3456
 Page Number
 : 1 of 21

 FAX: 886-3-328-4978
 Issue Date
 : Nov. 17, 2022

## **Table of Contents**

| His | tory o | of this test report                                | 3  |
|-----|--------|----------------------------------------------------|----|
| Su  | mmar   | y of Test Result                                   | 4  |
| 1   | Gene   | eral Description                                   | 5  |
|     | 1.1    | Product Feature of Equipment Under Test            | 5  |
|     | 1.2    | Modification of EUT                                | 5  |
|     | 1.3    | Testing Location                                   | 6  |
|     | 1.4    | Applicable Standards                               | 6  |
| 2   | Test   | Configuration of Equipment Under Test              | 7  |
|     | 2.1    | Test Mode                                          | 7  |
|     | 2.2    | Connection Diagram of Test System                  | 8  |
|     | 2.3    | Support Unit used in test configuration and system | 8  |
|     | 2.4    | Measurement Results Explanation Example            | 8  |
|     | 2.5    | Frequency List of Low/Middle/High Channels         | 9  |
| 3   | Cond   | ducted Test Items                                  | 10 |
|     | 3.1    | Measuring Instruments                              | 10 |
|     | 3.2    | Conducted Output Power and EIRP                    | 11 |
|     | 3.3    | Peak-to-Average Ratio                              | 12 |
|     | 3.4    | Occupied Bandwidth                                 | 13 |
|     | 3.5    | Conducted Band Edge                                | 14 |
|     | 3.6    | Conducted Spurious Emission                        | 15 |
|     | 3.7    | Frequency Stability                                | 16 |
| 4   | Radia  | ated Test Items                                    | 17 |
|     | 4.1    | Measuring Instruments                              | 17 |
|     | 4.2    | Radiated Spurious Emission Measurement             | 19 |
| 5   | List   | of Measuring Equipment                             | 20 |
| 6   | Unce   | ertainty of Evaluation                             | 21 |
| Ар  | pendi  | x A. Test Results of Conducted Test                |    |
| Аp  | pendi  | x B. Test Results of Radiated Test                 |    |
| Аp  | pendi  | x C. Test Setup Photographs                        |    |

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE Version 2.4

Page Number Issue Date

: 2 of 21 : Nov. 17, 2022

Report Version

Report No. : FG261332

: 01

## History of this test report

Report No. : FG261332

| Report No. | Version | Description             | Issue Date    |
|------------|---------|-------------------------|---------------|
| FG261332   | 01      | Initial issue of report | Nov. 17, 2022 |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |

TEL: 886-3-327-3456 Page Number : 3 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## **Summary of Test Result**

Report No.: FG261332

| Report<br>Clause  | Ref Std.<br>Clause       | Test Items                                | Result<br>(PASS/FAIL) | Remark                                      |  |
|-------------------|--------------------------|-------------------------------------------|-----------------------|---------------------------------------------|--|
|                   | §2.1046                  | Conducted Output Power                    | Reporting only        |                                             |  |
| 3.2 §27.50 (j)(3) |                          | Equivalent Isotropic Radiated Power (n77) | Pass                  | -                                           |  |
| 3.3               | §27.50 (j)(4)            | Peak-to-Average Ratio                     | Pass                  | -                                           |  |
| 3.4               | §2.1049                  | Occupied Bandwidth                        | Reporting only        | -                                           |  |
| 3.5               | §2.1051<br>§27.53 (I)(2) | Conducted Band Edge Measurement (n77)     | Pass                  | -                                           |  |
| 3.6               | §2.1051<br>§27.53 (I)(2) | Conducted Spurious Emission (n77)         | Pass                  | -                                           |  |
| 3.7               | §2.1055<br>§27.54        | Frequency Stability Temperature & Voltage | Pass                  | -                                           |  |
| 4.2               | §2.1051<br>§27.53 (I)(2) | Radiated Spurious Emission (n77)          | Pass                  | Under limit<br>14.12 dB at<br>14880.000 MHz |  |

#### Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
   It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

#### **Comments and Explanations:**

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Steve Chen Report Producer: Lucy Wu

TEL: 886-3-327-3456 Page Number : 4 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 1 General Description

## 1.1 Product Feature of Equipment Under Test

5G NR

|                                    | Product Feature              |  |  |  |  |  |  |
|------------------------------------|------------------------------|--|--|--|--|--|--|
| Flouuct Feature                    |                              |  |  |  |  |  |  |
| Sample 1 EUT with External Antenna |                              |  |  |  |  |  |  |
| Sample 2                           | EUT with Internal Antenna    |  |  |  |  |  |  |
| Antenna Type                       | External: DAM-Dipole Antenna |  |  |  |  |  |  |
|                                    | Internal: PIFA Antenna       |  |  |  |  |  |  |
|                                    | External Antenna:            |  |  |  |  |  |  |
|                                    | <ant. 1="">: 6.22 dBi</ant.> |  |  |  |  |  |  |
|                                    | <ant. 2="">: 6.22 dBi</ant.> |  |  |  |  |  |  |
|                                    | <ant. 3="">: 6.22 dBi</ant.> |  |  |  |  |  |  |
| Antenna Gain                       | <ant. 4="">: 6.22 dBi</ant.> |  |  |  |  |  |  |
| Antenna Gam                        | Internal Antenna             |  |  |  |  |  |  |
|                                    | <ant. 1="">: 4.32 dBi</ant.> |  |  |  |  |  |  |
|                                    | <ant. 2="">: 4.55 dBi</ant.> |  |  |  |  |  |  |
|                                    | <ant. 3="">: 4.38 dBi</ant.> |  |  |  |  |  |  |
|                                    | <ant. 4="">: 4.01 dBi</ant.> |  |  |  |  |  |  |

**Report No. : FG261332** 

#### Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.
- 2. The device support 4T4R MIMO configuration and the antenna is completely uncorrelated.

### 1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 1.3 Testing Location

| Test Site             | Sporton International Inc. EMC & Wireless Communications Laboratory                                                    |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Site Location    | No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)<br>TEL: +886-3-327-3456<br>FAX: +886-3-328-4978 |  |  |  |  |  |
| Took Site No.         | Sporton Site No.                                                                                                       |  |  |  |  |  |
| Test Site No.         | TH03-HY                                                                                                                |  |  |  |  |  |
| Test Engineer         | Hao Syu                                                                                                                |  |  |  |  |  |
| Temperature (°C)      | 21.5~25.2                                                                                                              |  |  |  |  |  |
| Relative Humidity (%) | 47.6~55.2                                                                                                              |  |  |  |  |  |

Report No.: FG261332

| Test Site             | Sporton International Inc. Wensan Laboratory.                                                                                                    |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Site Location    | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,<br>Taoyuan City 333010, Taiwan (R.O.C.)<br>TEL: +886-3-327-0868<br>FAX: +886-3-327-0855 |  |  |  |
| Test Site No.         | Sporton Site No.<br>03CH12-HY (TAF Code: 3786)                                                                                                   |  |  |  |
| Test Engineer         | Jesse Fan                                                                                                                                        |  |  |  |
| Temperature (°C)      | 20~25                                                                                                                                            |  |  |  |
| Relative Humidity (%) | 50~60                                                                                                                                            |  |  |  |
| Remark                | The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory.                                          |  |  |  |

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

## 1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- + ANSI C63.26-2015
- ANSI / TIA-603-E
- FCC 47 CFR Part 2, 27
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

#### Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- 3. The TAF code is not including all the FCC KDB listed without accreditation.

 TEL: 886-3-327-3456
 Page Number
 : 6 of 21

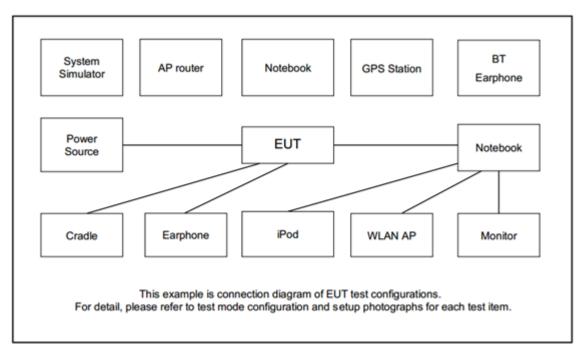
 FAX: 886-3-328-4978
 Issue Date
 : Nov. 17, 2022

## 2 Test Configuration of Equipment Under Test

#### 2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

**Report No. : FG261332** 


For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in two config (Ant. Horizontal and Ant. Vertical), and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and only the worst case emissions were reported in this report.

