

FCC CFR47 PART 15 SUBPART E CLASS II PERMISSIVE CHANGE TEST REPORT

FOR

WLAN MODULE WITH WCE (WIFI COVERAGE EXTENDER) FOR DAS WITH CISCO 1242 ACCESS POINT

MODEL NUMBER: 860M with WCE FCC ID: OJFMA860WCE

REPORT NUMBER: 07U11538-1

ISSUE DATE: FEBRUARY 15, 2008

Prepared for

MOBILE ACCESS NETWORKS 8391 OLD COURTHOUSE ROAD VIENNA, VIRGINA 22182

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	01/11/08	Initial Issue	T. Chan

DATE: FEBRUARY 15, 2008 FCC ID: OJFMA860WCE

TABLE OF CONTENTS

1. AT	TTESTATION OF TEST RESULTS	5
2. TE	EST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
4. CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. EQ	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	7
5.3.	MAXIMUM OUTPUT POWER	7
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.5.	SOFTWARE AND FIRMWARE	7
5.6.	WORST-CASE CONFIGURATION AND MODE	7
5.7.	DESCRIPTION OF TEST SETUP	8
6. TE	EST AND MEASUREMENT EQUIPMENT	10
7. AN	NTENNA PORT TEST RESULTS	11
7.1.	802.11a MODE IN THE UPPER 5.2 GHz BAND	11
7.1	1.1. 26 dB and 99% BANDWIDTH	11
7.1	1.2. OUTPUT POWER	15
7.1	1.3. AVERAGE POWER	19
7.1	1.4. PEAK POWER SPECTRAL DENSITY	19
7.1	1.4. PEAK POWER SPECTRAL DENSITY	20
7.1	1.5. PEAK EXCURSION	24
7.1	1.6. CONDUCTED SPURIOUS EMISSIONS	28
7.2.		
7.2	2.1. 26 dB and 99% BANDWIDTH	35
7.2	2.2. OUTPUT POWER	39
	2.3. AVERAGE POWER	
	2.4. PEAK POWER SPECTRAL DENSITY	
	2.5. PEAK EXCURSION	
7.2	2.6. CONDUCTED SPURIOUS EMISSIONS	52
	Page 3 of 130	

8.	RADIATI	ED TEST RESULTS	59
8	3.1. LIM	ITS AND PROCEDURE	59
8	2.2. TRA	ANSMITTER ABOVE 1 GHz	60
	8.2.1. BAND	TRANSMITTER ABOVE 1 GHz FOR 802.11a MODE IN THE UF 60	PPER 5.2 GHz
	8.2.2.	TRANSMITTER ABOVE 1 GHz FOR 802.11a MODE IN THE 5.6	GHz BAND65
8	3.3. WO	RST-CASE BELOW 1 GHz	74
9.	AC POW	ER LINE CONDUCTED EMISSIONS	78
10.	DYNA	MIC FREQUENCY SELECTION	84
1	0.1. OV	ERVIEW	84
	10.1.1.	LIMITS	84
	10.1.2.	TEST AND MEASUREMENT SYSTEM	87
	10.1.3.	SETUP OF EUT	90
	10.1.4.	DESCRIPTION OF EUT	92
1	0.2. RES	SULTS	93
	10.2.1.	TEST CHANNEL	93
	10.2.2.	PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	93
	10.2.3.	CHANNEL AVAILABILITY CHECK TIME	100
	10.2.4.	MOVE AND CLOSING TIME	105
	10.2.5.	NON-OCCUPANCY PERIOD	110
	10.2.6.	DETECTION BANDWIDTH	111
	10.2.7.	IN-SERVICE MONITORING	113
11.	MAXII	MUM PERMISSIBLE EXPOSURE	121
12.	SETU	P PHOTOS	124

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MOBILE ACCESS NETWORKS

8391 OLD COURTHOUSE ROAD

VIENNA, VIRGINA 22182

EUT DESCRIPTION: WLAN MODULE WITH WCE (WIFI COVERAGE EXTENDER)

FOR DAS WITH CISC 1242 ACCESS POINT

MODEL: 860M with WCE

SERIAL NUMBER: 860M S/N: 0740007; WCE S/N: 0646908

DATE TESTED: JAN 02-06, 2008

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E No Non-Compliance Noted

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

THANH NGUYEN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

/ Nowhon guylin

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, and FCC MO&O 06-96.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a WLAN Module with WCE (WiFi Coverage Extender) for DAS with Cisco 1242 Access Point, enable 802.11a/b/g Wi-Fi signals transceiver.

The radio module is manufactured by MobileAccess Networks.

5.2. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

Add additional UNII Band II upper 5.2GHz and Band III 5.6GHz in the original report which is grant by February 12, 2008.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a	13.00	19.95
5260 - 5320	802.11a	17.98	62.81
5500 - 5700	802.11a	17.32	53.95

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Patch antenna, with a maximum gain of 5 dBi.

5.5. SOFTWARE AND FIRMWARE

The test utility software used during testing was Tera Term Professional, Version 4.56.

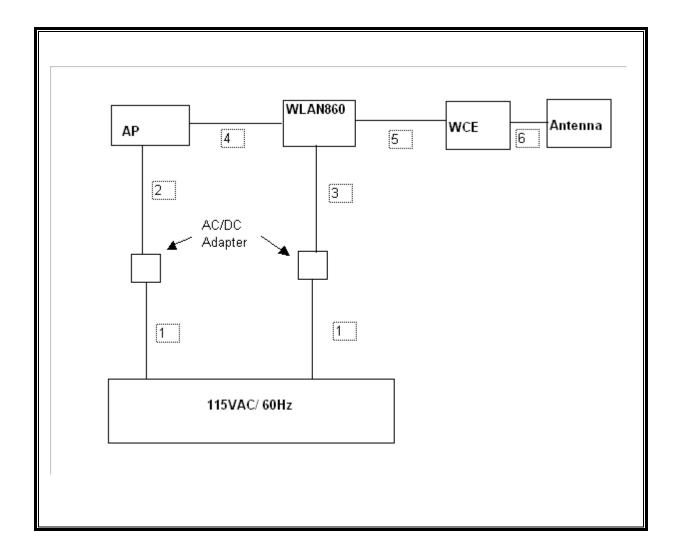
5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
AP	CISCO	Aronet 1200	FTX1038B39L	LDK102056		
AC/DC adapter	Delta Elect. Inc	ADP-18-PB	PZT0651811543	N/A		
AC/DC adapter	Mean Well	PSU40A-8	EJ202624-0457	N/A		


I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	2	US 115V	Un-shielded	1.5m	N/A		
2	DC	1	DC plug	Un-shielded	2m	Ferrite bead at AP end		
3	DC	1	4 Pin	26AWG	2m	N/A		
4	BNC	1	SMA	Shielded	.6m	Patch type N RP SMA		
5	BNC	1	N type	Shielded	1m	Type N to N		
6	BNC	1	N type	Shielded	.3m	Type N to N		

TEST SETUP

The EUT WLAN Module 860 is connected in a wireless Access Point CISCO AIRONET 1200 and Wifi Coverage Expender (WCE) during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Quasi-Peak Adaptor	Agilent / HP	85650A	3145A01654	1/21/2007	1/21/2008	
SA Display Section 2	Agilent / HP	85662A	2816A16696	4/7/2007	4/7/2008	
SA RF Section, 1.5 GHz	Agilent / HP	85680B	2814A04227	1/7/2007	1/7/2008	
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	5/9/2007	5/9/2008	
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	8/13/2007	8/13/2008	
Antenna, Hom 1 ~ 18 GHz	EMCO	3115	6717	4/15/2007	4/15/2008	
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/3/2007	10/3/2008	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	11/26/2007	11/26/2008	
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	9/15/2007	9/15/2008	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	9/15/2007	9/15/2008	
EMI Test Receiver	R&S	ESHS 20	827129/006	1/27/2008	1/27/2008	
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007	12/2/2008	
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007	12/2/2008	

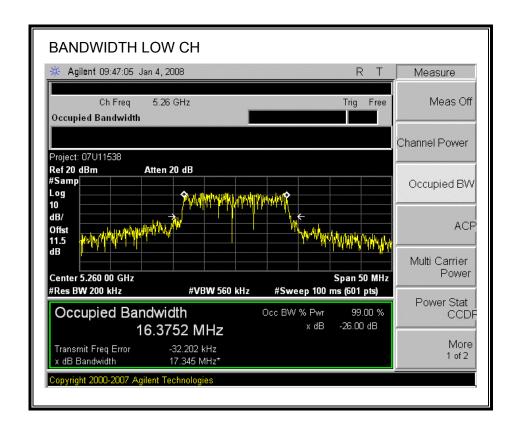
7. ANTENNA PORT TEST RESULTS

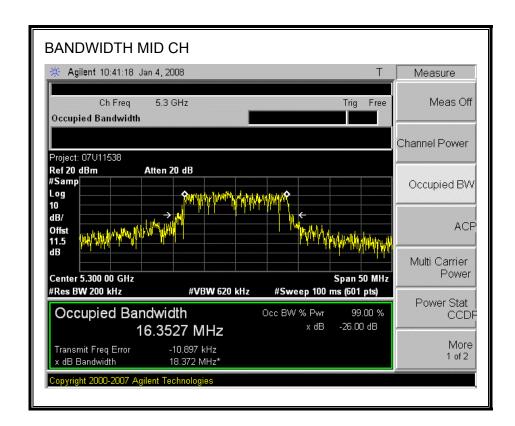
7.1. 802.11a MODE IN THE UPPER 5.2 GHz BAND

7.1.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5260	17.345	16.3752
Middle	5300	18.372	16.3527
High	5320	17.337	16.27