The conducted power for signal antenna would not exceed the conducted power for 4T4R MIMO configuration, so only MIMO configuration data is tested and reported.

| Test Items                     | NR                                                                                                                                                                                                                                                                                                                                                                                               | Bandwidth (MHz) |            |    |       |    |    | Modulation |    |    | Test<br>Channel |    |     |      |       |       |        |   |   |   |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----|-------|----|----|------------|----|----|-----------------|----|-----|------|-------|-------|--------|---|---|---|
|                                | Band                                                                                                                                                                                                                                                                                                                                                                                             | 10              | 15         | 20 | 25    | 30 | 40 | 50         | 60 | 70 | 80              | 90 | 100 | QPSK | 16QAM | 64QAM | 256QAM | L | М | Н |
| Max. Output<br>Power           | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | -          | -  | -     | -  | v  | -          | ٧  | -  | ٧               | •  | v   | v    | v     | v     | v      | v | v | v |
| Peak-to-Average<br>Ratio       | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | -          | -  | -     | -  | v  | -          |    | -  |                 | -  |     | v    | v     | v     | v      |   | v |   |
| 26dB and 99%<br>Bandwidth      | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | -          | -  | -     | -  | v  | -          | v  | -  | v               | -  | v   | v    | v     | v     | v      |   | v |   |
| Conducted<br>Band Edge         | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | •          | •  | -     | •  | v  | -          | v  | -  | ٧               | •  | v   | v    | v     | v     | v      | V |   | v |
| Conducted<br>Spurious Emission | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | -          | -  | -     | -  | v  | -          | ٧  | -  | ٧               | •  | v   | v    |       |       |        | v | v | v |
| Frequency Stability            | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | -          | -  | -     | -  | ٧  | -          |    | -  |                 | -  |     | v    |       |       |        |   | v |   |
| E.I.R.P                        | n77                                                                                                                                                                                                                                                                                                                                                                                              | -               | -          | -  | -     | -  | ٧  | -          | ٧  | -  | ٧               | •  | v   | v    | v     | v     | v      | ٧ | v | v |
| Radiated Spurious<br>Emission  | n77                                                                                                                                                                                                                                                                                                                                                                                              |                 | Worst Case |    |       |    |    |            |    | v  | v               | v  |     |      |       |       |        |   |   |   |
| Remark                         | 1. The mark "v" means that this configuration is chosen for testing 2. The mark "-" means that this bandwidth is not supported. 3. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test. 4. All the radiated test cases were performed with Sample 1. 5. One representative bandwidth is selected to perform PAR and frequency stability. |                 |            |    | test. |    |    |            |    |    |                 |    |     |      |       |       |        |   |   |   |

TEL: 886-3-327-3456 Page Number : 7 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 2.2 Connection Diagram of Test System



Report No.: FG261332

### 2.3 Support Unit used in test configuration and system

| Item | Equipment | Brand Name    | Model No.          | FCC ID  | Data Cable | Power Cord                                                 |
|------|-----------|---------------|--------------------|---------|------------|------------------------------------------------------------|
| 1.   | Notebook  | DELL          | L340               | FCC DoC | N/A        | AC I/P:<br>Unshielded, 1.2 m<br>DC O/P:<br>Shielded, 1.8 m |
| 2.   | PoE       | Cisco systems | ADH-150AR B        | N/A     | N/A        | N/A                                                        |
| 3.   | Router    | Cisco systems | N540X-12Z16G-SYS-A | N/A     | N/A        | N/A                                                        |

## 2.4 Measurement Results Explanation Example

#### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

#### Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ 

= 4.2 + 10 = 14.2 (dB)

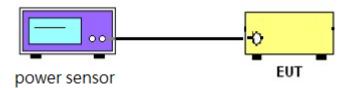
TEL: 886-3-327-3456 Page Number : 8 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 2.5 Frequency List of Low/Middle/High Channels

| 5G NR n77 Channel and Frequency List |                        |         |        |         |  |  |  |  |  |
|--------------------------------------|------------------------|---------|--------|---------|--|--|--|--|--|
| BW [MHz]                             | Channel/Frequency(MHz) | Lowest  | Middle | Highest |  |  |  |  |  |
| 100                                  | Channel                | 650000  | 656000 | 662000  |  |  |  |  |  |
| 100                                  | Frequency              | 3750    | 3840   | 3930    |  |  |  |  |  |
| 90                                   | Channel                | 649334  | 656000 | 662666  |  |  |  |  |  |
| 80                                   | Frequency              | 3740.01 | 3840   | 3939.99 |  |  |  |  |  |
| 60                                   | Channel                | 648668  | 656000 | 663332  |  |  |  |  |  |
| 60                                   | Frequency              | 3730.02 | 3840   | 3949.98 |  |  |  |  |  |
| 40                                   | Channel                | 648000  | 656000 | 664000  |  |  |  |  |  |
| 40                                   | Frequency              | 3720    | 3840   | 3960    |  |  |  |  |  |

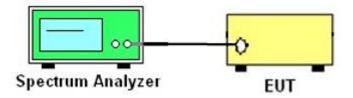
Report No. : FG261332

TEL: 886-3-327-3456 Page Number : 9 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

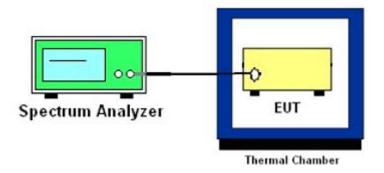

### 3 Conducted Test Items

## 3.1 Measuring Instruments

See list of measuring instruments of this test report.


#### 3.1.1 Test Setup

### 3.1.2 Conducted Output Power




**Report No. : FG261332** 

# 3.1.3 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission



#### 3.1.4 Frequency Stability



### 3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 10 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 3.2 Conducted Output Power and EIRP

# 3.2.1 Description of the Conducted Output Power Measurement and EIRP Measurement

A power sensor was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Report No.: FG261332

The EIRP of mobile transmitters must not exceed 1 Watts for 5G NR n77

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$ , where

 $P_T$  = transmitter output power in dBm

 $G_T$  = gain of the transmitting antenna in dBi

L<sub>C</sub> = signal attenuation in the connecting cable between the transmitter and antenna in dB

#### 3.2.2 Test Procedures

- 1. The transmitter output port was connected to the power sensor.
- 2. Set EUT at maximum power.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the power sensor.
- 5. The measure-and-sum technique is used for measuring in-band transmit power of a device. Total power is the sum of the conducted power levels measured at the various output ports.

TEL: 886-3-327-3456 Page Number : 11 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 3.3 Peak-to-Average Ratio

#### 3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: FG261332

#### 3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

TEL: 886-3-327-3456 Page Number : 12 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the

total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and

one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB

below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit

bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of

the emission bandwidth.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

1. The EUT was connected to spectrum analyzer.

2. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.

The span range for the spectrum analyzer shall be between two and five times the anticipated

OBW.

3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated

OBW, and the VBW shall be at least 3 times the RBW.

4. Set the detection mode to peak, and the trace mode to max hold.

5. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to

stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.

(this is the reference value)

6. Determine the "-26 dB down amplitude" as equal to (Reference Value – X).

7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of

the spectral display such that each marker is at or slightly below the "-X dB down amplitude"

determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed

as close as possible to this value. The OBW is the positive frequency difference between the

two markers.

8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured

bandwidth.