26 dB and 99% BANDWIDTH

7.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

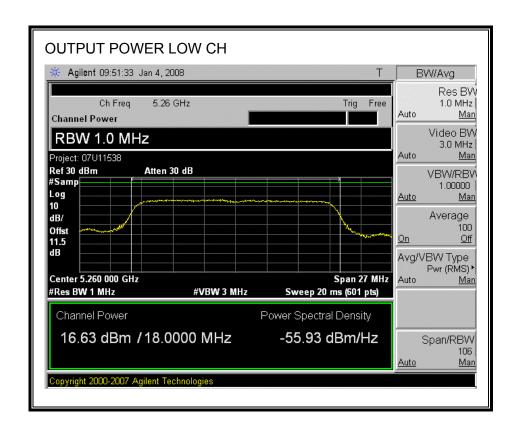
For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

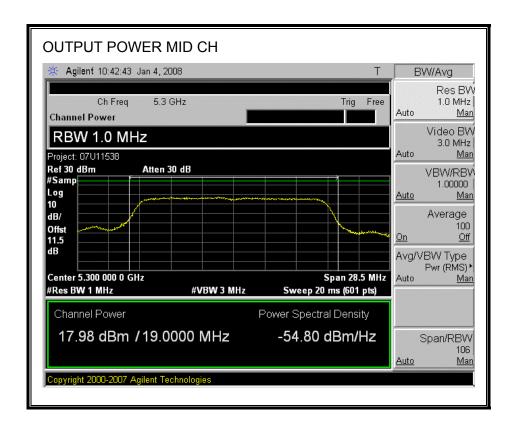
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS


Limit


Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	17.345	23.39	5.00	23.39
Mid	5300	24	18.372	23.64	5.00	23.64
High	5320	24	17.337	23.39	5.00	23.39

Results

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5280	16.63	23.39	-6.76
Mid	5300	17.98	23.64	-5.66
High	5320	11.85	23.39	-11.54

OUTPUT POWER

#Res BW 1 MHz

Channel Power

11.85 dBm /18.0000 MHz

Copyright 2000-2007 Agilent Technologies

Sweep 20 ms (601 pts)

-60.71 dBm/Hz

Span/RBW 106

Man

Auto

Power Spectral Density

#VBW 3 MHz

DATE: FEBRUARY 15, 2008

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5280	15.65
Middle	5300	17.05
High	5320	11.10

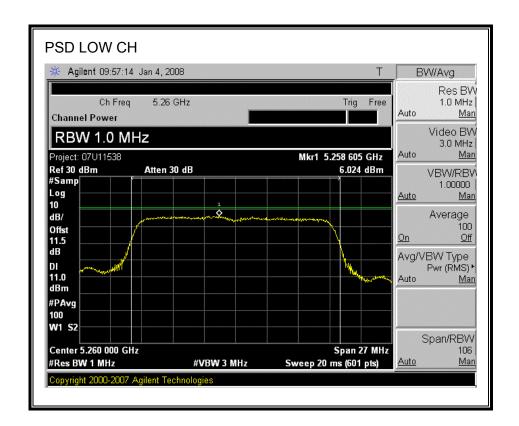
PEAK POWER SPECTRAL DENSITY

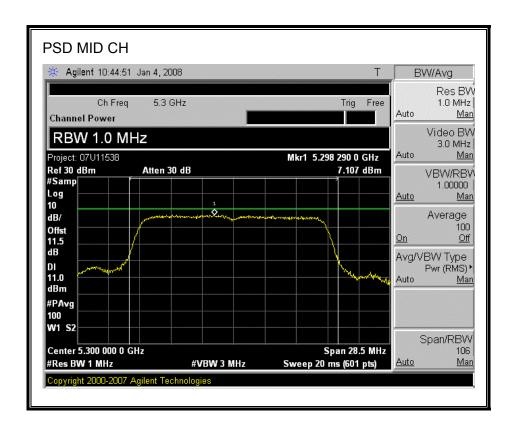
LIMITS

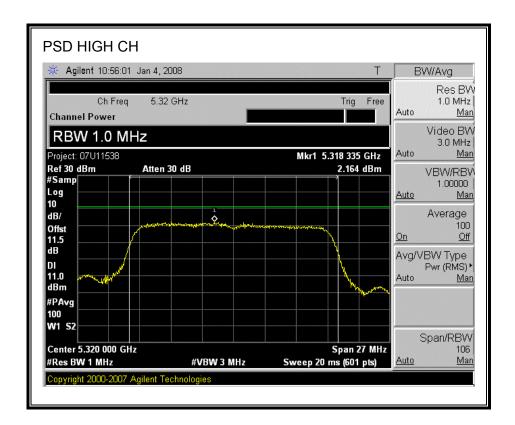
FCC §15.407 (a) (2)

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	6.02	11	-4.98
Middle	5300	7.11	11	-3.89
High	5320	2.16	11	-8.84

POWER SPECTRAL DENSITY

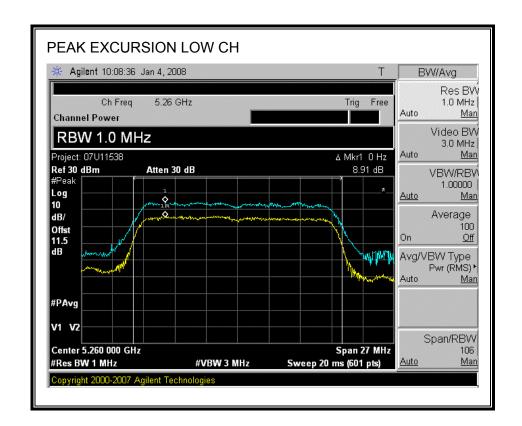
7.1.5. PEAK EXCURSION

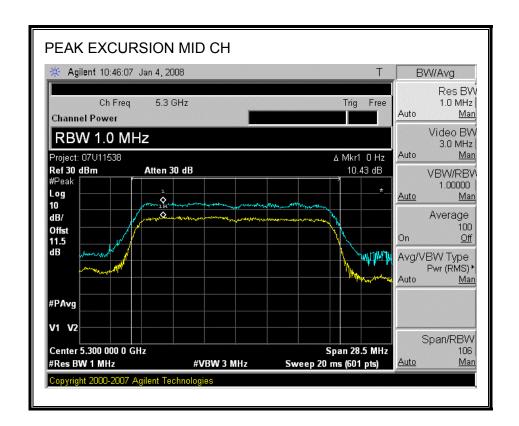
LIMITS

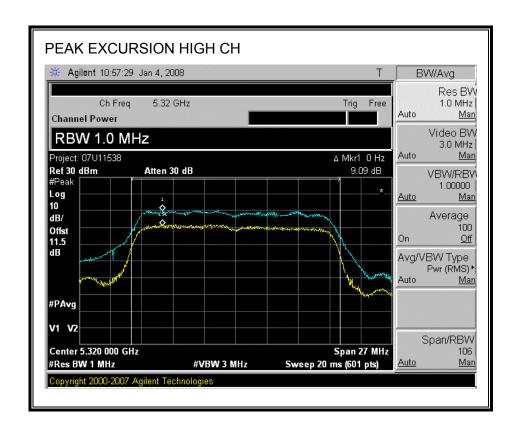
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5280	8.91	13	-4.09
Middle	5300	10.43	13	-2.57
High	5320	9.09	13	-3.91

PEAK EXCURSION

7.1.6. CONDUCTED SPURIOUS EMISSIONS

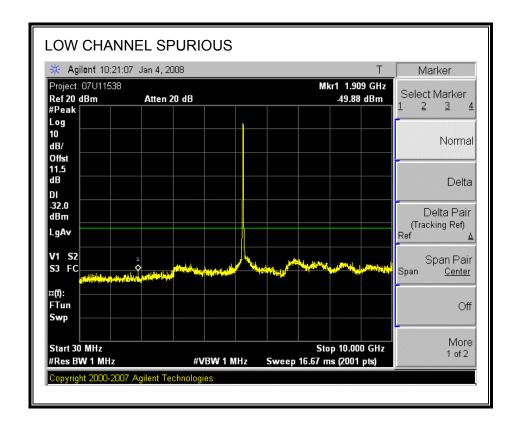
LIMITS

FCC §15.407 (b) (2)

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

TEST PROCEDURE

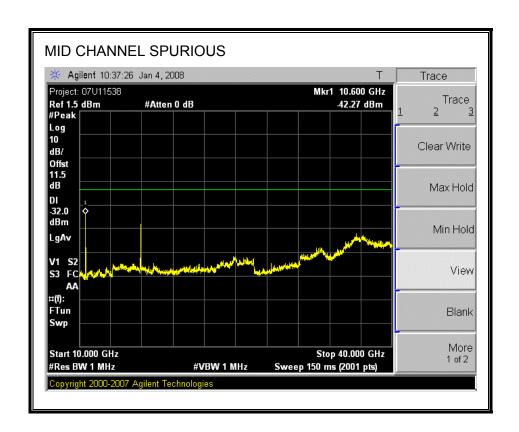

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

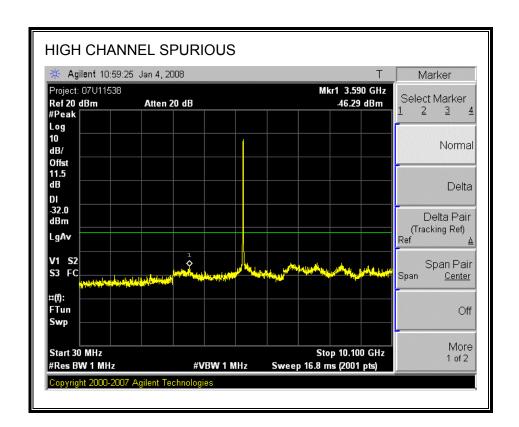
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS




DATE: FEBRUARY 15, 2008

REPORT NO: 07U11538-1 MODEL NUMBER: 860M with WCE

DATE: FEBRUARY 15, 2008

LgAv

V1 S2 S3 FC

FTun

Swp

AA

Start 10.000 GHz

#Res BW 1 MHz

#VBW 1 MHz

DATE: FEBRUARY 15, 2008

Ref

Span

Stop 40.000 GHz

Sweep 150 ms (2001 pts)

Span Pair

Center

Off

More

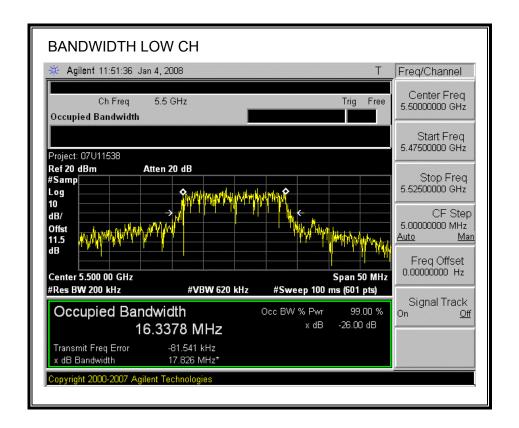
1 of 2

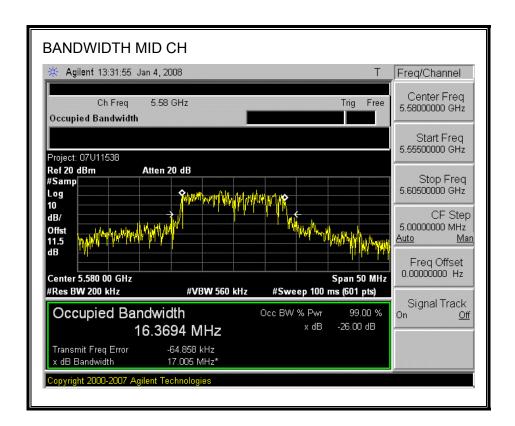
7.2. 802.11a MODE IN THE 5.6 GHz BAND

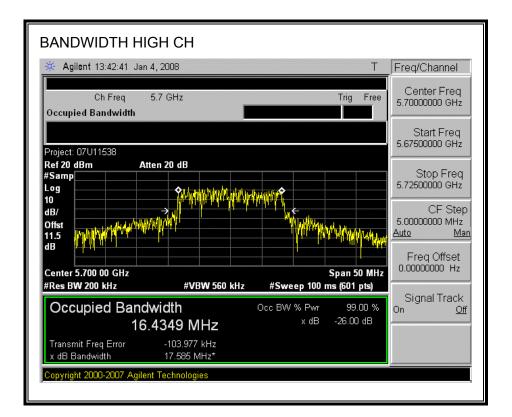
7.2.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5500	17.826	16.338	
Middle	5580	17.005	16.369	
High	5700	17.585	16.435	

26 dB and 99% BANDWIDTH

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

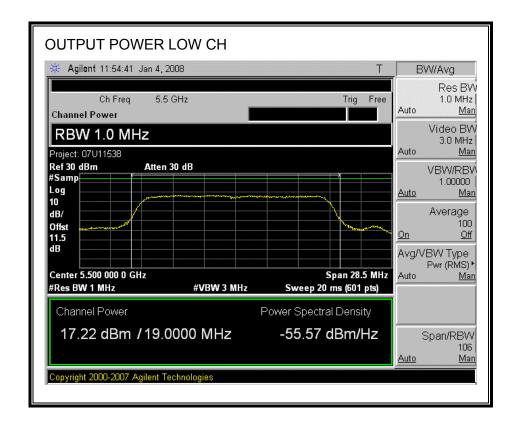
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS


Limit

Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	17.826	23.51	5.00	23.51
Mid	5580	24	17.005	23.31	5.00	23.31
High	5700	24	17.585	23.45	5.00	23.45

Results

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	17.22	23.51	-6.29
Mid	5580	17.32	23.31	-5.99
High	5700	15.36	23.45	-8.09

OUTPUT POWER

Copyright 2000-2007 Agilent Technologies

Auto

Man

DATE: FEBRUARY 15, 2008

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5dB (including 10 dB pad and .5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5500	16.53
Middle	5580	16.83
High	5700	14.80

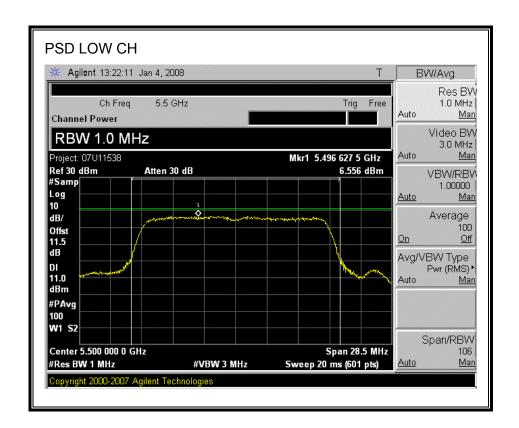
7.2.4. PEAK POWER SPECTRAL DENSITY

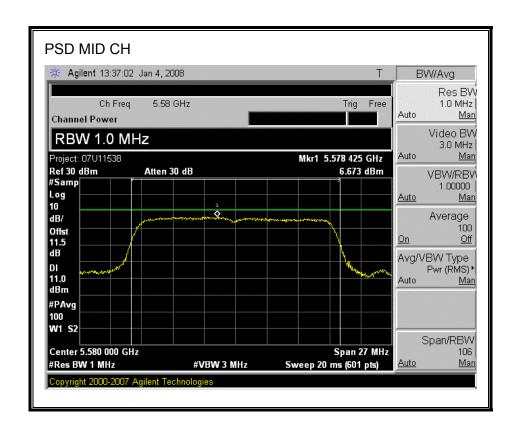
LIMITS

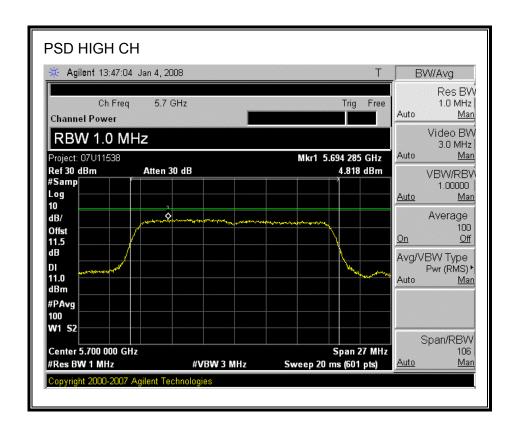
FCC §15.407 (a) (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	6.56	11	-4.44
Middle	5580	6.67	11	-4.33
High	5700	4.82	11	-6.18

POWER SPECTRAL DENSITY

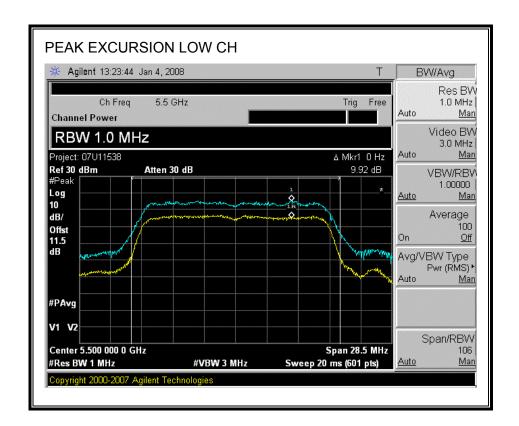
7.2.5. PEAK EXCURSION

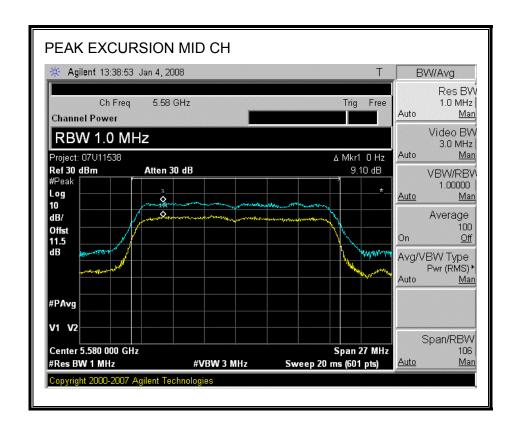
LIMITS

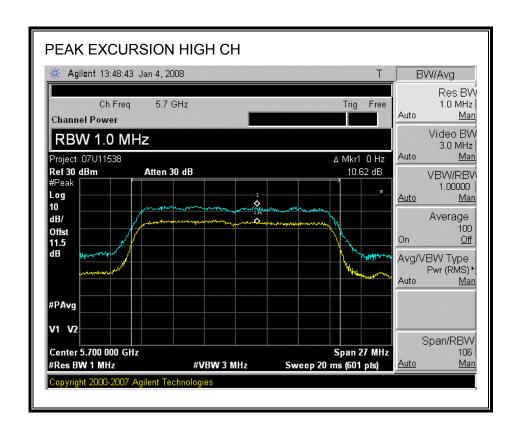
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.92	13	-3.08
Middle	5580	9.10	13	-3.90
High	5700	10.62	13	-2.38

PEAK EXCURSION

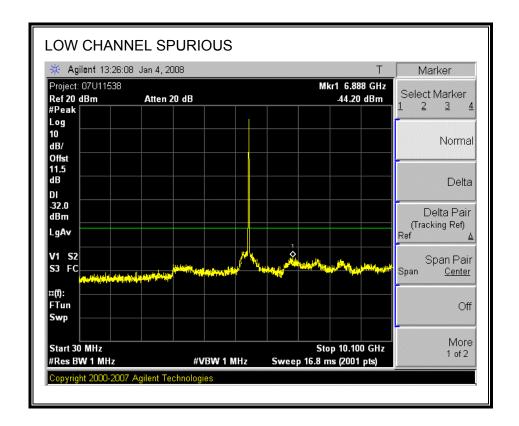
7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