TEL: 886-3-327-3456

FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE Version 2.4

Page Number : 13 of 21 Issue Date : Nov. 17, 2022

Report No.: FG261332

Report Version : 01

### 3.5 Conducted Band Edge

#### 3.5.1 Description of Conducted Band Edge Measurement

27.53 (I)(2)

For mobile operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed –13 dBm/MHz. Compliance with this paragraph (I)(2) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be either one percent of the emission bandwidth of the fundamental emission of the transmitter or 350 kHz. In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Report No.: FG261332

#### 3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. Checked that all the results comply with the emission limit line.
  - The limit line is derived from  $43 + 10\log(P)dB$  below the transmitter power P(Watts)
- 8. For MIMO measurement, the KDB 662911 E)2)c) is used as following: Measure and add 10 log(NANT) dB, where NANT is the number of outputs. With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity 10 log(NANT) dB is added to each spectrum value before comparing to the emission limit.

TEL: 886-3-327-3456 Page Number : 14 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

### 3.6 Conducted Spurious Emission

#### 3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

Report No.: FG261332

#### 3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
   The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
- 10. For MIMO measurement, the KDB 662911 E)2)c) is used as following: Measure and add 10 log(NANT) dB, where NANT is the number of outputs. With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity 10 log(NANT) dB is added to each spectrum value before comparing to the emission limit.

TEL: 886-3-327-3456 Page Number : 15 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 3.7 Frequency Stability

#### 3.7.1 Description of Frequency Stability Measurement

27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Report No.: FG261332

#### 3.7.2 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

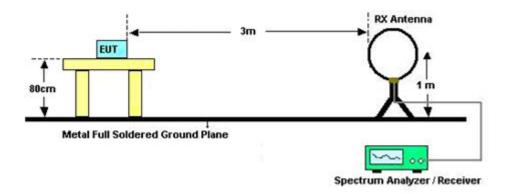
- The EUT was set up in the thermal chamber and connected with the spectrum analyzer.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

#### 3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

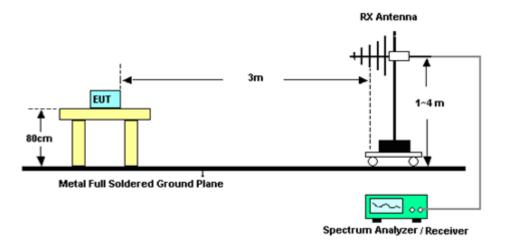
- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the spectrum analyzer.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

TEL: 886-3-327-3456 Page Number : 16 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022


### 4 Radiated Test Items

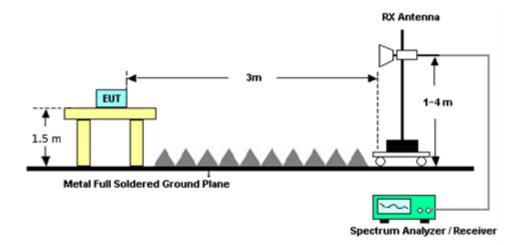
## 4.1 Measuring Instruments

See list of measuring instruments of this test report.


### 4.1.1 Test Setup

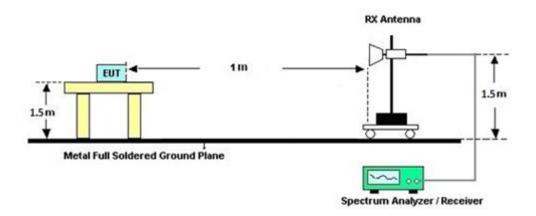
#### For radiated emissions below 30MHz




**Report No. : FG261332** 

#### For radiated test from 30MHz to 1GHz




TEL: 886-3-327-3456 Page Number : 17 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

#### For radiated test from 1GHz to 18GHz



**Report No. : FG261332** 

#### For radiated test above 18GHz



#### 4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

#### Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

TEL: 886-3-327-3456 Page Number : 18 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 4.2 Radiated Spurious Emission Measurement

#### 4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

Report No.: FG261332

#### 4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

TEL: 886-3-327-3456 Page Number : 19 of 21
FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 5 List of Measuring Equipment

| Instrument              | Brand Name         | Model No.                            | Serial No.                | Characteristics               | Calibration   | Test Date                       | Due Date      | Remark                   |
|-------------------------|--------------------|--------------------------------------|---------------------------|-------------------------------|---------------|---------------------------------|---------------|--------------------------|
| mon amont               | Rohde &            | inouoi itoi                          | Contain ito               | - Citaractorionic             | Date          | 1001 2410                       |               | Radiation                |
| Loop Antenna            | Schwarz            | HFH2-Z2                              | 100488                    | 9 kHz~30 MHz                  | May 13, 2022  | Sep. 23, 2022                   | May 12, 2023  | (03CH12-HY)              |
| Horn Antenna            | SCHWARZBE<br>CK    | BBHA 9120 D                          | 9120D-1328                | 1GHz~18GHz                    | Dec. 03, 2021 | Sep. 23, 2022                   | Dec. 02, 2022 | Radiation<br>(03CH12-HY) |
| Bilog Antenna           | TESEQ              | CBL 6111D & 00800N1D01N -06          | 37059 & 01                | 30MHz~1GHz                    | Oct. 09, 2021 | Sep. 23, 2022                   | Oct. 08, 2022 | Radiation<br>(03CH12-HY) |
| Bilog Antenna           | TESEQ              | CBL 6111D &<br>N-6-06                | 35414 &<br>AT-N0602       | 30MHz~1GHz                    | Oct. 09, 2021 | Sep. 23, 2022                   | Oct. 08, 2022 | Radiation<br>(03CH12-HY) |
| Horn Antenna            | SCHWARZBE<br>CK    | BBHA 9120 D                          | 9120D-1212                | 1GHz~18GHz                    | Mar. 10, 2022 | Sep. 23, 2022                   | Mar. 09, 2023 | Radiation<br>(03CH12-HY) |
| SHF-EHF Horn<br>Antenna | SCHWARZBE<br>CK    | BBHA 9170                            | BBHA91702<br>51           | 18GHz~40GHz                   | Nov. 30, 2021 | Sep. 23, 2022                   | Nov. 29, 2022 | Radiation<br>(03CH12-HY) |
| SHF-EHF Horn<br>Antenna | SCHWARZBE<br>CK    | BBHA 9170                            | BBHA91705<br>76           | 18GHz~40GHz                   | May 14, 2022  | Sep. 23, 2022                   | May 13, 2023  | Radiation<br>(03CH12-HY) |
| Preamplifier            | COM-POWER          | PA-103                               | 161075                    | 10MHz~1GHz                    | Mar. 23, 2022 | Sep. 23, 2022                   | Mar. 22, 2023 | Radiation<br>(03CH12-HY) |
| Preamplifier            | Aglient            | 8449B                                | 3008A02375                | 1GHz~26.5GHz                  | May 24, 2022  | Sep. 23, 2022                   | May 23, 2023  | Radiation<br>(03CH12-HY) |
| Preamplifier            | EMEC               | EM18G40G                             | 060715                    | 18GHz~40GHz                   | Dec. 24, 2021 | Sep. 23, 2022                   | Dec. 23, 2022 | Radiation<br>(03CH12-HY) |
| Spectrum<br>Analyzer    | Keysight           | N9010A                               | MY53470118                | 10Hz~44GHz                    | Jan. 12, 2022 | Sep. 23, 2022                   | Jan. 11, 2023 | Radiation<br>(03CH12-HY) |
| RF Cable                | HUBER +<br>SUHNER  | SUCOFLEX<br>104                      | MY9837/4PE                | 9kHz~30MHz                    | Mar. 10, 2022 | Sep. 23, 2022                   | Mar. 09, 2023 | Radiation<br>(03CH12-HY) |
| RF Cable                | HUBER +<br>SUHNER  | SUCOFLEX<br>102                      | 505134/2                  | 30MHz~40GHz                   | Feb. 21, 2022 | Sep. 23, 2022                   | Feb. 20, 2023 | Radiation<br>(03CH12-HY) |
| RF Cable                | HUBER +<br>SUHNER  | SUCOFLEX<br>102                      | 803953/2                  | 30MHz~40GHz                   | Mar. 08, 2022 | Sep. 23, 2022                   | Mar. 07, 2023 | Radiation<br>(03CH12-HY) |
| Filter                  | Wainwright         | WHKX8-5872.<br>5-6750-18000-<br>40ST | SN2                       | 6.75GHz High<br>Pass Filter   | Mar. 15, 2022 | Sep. 23, 2022                   | Mar. 14, 2023 | Radiation<br>(03CH12-HY) |
| Hygrometer              | TECPEL             | DTM-303B                             | TP140349                  | N/A                           | Sep. 30, 2021 | Sep. 23, 2022                   | Sep. 29, 2022 | Radiation<br>(03CH12-HY) |
| Controller              | EMEC               | EM1000                               | N/A                       | Control Turn table & Ant Mast | N/A           | Sep. 23, 2022                   | N/A           | Radiation<br>(03CH12-HY) |
| Antenna Mast            | EMEC               | AM-BS-4500-B                         | N/A                       | 1m~4m                         | N/A           | Sep. 23, 2022                   | N/A           | Radiation<br>(03CH12-HY) |
| Turn Table              | EMEC               | TT2000                               | N/A                       | 0~360 Degree                  | N/A           | Sep. 23, 2022                   | N/A           | Radiation<br>(03CH12-HY) |
| Software                | Audix              | E3<br>6.2009-8-24                    | RK-000989                 | N/A                           | N/A           | Sep. 23, 2022                   | N/A           | Radiation<br>(03CH12-HY) |
| Signal Analyzer         | Rohde &<br>Schwarz | FSV3044                              | 101103                    | 10Hz~44GHz                    | Jan. 25, 2022 | Jul. 04, 2022~<br>Nov. 14, 2022 | Jan. 24, 2023 | Conducted<br>(TH03-HY)   |
| Hygrometer              | TECPEL             | DTM-303B                             | TP200886                  | Temperature & Humidity        | Mar. 21, 2022 | Jul. 04, 2022~<br>Nov. 14, 2022 | Mar. 20, 2023 | Conducted<br>(TH03-HY)   |
| USB Power<br>Sensor     | DARE               | RPR3006W                             | 13I00030SN<br>O32 (NO:43) | 9kHz~6GHz                     | Dec. 09, 2021 | Jul. 04, 2022~<br>Nov. 14, 2022 | Dec. 08, 2022 | Conducted<br>(TH03-HY)   |
| Temperature<br>Chamber  | Ten Billion        | TTH-D3SP                             | TBN-930701                | Temperature                   | Oct. 20, 2021 | Jul. 04, 2022~<br>Sep. 02, 2022 | Oct. 19, 2022 | Conducted<br>(TH03-HY)   |
| Temperature<br>Chamber  | Ten Billion        | TTH-D3SP                             | TBN-930701                | Temperature                   | Oct. 19, 2022 | Nov. 09, 2022~<br>Nov. 14, 2022 | Oct. 18, 2023 | Conducted<br>(TH03-HY)   |
| DC Power<br>Supply      | GW Instek          | GPE2323                              | GET910896                 | 0V~64V ; 0A~6A                | Dec. 03, 2021 | Jul. 04, 2022~<br>Nov. 14, 2022 | Dec. 02, 2022 | Conducted<br>(TH03-HY)   |