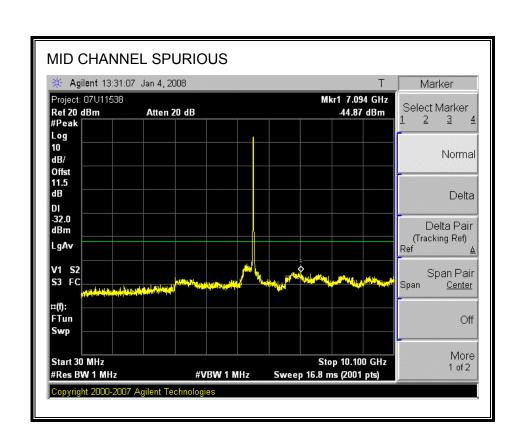
FCC §15.407 (b) (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

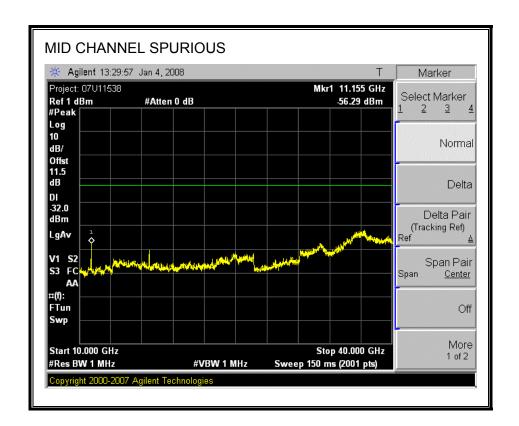
TEST PROCEDURE

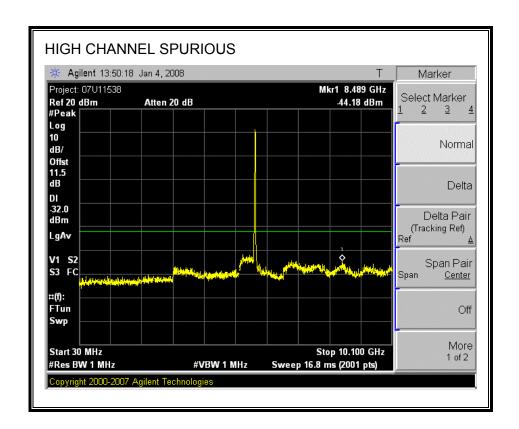

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

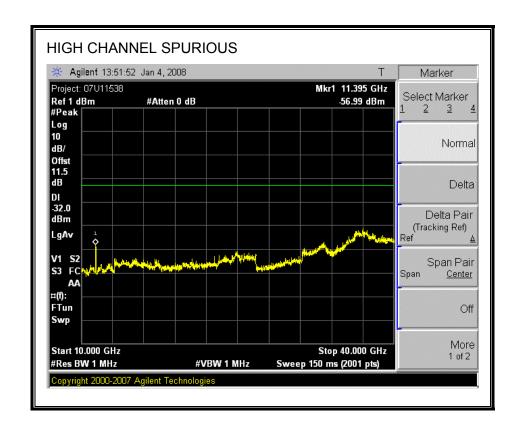
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

RESULTS


SPURIOUS EMISSIONS




REPORT NO: 07U11538-1 MODEL NUMBER: 860M with WCE

DATE: FEBRUARY 15, 2008

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

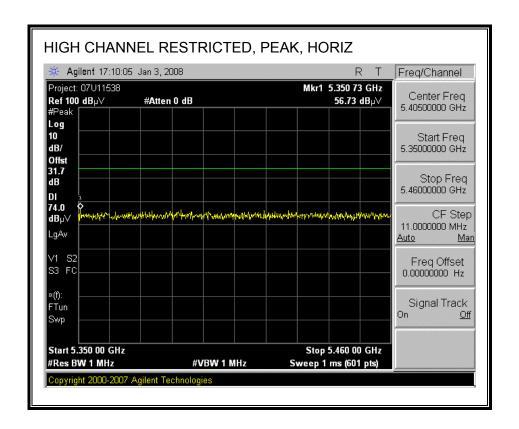
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

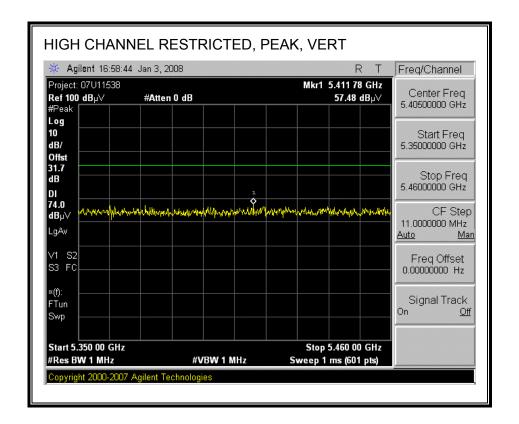
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

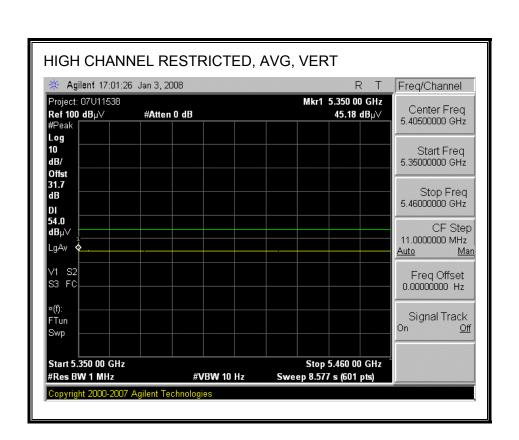
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

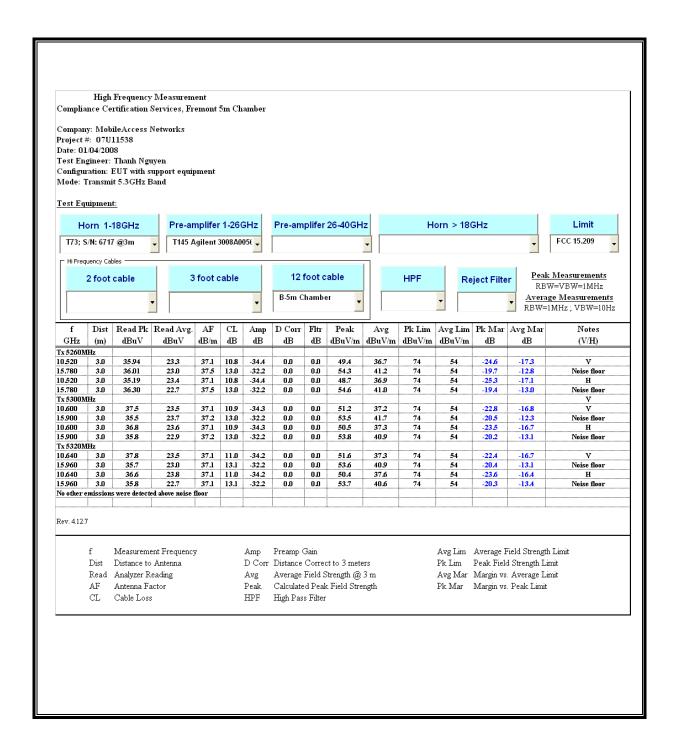

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TRANSMITTER ABOVE 1 GHz FOR 802.11a MODE IN THE UPPER 5.2 GHz BAND

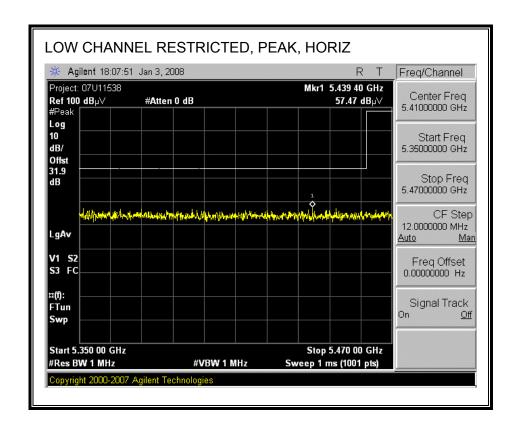

AUTHORIZED BANDEDGE (LOW CHANNEL, HORIZONTAL):


See original lower 5.2GHz band report which is grant by February 12, 2008.

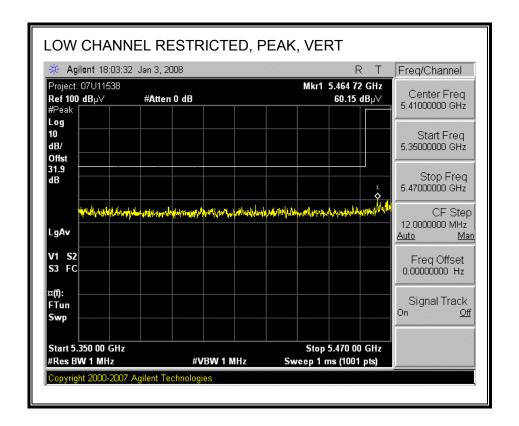
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



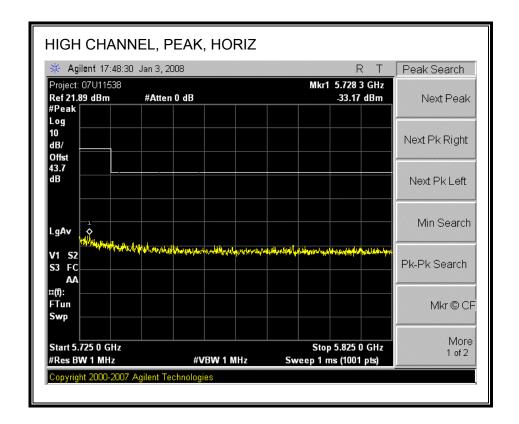
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

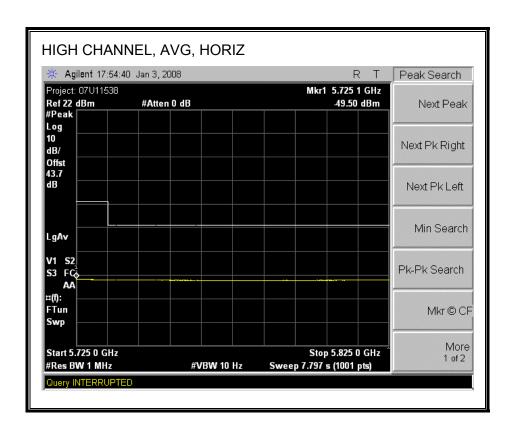


HARMONICS AND SPURIOUS EMISSIONS

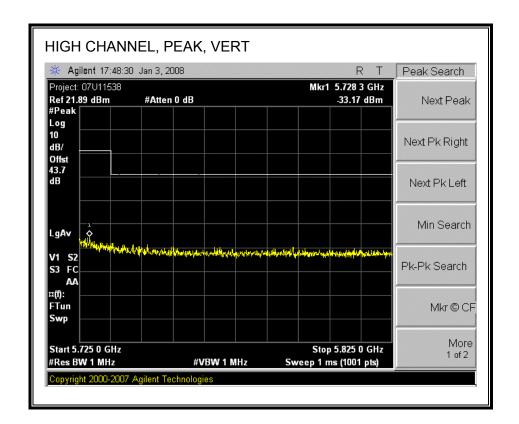


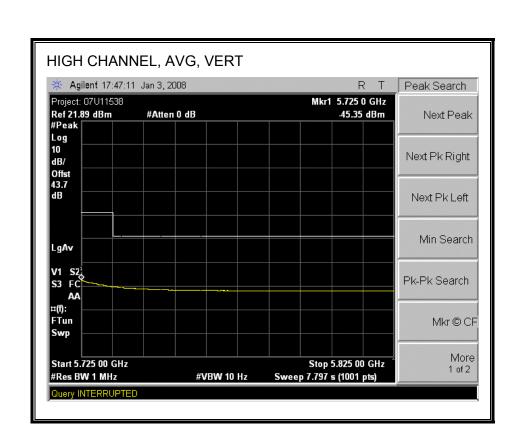
8.2.2. TRANSMITTER ABOVE 1 GHz FOR 802.11a MODE IN THE 5.6 GHz BAND

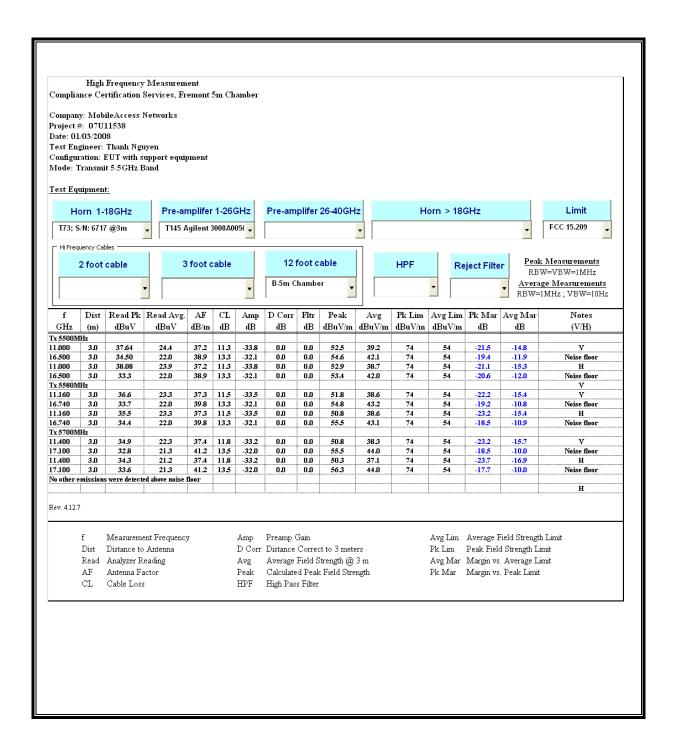

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



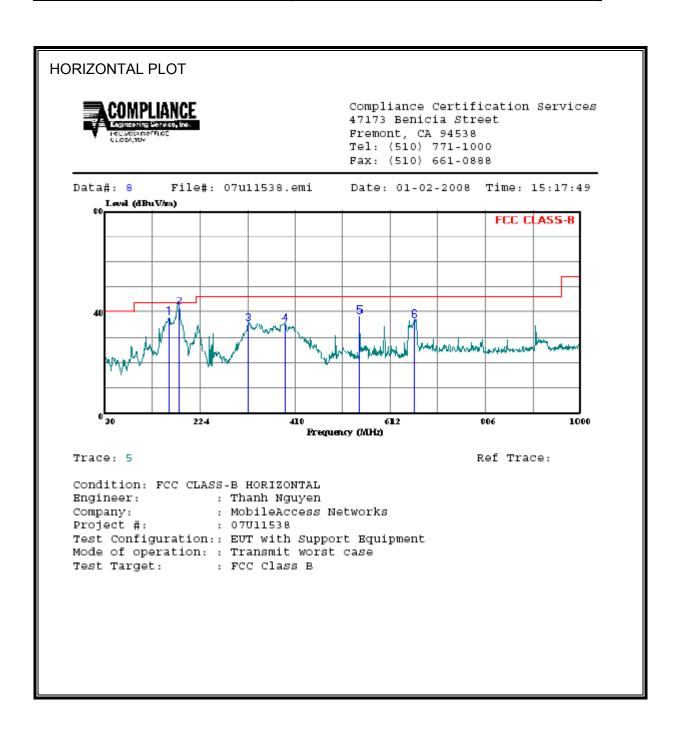
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

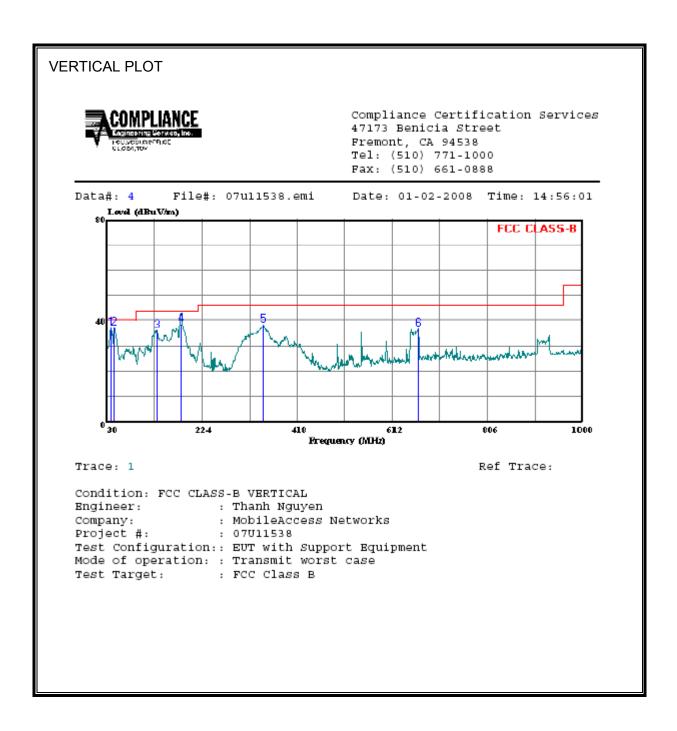


AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS

8.3. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL	DATA
------------	------

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	db	
1	159.010	52.40	-14.17	38.23	43.50	-5.27	Peak
2	180.950	57.03	-14.96	42.07	43.50	-1.43	QP
3	321.970	47.40	-11.69	35.71	46.00	-10.29	Peak
4	396.660	45.70	-9.98	35.72	46.00	-10.28	Peak
5	549.920	44.70	-6.36	38.34	46.00	-7.66	Peak
6	661.470	41.20	-4.23	36.97	46.00	-9.03	Peak

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

\ /C D:	-10	-
\mathcal{L}	111111	DATA
V I I \	111,771	

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHZ	dBuV	dB	$\overline{\text{dBuV/m}}$	$\overline{\tt dBuV/m}$	dB	
1	37.760	48.10	-10.80	37.30	40.00	-2.70	Peak
2	45.520	53.70	-16.27	37.43	40.00	-2.57	Peak
3	131.850	49.40	-13.12	36.28	43.50	-7.22	Peak
4	181.490	53.88	-14.98	38.90	43.50	-4.60	QP
5	349.130	49.60	-11.03	38.57	46.00	-7.43	Peak
6	665.350	41.20	-4.14	37.06	46.00	-8.94	Peak

9. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

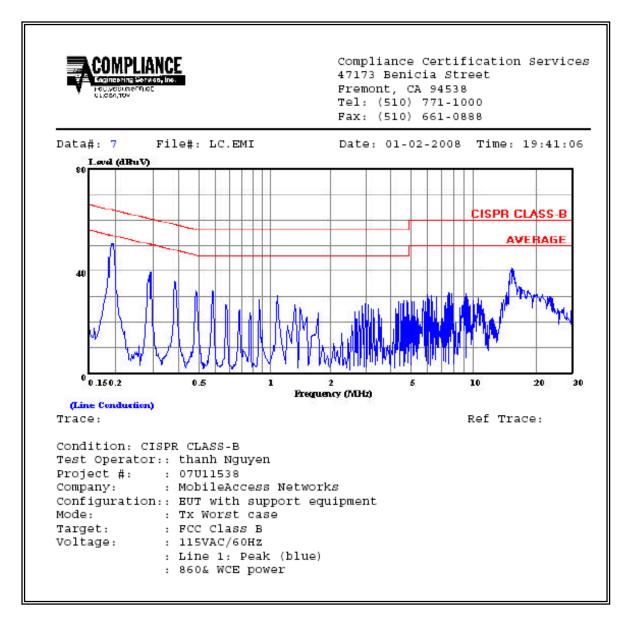
The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

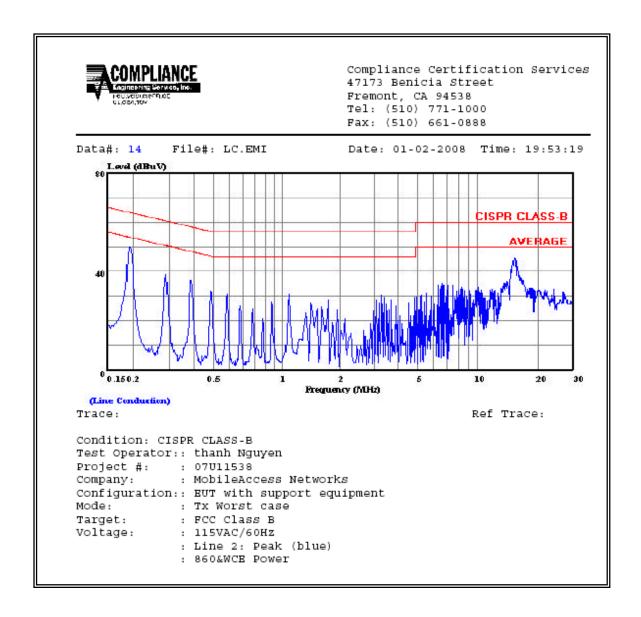
6 WORST EMISSIONS

860&WCE POWER SOURCE

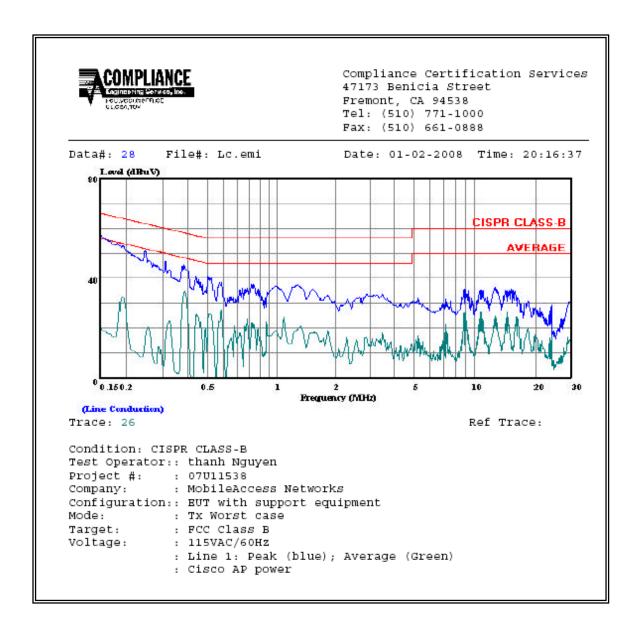

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)_860&WCE								
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.19	50.34			0.00	63.99	53.99	-13.65	-3.65	L1
0.29	39.32			0.00	60.41	50.41	-21.09	-11.09	L1
15.55	41.00			0.00	60.00	50.00	-19.00	-9.00	L1
0.19	48.49			0.00	63.95	53.95	-15.46	-5.46	L2
0.29	38.72			0.00	60.50	50.50	-21.78	-11.78	L2
15.47	45.62			0.00	60.00	50.00	-14.38	-4.38	L2
6 Worst l	 Data 								

AP POWER SOURCE

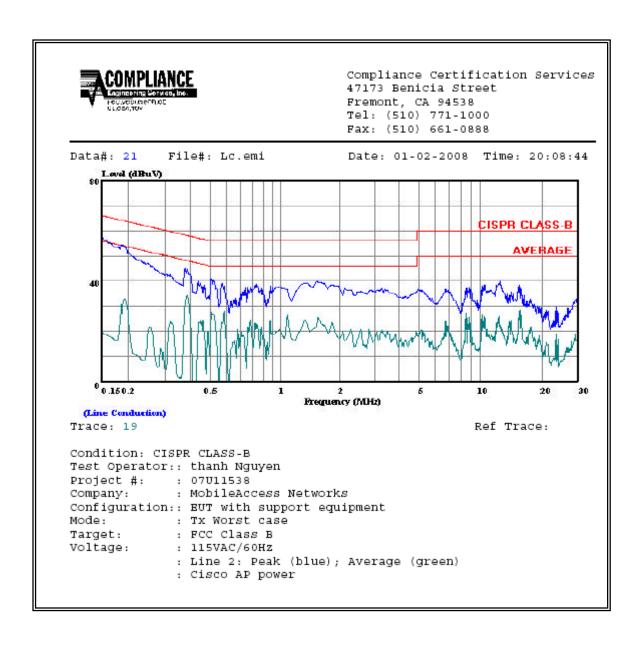
	CONDUCTED EMISSIONS DATA (115VAC 60Hz)_CISCO PWR								
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.15	57.18		32.59	0.00	65.89	55.89	-8.71	-23.30	L1
0.25	51.18		34.71	0.00	61.79	51.79	-10.61	-17.08	L1
1.37	37.32		20.64	0.00	56.00	46.00	-18.68	-25.36	L1
0.15	57.05		32.64	0.00	65.94	55.94	-8.89	-23.30	L2
0.19	54.24		21.91	0.00	64.17	54.17	-9.93	-32.26	L2
1.66	39.52		25.64	0.00	56.00	46.00	-16.48	-20.36	L2
6 Worst l	 Data 								


LINE 1 RESULTS

860&WCE POWER SOURCE


LINE 2 RESULTS

860&WCE POWER SOURCE


LINE 1 RESULTS

AP POWER SOURCE

LINE 2 RESULTS

AP POWER SOURCE

10. DYNAMIC FREQUENCY SELECTION

10.1. OVERVIEW

10.1.1. LIMITS

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operatio	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master	Client (without DFS)	Client (with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value			
Non-occupancy period	30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds			
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period			

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Page 85 of 130

Table 5 - Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	Radar Types 1-4)	80%	120		

Table 6 - Long Pulse Radar Test Signal

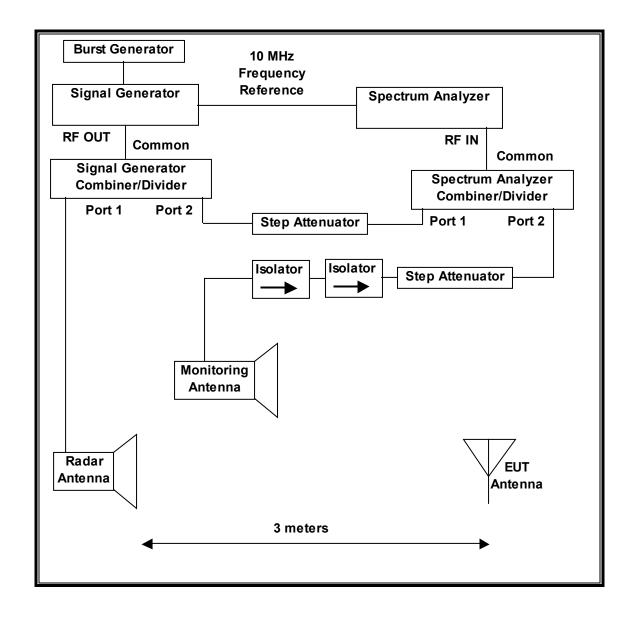

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Rada Wave	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	.333	70%	30

10.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

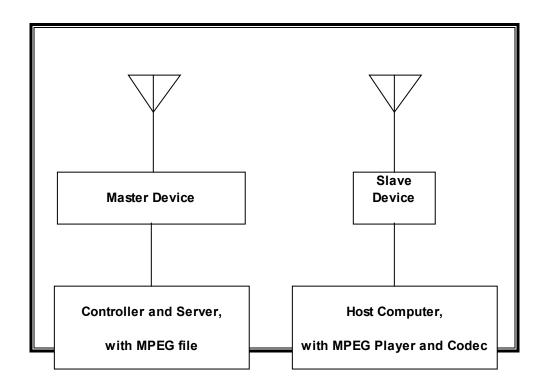
SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST					
Description Manufacturer Model Serial Number Cal Du					
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	MY43360112	3/3/2009	
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	US43320336	11/16/2009	
	National				
High Speed Digital I/O Card	Instruments	PCI-6534	HA1612845	1/16/2009	

10.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop PC (Master)	Lenovo	Type 7675-CTO	LV-C1907	DoC			
Master PC AC Adapter	Lenovo	92P1160	11S92P1160Z1ZBG	N/A			
			H78PTK4				
Laptop PC (Slave)	IBM	Type 2373-6ZU	99-G18YF	DoC			
Slave PC AC Adapter	IBM	92P1020	11S92P1020Z1Z9R	N/A			
			M64478J				
Wireless Access Point	Cisco	AIR-LAP1242AG-A-K9	FTX1038B39L	LDK102056			
Access Point AC Adapter	Delta Electronics	ADP-18PB	PZT0651811543	N/A			
802.11 Wireless Adapter	Cisco	AIR-CB21AG-A-K9	F0C1043N3EA	LDK102050			

10.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Master Device.