Report No. : FG261332

TEL: 886-3-327-3456 Page Number : 20 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022

## 6 Uncertainty of Evaluation

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of | 3.31 dB |
|--------------------------------------|---------|
| Confidence of 95% (U = 2Uc(y))       | 0.01 45 |

Report No. : FG261332

#### **Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)**

| Measuring Uncertainty for a Level of | 3 3E 4B |
|--------------------------------------|---------|
| Confidence of 95% (U = 2Uc(y))       | 3.25 dB |

### **Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)**

| Measuring Uncertainty for a Level of | 2 04 AD |
|--------------------------------------|---------|
| Confidence of 95% (U = 2Uc(y))       | 3.81 dB |

TEL: 886-3-327-3456 Page Number : 21 of 21 FAX: 886-3-328-4978 Issue Date : Nov. 17, 2022





#### Appendix A. Test Results of Conducted Test

|        |                                           |       |       | Average Burst Power (dBm) |       |                                           |       |       |                                                             |       |       |                                            |       |       |       |       |       |       |       |       |       |
|--------|-------------------------------------------|-------|-------|---------------------------|-------|-------------------------------------------|-------|-------|-------------------------------------------------------------|-------|-------|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| QPSK   | Low Channel                               |       |       |                           |       | Middle Channel                            |       |       |                                                             |       |       | High Channel                               |       |       |       |       |       |       |       |       |       |
|        | ANT1                                      | ANT2  | ANT3  | ANT4                      | SUM   | EIRP                                      | Limit | ANT1  | ANT2                                                        | ANT3  | ANT4  | SUM                                        | EIRP  | Limit | ANT1  | ANT2  | ANT3  | ANT4  | SUM   | EIRP  | Limit |
| 40MHz  | 23.70                                     | 23.60 | 23.70 | 23.60                     | 29.67 | 35.89                                     | 62.15 | 23.70 | 23.70 23.10 23.50 23.50 29.48 35.70 62.15 23.40 23.20 23.70 |       |       |                                            |       |       | 23.50 | 29.47 | 35.69 | 62.15 |       |       |       |
| 60MHz  | 23.80                                     | 23.80 | 23.80 | 23.70                     | 29.80 | 36.02                                     | 62.15 | 23.80 | 23.70                                                       | 23.80 | 23.80 | 29.80                                      | 36.02 | 62.15 | 23.80 | 23.60 | 23.70 | 23.70 | 29.72 | 35.94 | 62.15 |
| 80MHz  | 23.80                                     | 23.80 | 23.80 | 23.80                     | 29.82 | 36.04                                     | 62.15 | 23.80 | 23.40                                                       | 23.80 | 23.80 | 29.72                                      | 35.94 | 62.15 | 23.60 | 23.30 | 23.30 | 23.40 | 29.42 | 35.64 | 62.15 |
| 100MHz | 23.70 23.40 23.70 23.60 29.62 35.84 62.15 |       |       |                           | 62.15 | 23.80 23.30 23.70 23.70 29.65 35.87 62.15 |       |       |                                                             |       | 62.15 | 5 23.80 23.50 23.80 23.80 29.75 35.97 62.1 |       |       |       |       | 62.15 |       |       |       |       |
| Result | Pass                                      |       |       |                           |       | Pass                                      |       |       |                                                             |       | Pass  |                                            |       |       |       |       |       |       |       |       |       |

|        |                                           | Average Burst Power (dBm) |       |       |       |                                           |       |       |       |       |       |              |       |       |       |       |       |       |       |       |       |
|--------|-------------------------------------------|---------------------------|-------|-------|-------|-------------------------------------------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 16QAM  | Low Channel                               |                           |       |       |       | Middle Channel                            |       |       |       |       |       | High Channel |       |       |       |       |       |       |       |       |       |
|        | ANT1                                      | ANT2                      | ANT3  | ANT4  | SUM   | EIRP                                      | Limit | ANT1  | ANT2  | ANT3  | ANT4  | SUM          | EIRP  | Limit | ANT1  | ANT2  | ANT3  | ANT4  | SUM   | EIRP  | Limit |
| 40MHz  | 23.80                                     | 23.70                     | 23.70 | 23.70 | 29.75 | 35.97                                     | 62.15 | 23.90 | 23.30 | 23.80 | 23.60 | 29.68        | 35.90 | 62.15 | 23.70 | 23.40 | 23.80 | 23.60 | 29.65 | 35.87 | 62.15 |
| 60MHz  | 23.70                                     | 23.70                     | 23.80 | 23.70 | 29.75 | 35.97                                     | 62.15 | 23.80 | 23.50 | 23.80 | 23.70 | 29.72        | 35.94 | 62.15 | 23.80 | 23.60 | 23.80 | 23.80 | 29.77 | 35.99 | 62.15 |
| 80MHz  | 23.80                                     | 23.70                     | 23.80 | 23.80 | 29.80 | 36.02                                     | 62.15 | 23.70 | 23.80 | 23.80 | 23.80 | 29.80        | 36.02 | 62.15 | 23.60 | 23.30 | 23.50 | 23.40 | 29.47 | 35.69 | 62.15 |
| 100MHz | 23.80 23.40 23.80 23.60 29.67 35.89 62.15 |                           |       |       | 62.15 | 23.70 23.20 23.70 23.80 29.63 35.85 62.15 |       |       |       |       | 62.15 | 23.80        | 23.30 | 23.70 | 23.60 | 29.62 | 35.84 | 62.15 |       |       |       |
| Result | Pass                                      |                           |       |       |       | Pass                                      |       |       |       |       | Pass  |              |       |       |       |       |       |       |       |       |       |

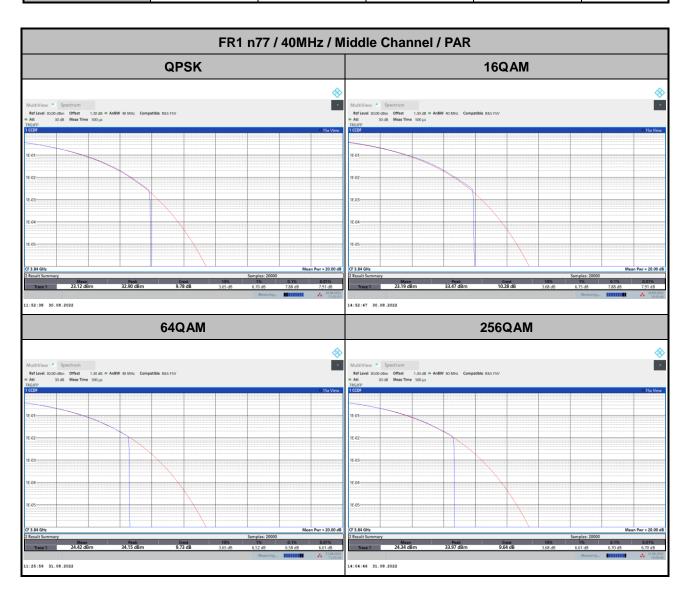
|        |             |       |       |       |       |                |       |       |       | Average I | Burst Pov | ver (dBm)    | )     |       |       |       |       |       |       |       |       |
|--------|-------------|-------|-------|-------|-------|----------------|-------|-------|-------|-----------|-----------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 64QAM  | Low Channel |       |       |       |       | Middle Channel |       |       |       |           |           | High Channel |       |       |       |       |       |       |       |       |       |
|        | ANT1        | ANT2  | ANT3  | ANT4  | SUM   | EIRP           | Limit | ANT1  | ANT2  | ANT3      | ANT4      | SUM          | EIRP  | Limit | ANT1  | ANT2  | ANT3  | ANT4  | SUM   | EIRP  | Limit |
| 40MHz  | 23.80       | 23.70 | 23.80 | 23.80 | 29.80 | 36.02          | 62.15 | 23.70 | 23.30 | 23.70     | 23.50     | 29.57        | 35.79 | 62.15 | 23.70 | 23.50 | 23.80 | 23.70 | 29.70 | 35.92 | 62.15 |
| 60MHz  | 23.80       | 23.70 | 23.80 | 23.80 | 29.80 | 36.02          | 62.15 | 23.70 | 23.80 | 23.80     | 23.80     | 29.80        | 36.02 | 62.15 | 23.70 | 23.60 | 23.70 | 23.80 | 29.72 | 35.94 | 62.15 |
| 80MHz  | 23.60       | 23.40 | 23.60 | 23.50 | 29.55 | 35.77          | 62.15 | 23.80 | 23.20 | 23.80     | 23.70     | 29.65        | 35.87 | 62.15 | 23.70 | 23.40 | 23.80 | 23.70 | 29.67 | 35.89 | 62.15 |
| 100MHz | 23.70       | 23.60 | 23.80 | 23.60 | 29.70 | 35.92          | 62.15 | 23.80 | 23.30 | 23.70     | 23.80     | 29.68        | 35.90 | 62.15 | 23.70 | 23.40 | 23.80 | 23.60 | 29.65 | 35.87 | 62.15 |
| Result | Pass        |       |       |       |       | Pass           |       |       |       |           |           | Pass         |       |       |       |       |       |       |       |       |       |

|        |                                           |                                       |       |       |       |                |       |                                           |                                          | Average | Burst Pow | er (dBm)     |       |       |       |       |       |       |       |       |       |
|--------|-------------------------------------------|---------------------------------------|-------|-------|-------|----------------|-------|-------------------------------------------|------------------------------------------|---------|-----------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 256QAM | M Low Channel                             |                                       |       |       |       | Middle Channel |       |                                           |                                          |         |           | High Channel |       |       |       |       |       |       |       |       |       |
|        | ANT1                                      | ANT2                                  | ANT3  | ANT4  | SUM   | EIRP           | Limit | ANT1                                      | T1 ANT2 ANT3 ANT4 SUM EIRP Limit ANT1 AI |         |           |              |       |       |       | ANT2  | ANT3  | ANT4  | SUM   | EIRP  | Limit |
| 40MHz  | 23.60                                     | 23.10                                 | 23.50 | 23.40 | 29.42 | 35.64          | 62.15 | 23.80                                     | 23.00                                    | 23.70   | 23.70     | 29.58        | 35.80 | 62.15 | 23.40 | 23.20 | 23.80 | 23.40 | 29.48 | 35.70 | 62.15 |
| 60MHz  | 23.60                                     | 23.80                                 | 23.70 | 23.80 | 29.75 | 35.97          | 62.15 | 23.70                                     | 23.70                                    | 23.70   | 23.70     | 29.72        | 35.94 | 62.15 | 23.80 | 23.60 | 23.70 | 23.80 | 29.75 | 35.97 | 62.15 |
| 80MHz  | 23.60 23.40 23.50 23.60 29.55 35.77 62.15 |                                       |       |       | 62.15 | 23.80          | 23.20 | 23.70                                     | 23.70                                    | 29.63   | 35.85     | 62.15        | 23.50 | 23.30 | 23.70 | 23.60 | 29.55 | 35.77 | 62.15 |       |       |
| 100MHz | 23.80                                     | 0 23.70 23.70 23.80 29.77 35.99 62.15 |       |       |       | 62.15          | 23.80 | 23.80 23.20 23.80 23.70 29.65 35.87 62.15 |                                          |         |           | 62.15        | 23.70 | 23.50 | 23.80 | 23.70 | 29.70 | 35.92 | 62.15 |       |       |
| Result | Pass                                      |                                       |       |       |       | Pass           |       |                                           |                                          |         | Pass      |              |       |       |       |       |       |       |       |       |       |

Note:

1. 1640 W/MHz = 62.15 dBm/MHz.

2. Channel power is measured and compared to the PSD limit, since the total power is always greater than the partial power.