The highest power level within these bands is 22.98 dBm EIRP in the 5250-5350 MHz band and 22.32 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 5 dBi.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is –62 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is –62 + 5 + 1 = -56 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter/receiver connected to the antenna. The EUT is set up in a normal configuration to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

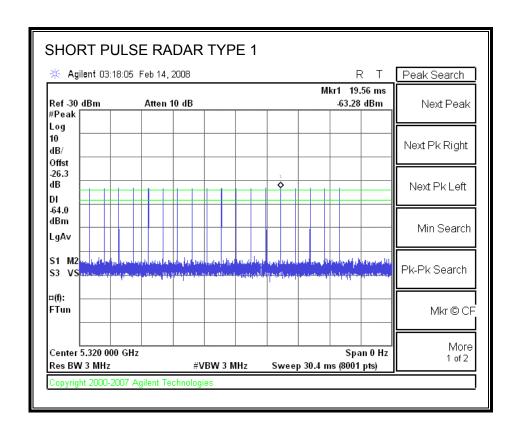
TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

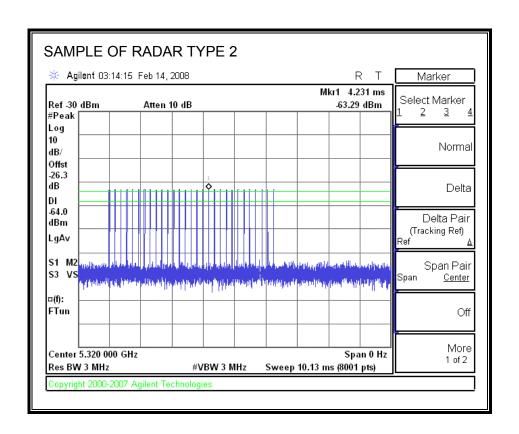
The EUT utilizes the 802.11a architecture. One nominal channel bandwidth, 20 MHz, is implemented.

The software installed in the access point is revision 6.00.1.

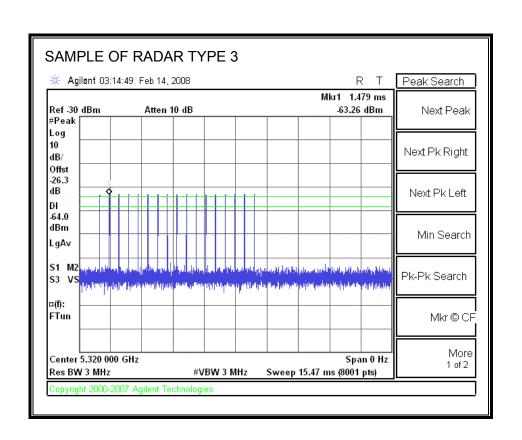
MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.


10.2. RESULTS


10.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5320 MHz. Measurements were performed using conducted test methods.


10.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

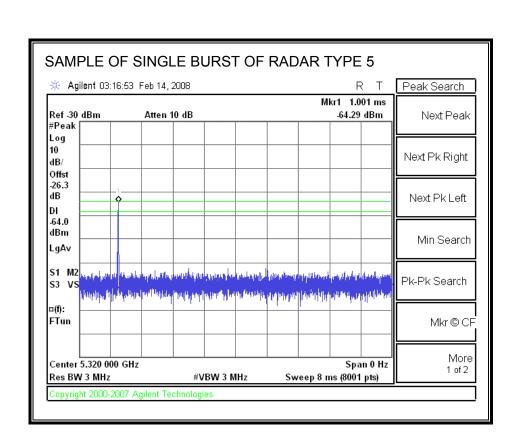
DATE: FEBRUARY 15, 2008

DATE: FEBRUARY 15, 2008

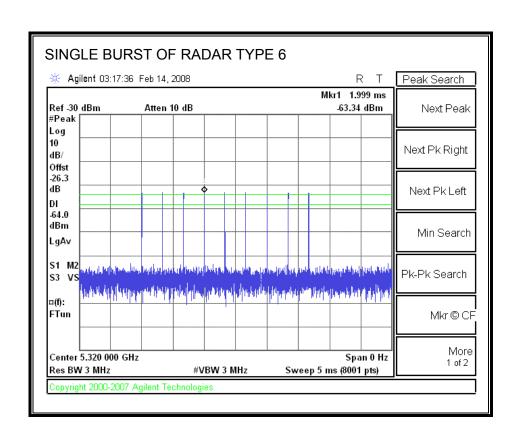
Center 5.320 000 GHz

Copyright 2000-2007 Agilent Technologies

Res BW 3 MHz

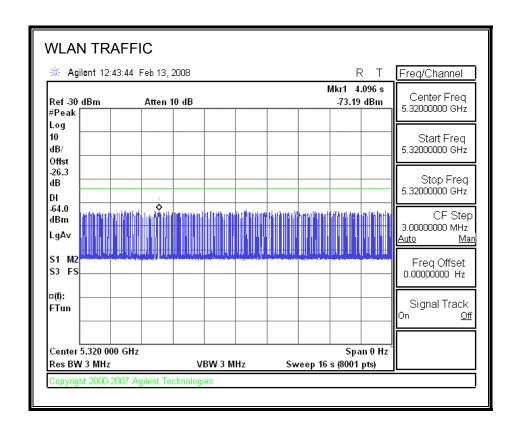

#VBW 3 MHz

Span 0 Hz


Sweep 10.13 ms (8001 pts)

1 of 2

DATE: FEBRUARY 15, 2008



DATE: FEBRUARY 15, 2008

DATE: FEBRUARY 15, 2008

PLOT OF WLAN TRAFFIC FROM MASTER

10.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

No Radar Triggered

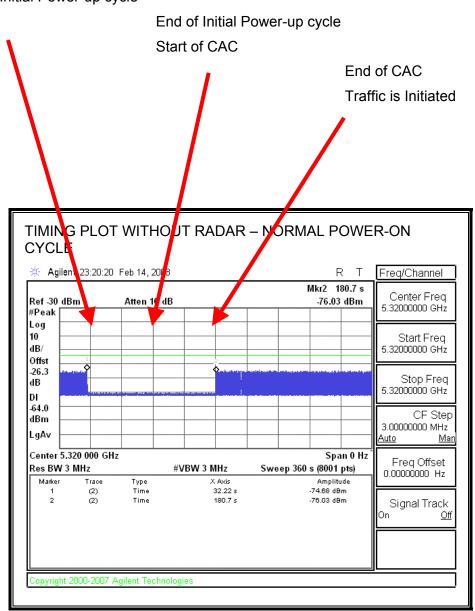
Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
32.22	180.7	148.5	88.5

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
35.33	125.5	90.2	1.7

Radar Near End of CAC

Ttadai Ttodi =::						
Timing of	Timing of	Radar Relative	Radar Relative			
Reboot	Radar Burst	to Reboot	to Start of CAC			
(sec)	(sec)	(sec)	(sec)			
35.33	182.0	146.7	58.2			

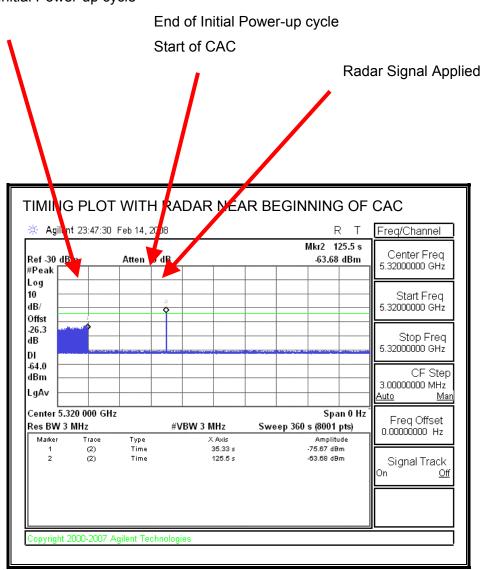

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
	EUT does not display any radar parameter values	
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel
	EUT does not display any radar parameter values	

Page 101 of 130

TIMING PLOT WITHOUT RADAR DURING CAC

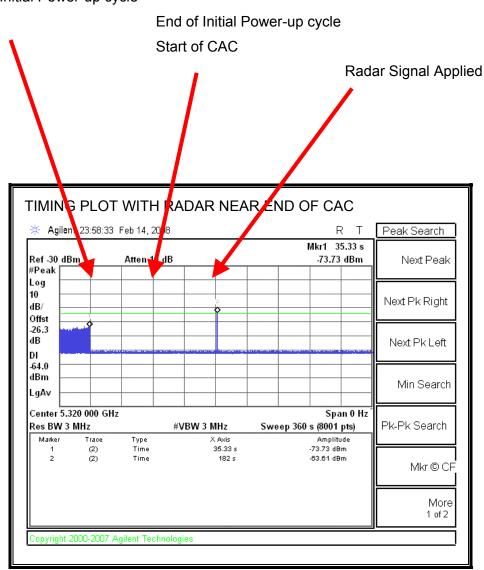
AP is rebooted
Traffic ceases
Start of Initial Power-up cycle


Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted

Traffic ceases


Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted
Traffic ceases
Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

10.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

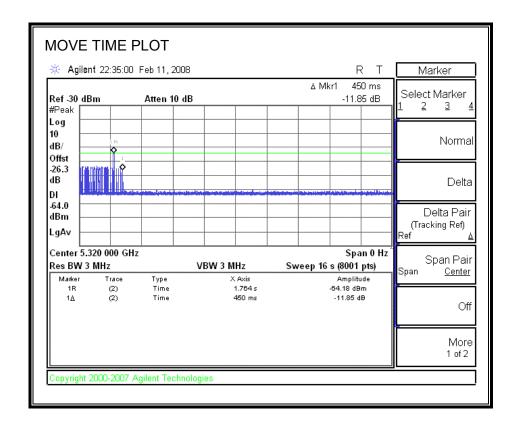
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