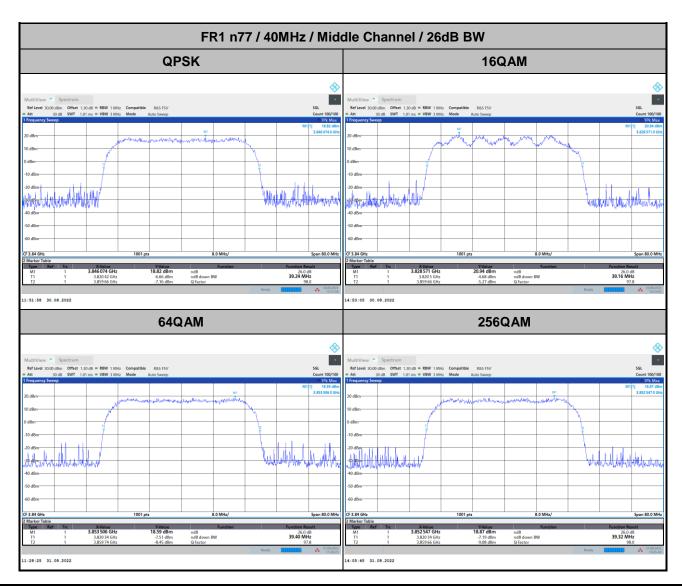

## FR1 n77 Conducted Test Items

## <MIMO ANT 1>

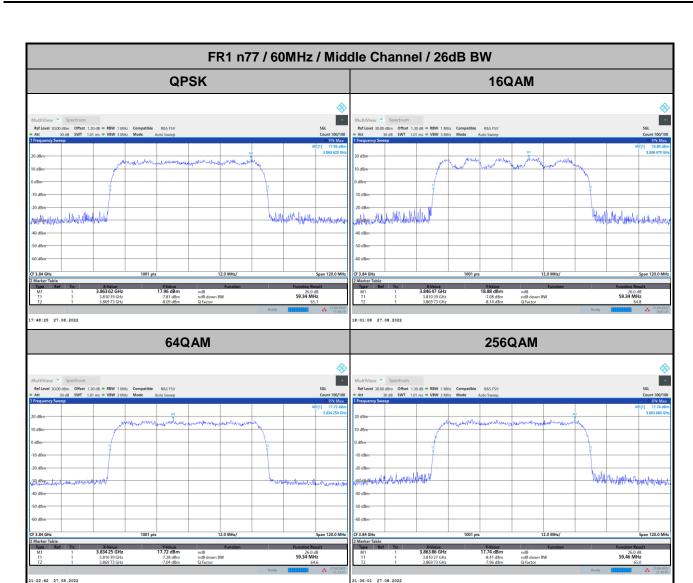
## Peak-to-Average Ratio

| Mode      |      | Limit: 13dB |      |      |      |
|-----------|------|-------------|------|------|------|
| Mod.      | QPSK | Result      |      |      |      |
| Middle CH | 7.88 | 7.88        | 6.58 | 6.70 | PASS |

**Report No. : FG261332** 




TEL: 886-3-327-3456 Page Number: A2 - 1 of 22


## 26dB Bandwidth

| Mode      |       |        | FR1 n77 : 26 | dB BW(MHz) |       |        |  |  |
|-----------|-------|--------|--------------|------------|-------|--------|--|--|
| BW        | 401   | ЛHz    | 601          | ЛНz        | 80MHz |        |  |  |
| Mod.      | QPSK  | 16QAM  | QPSK         | 16QAM      | QPSK  | 16QAM  |  |  |
| Middle CH | 39.24 | 39.16  | 59.34        | 59.34      | 79.44 | 79.44  |  |  |
| Mod.      | 64QAM | 256QAM | 64QAM        | 256QAM     | 64QAM | 256QAM |  |  |
| Middle CH | 39.40 | 39.32  | 59.34        | 59.46      | 79.60 | 79.60  |  |  |
| BW        | 100   | MHz    |              |            |       |        |  |  |
| Mod.      | QPSK  | 16QAM  | QPSK         | 16QAM      | QPSK  | 16QAM  |  |  |
| Middle CH | 99.50 | 99.70  |              |            |       |        |  |  |
| Mod.      | 64QAM | 256QAM | 64QAM        | 256QAM     | 64QAM | 256QAM |  |  |
| Middle CH | 99.50 | 99.50  |              |            |       |        |  |  |

**Report No. : FG261332** 



TEL: 886-3-327-3456 Page Number : A2 - 2 of 22



TEL: 886-3-327-3456 Page Number : A2 - 3 of 22

1:33:55 14.11.2022

FAX: 886-3-328-4978



06:38:37 12.11.2022

**Report No. : FG261332** 

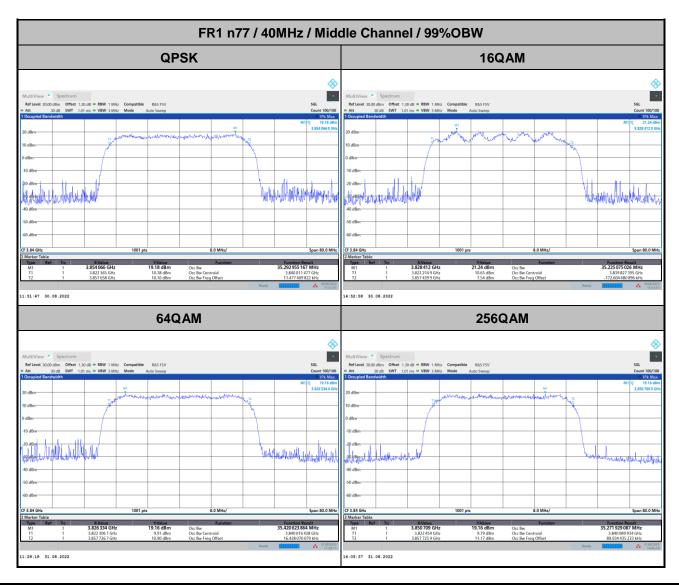
TEL: 886-3-327-3456 Page Number : A2 - 4 of 22

6:59:37 20.08.2022

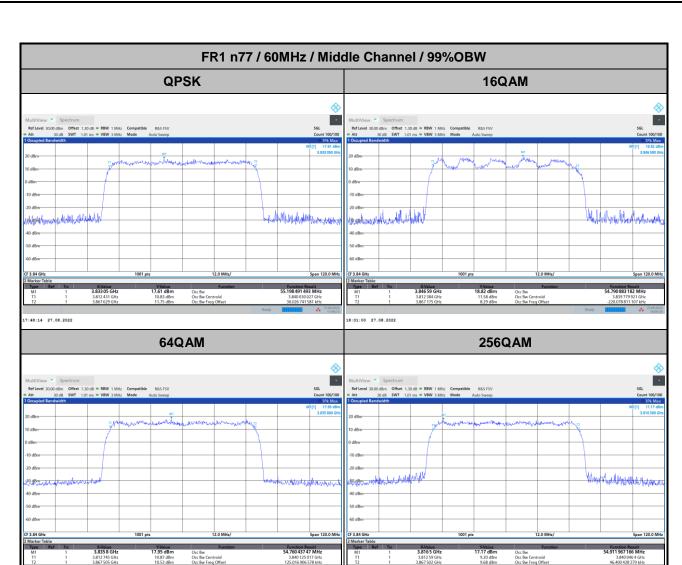
FAX: 886-3-328-4978



17:30:11 20.08.2022


**Report No. : FG261332** 

TEL: 886-3-327-3456 Page Number : A2 - 5 of 22


## **Occupied Bandwidth**

| Mode      |            |        | FR1 n77 : 99 | %OBW (MHz) |       |        |  |  |
|-----------|------------|--------|--------------|------------|-------|--------|--|--|
| BW        | 401        | ИHz    | 601          | ИHz        | 80MHz |        |  |  |
| Mod.      | QPSK 16QAM |        | QPSK         | 16QAM      | QPSK  | 16QAM  |  |  |
| Middle CH | 35.29      | 35.22  | 55.19        | 54.79      | 74.96 | 75.57  |  |  |
| Mod.      | 64QAM      | 256QAM | 64QAM        | 256QAM     | 64QAM | 256QAM |  |  |
| Middle CH | 35.42      | 35.27  | 54.76        | 54.91      | 75.06 | 75.25  |  |  |
| BW        | 100        | MHz    |              |            |       |        |  |  |
| Mod.      | QPSK       | 16QAM  | QPSK         | 16QAM      | QPSK  | 16QAM  |  |  |
| Middle CH | 94.28      | 93.94  |              |            |       |        |  |  |
| Mod.      | 64QAM      | 256QAM | 64QAM        | 256QAM     | 64QAM | 256QAM |  |  |
| Middle CH | 94.44      | 94.35  |              |            |       |        |  |  |

**Report No. : FG261332** 



TEL: 886-3-327-3456 Page Number : A2 - 6 of 22 FAX: 886-3-328-4978

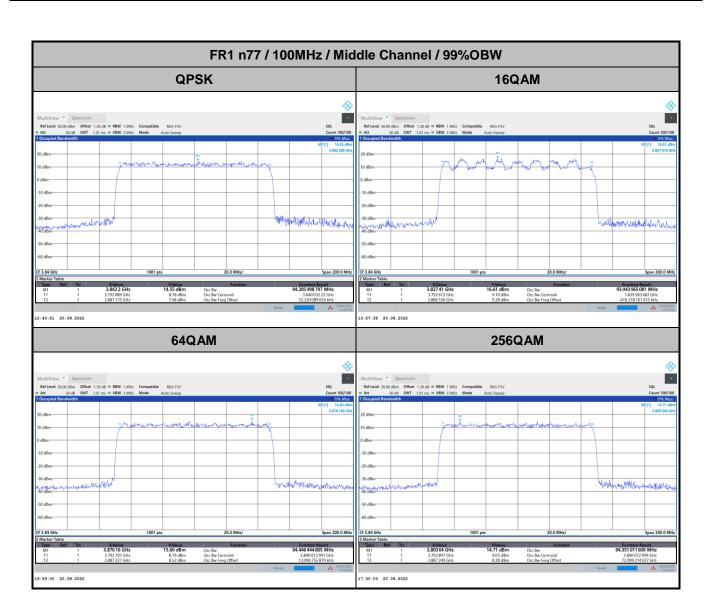


21:36:09 27.08.2022

**Report No. : FG261332** 

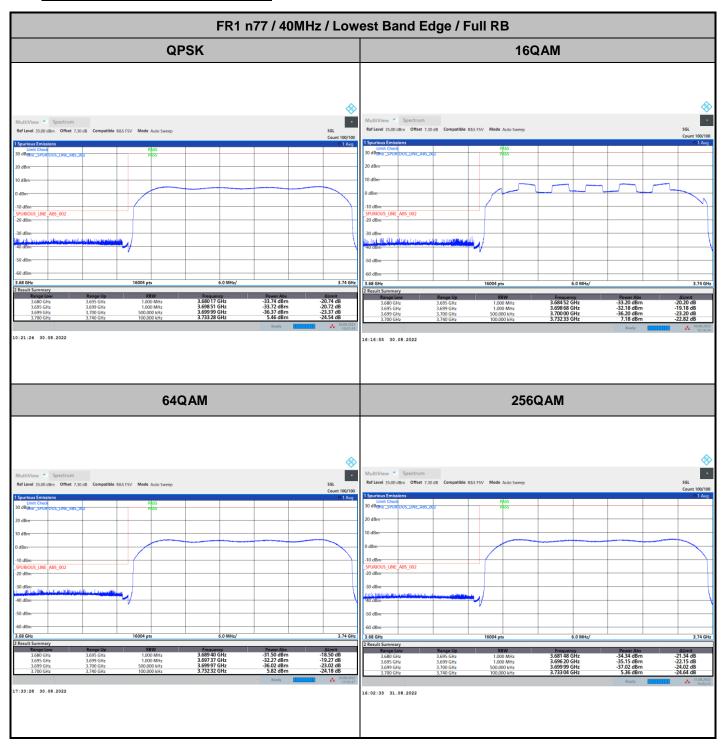
TEL: 886-3-327-3456 Page Number : A2 - 7 of 22

FAX: 886-3-328-4978


1:22:50 27.08.2022

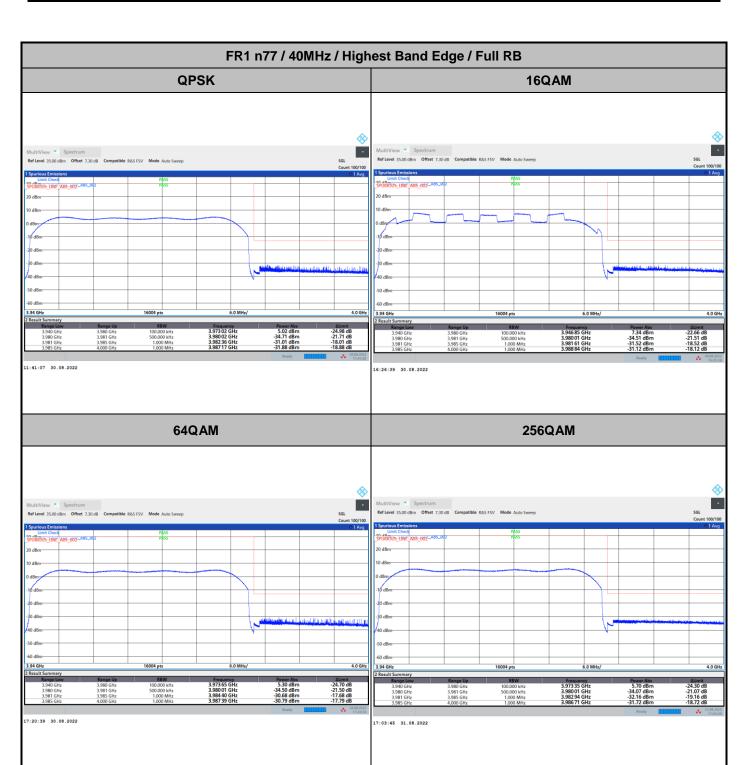


06:37:09 12.11.2022


**Report No. : FG261332** 

TEL: 886-3-327-3456 Page Number : A2 - 8 of 22

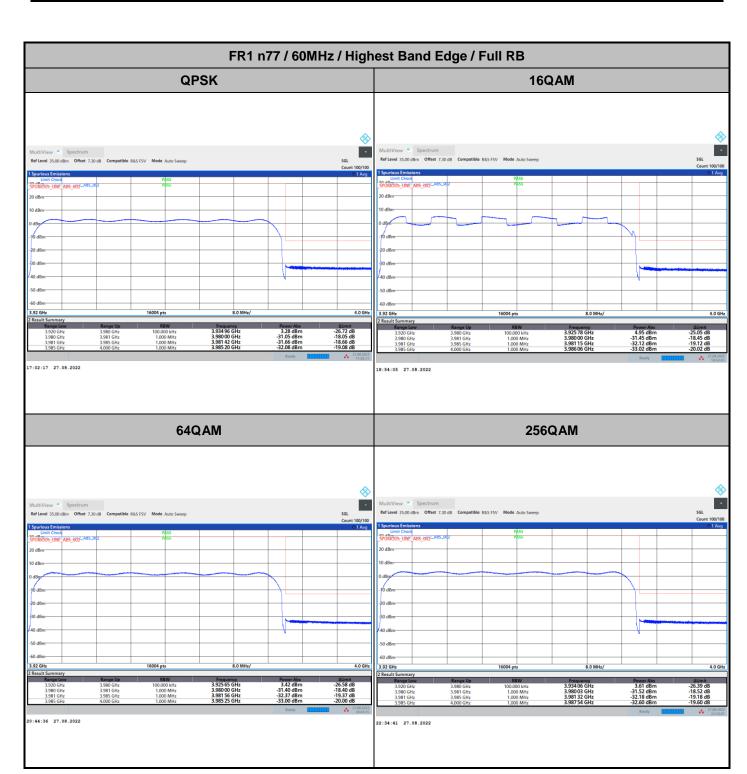



TEL: 886-3-327-3456 Page Number : A2 - 9 of 22

## **Conducted Band Edge**



**Report No. : FG261332** 


TEL: 886-3-327-3456 Page Number: A2 - 10 of 22




TEL: 886-3-327-3456 Page Number : A2 - 11 of 22

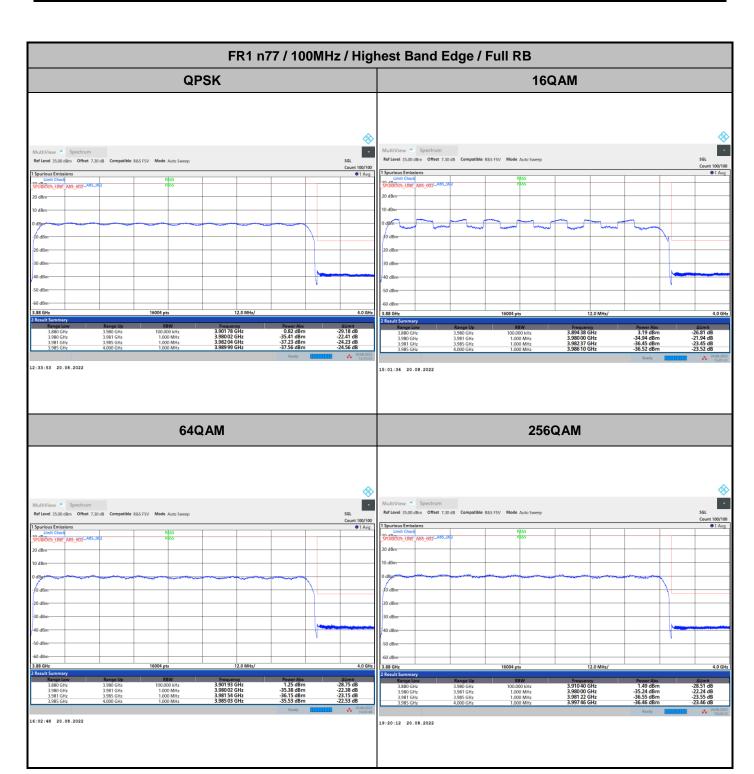


TEL: 886-3-327-3456 Page Number: A2 - 12 of 22



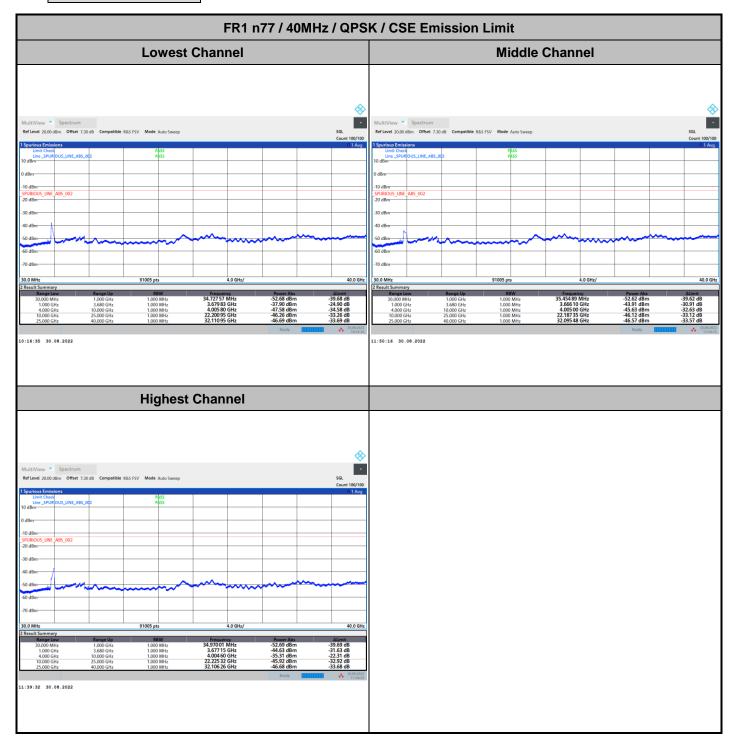
TEL: 886-3-327-3456 Page Number: A2 - 13 of 22




TEL: 886-3-327-3456 Page Number: A2 - 14 of 22

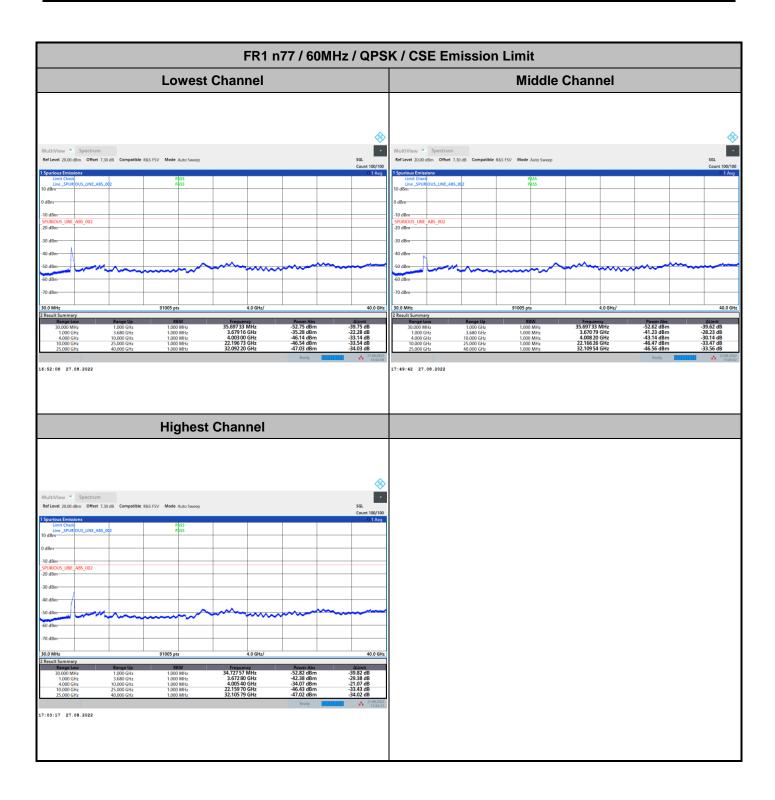


TEL: 886-3-327-3456 Page Number: A2 - 15 of 22

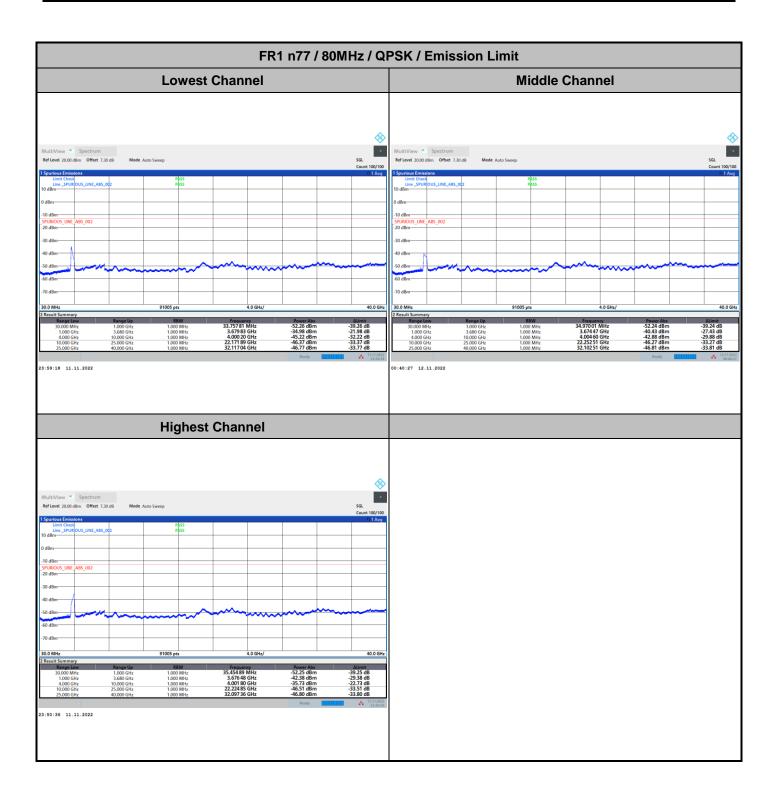



TEL: 886-3-327-3456 Page Number: A2 - 16 of 22




TEL: 886-3-327-3456 Page Number : A2 - 17 of 22

## **Emission Limit**




**Report No. : FG261332** 

TEL: 886-3-327-3456 Page Number: A2 - 18 of 22



TEL: 886-3-327-3456 Page Number: A2 - 19 of 22



TEL: 886-3-327-3456 Page Number: A2 - 20 of 22