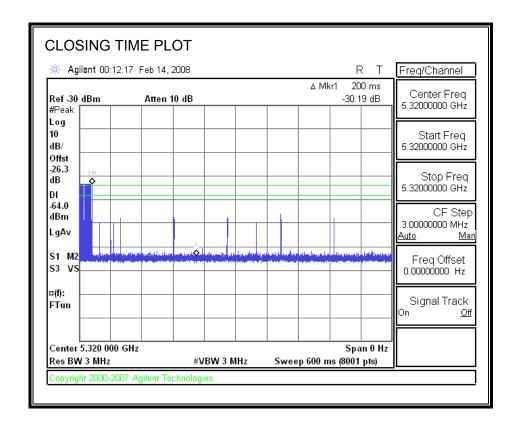
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time =

(Number of analyzer bins showing transmission) * (dwell time per bin)

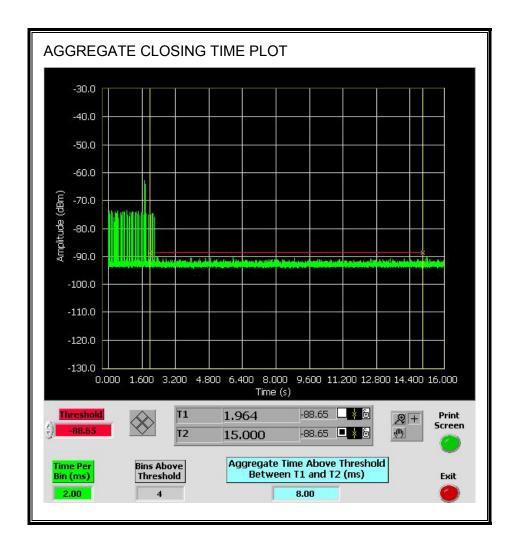

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

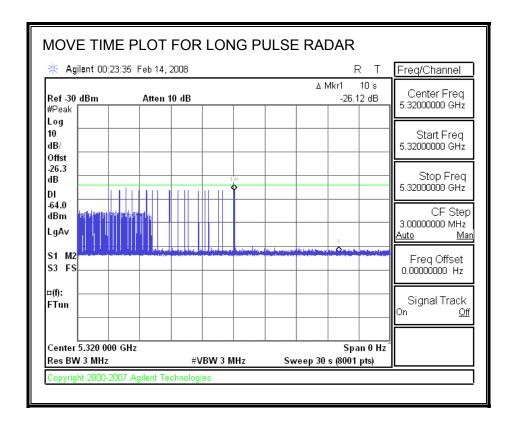

Channel Move Time	Limit
(sec)	(sec)
0.450	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
8.0	60

MOVE TIME



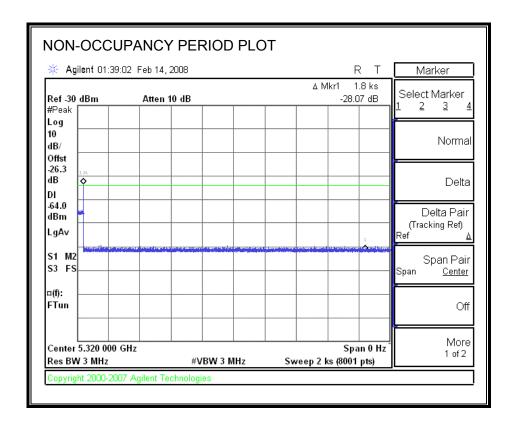
CHANNEL CLOSING TIME


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

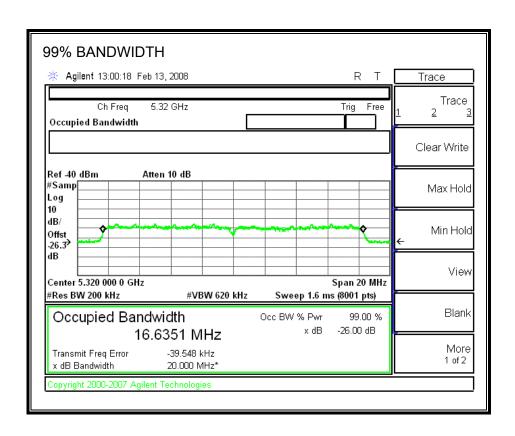
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.


10.2.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.


DATE: FEBRUARY 15, 2008

FCC ID: OJFMA860WCE

10.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

	FL	FH	Detection	99% Power	Ratio of	Minimum
١			Bandwidth	Bandwidth	Detection BW to	Limit
١					99% Power BW	
١	(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
	5312	5329	17	16.635	102.2	80

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS

	width Test Results			
	veform: 1 us Pulse V			
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5311	10	0	0	
5312	10	10	100	FL
5313	10	10	100	
5314	10	10	100	
5315	10	10	100	
5316	10	10	100	
5317	10	10	100	
5318	10	10	100	
5319	10	10	100	
5320	10	10	100	
5321	10	10	100	
5322	10	10	100	
5323	10	10	100	
5324	10	10	100	
5325	10	10	100	
5326	10	10	100	
5327	10	10	100	
5328	10	10	100	
5329	10	10	100	FH
5330	10	0	0	

10.2.7. IN-SERVICE MONITORING

RESULTS

CC Radar Tes				
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC TYPE 1	30	96.67	60	Pass
FCC TYPE 2	30	90.00	60	Pass
FCC TYPE 3	30	86.67	60	Pass
FCC TYPE 4	30	83.33	60	Pass
Aggregate		89.17	80	Pass
FCC TYPE 5	30	100.00	80	Pass
FCC TYPE 6	36	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Fixed Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst					
Trial	Successful Detection				
	(Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4	Yes				
5	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	Yes				
20	Yes				
21	Yes				
22	No				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	Yes				
28	Yes				
29	Yes				
30	Yes				

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	2.9	190.00	29	Yes
2002	1.1	227.00	26	Yes
2003	4	185.00	25	Yes
2004	3.4	200.00	26	Yes
2005	4.7	202.00	28	Yes
2006	2.1	214.00	26	Yes
2007	3.6	173.00	27	No
2008	2	202.00	25	Yes
2009	2.8	171.00	25	Yes
2010	3.6	186.00	29	Yes
2011	3.2	181.00	23	Yes
2012	4.2	171.00	23	Yes
2013	4.2	198.00	28	No
2014	2.7	212.00	28	Yes
2015	2.1	198.00	25	Yes
2016	1.4	151.00	24	Yes
2017	1.8	223.00	26	Yes
2018	5	188.00	24	Yes
2019	2.3	179.00	25	Yes
2020	2.6	209.00	23	Yes
2021	2.2	230.00	26	No
2022	2.8	217.00	27	Yes
2023	1.7	229.00	28	Yes
2024	1	154.00	26	Yes
2025	1.6	198.00	23	Yes
2026	1.4	220.00	23	Yes
2027	2.6	183.00	23	Yes
2028	3.9	192.00	26	Yes
2029	4.2	213.00	23	Yes
2030	3.5	154.00	27	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	5.1	479.00	17	Yes
3002	6.4	410.00	18	Yes
3003	7.6	440.00	16	Yes
3004	8	320.00	16	Yes
3005	8.8	299.00	17	No
3006	5.5	335.00	18	Yes
3007	7.2	288.00	18	No
3008	9	388.00	17	Yes
3009	6.2	302.00	18	Yes
3010	5.2	477.00	17	Yes
3011	7.9	359.00	18	Yes
3012	8.8	464.00	16	Yes
3013	8.6	380.00	16	Yes
3014	5.5	361.00	16	Yes
3015	9.2	430.00	17	Yes
3016	8.9	342.00	17	Yes
3017	10	302.00	18	Yes
3018	8.8	269.00	17	No
3019	9.9	348.00	18	Yes
3020	7.6	306.00	17	Yes
3021	5.1	327.00	18	Yes
3022	6.4	336.00	16	Yes
3023	8.8	280.00	17	Yes
3024	5.1	297.00	18	Yes
3025	6.6	256.00	16	Yes
3026	7	286.00	17	Yes
3027	9.9	431.00	16	No
3028	6.3	483.00	17	Yes
3029	9.2	448	16	Yes
3030	7.2	422	18	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	14.4	478.00	12	Yes
4002	16	417.00	16	Yes
4003	15.2	402.00	13	Yes
4004	18.9	398.00	16	Yes
4005	10	363.00	15	No
4006	10.9	394.00	14	No
4007	11.8	455.00	12	Yes
4008	13.9	460.00	13	Yes
4009	16.8	451.00	12	Yes
4010	19.4	270.00	16	Yes
4011	14.5	276.00	13	Yes
4012	19.4	295.00	12	Yes
4013	16.6	383.00	14	Yes
4014	17.2	498.00	16	Yes
4015	14.4	321.00	14	No
4016	14	323.00	12	Yes
4017	13.1	293.00	12	Yes
4018	10.5	255.00	16	No
4019	20	291.00	15	No
4020	19.9	306.00	16	Yes
4021	15.7	257.00	12	Yes
4022	14.2	259.00	13	Yes
4023	11.1	449.00	16	Yes
4024	19.2	455.00	13	Yes
4025	11.9	396.00	12	Yes
4026	10.2	419.00	12	Yes
4027	10.2	317.00	12	Yes
4028	19.3	444.00	15	Yes
4029	12.3	401.00	12	Yes
4030	14.6	444.00	12	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for FCC Long Pulse Radar Type 5					
Trial	Successful Detection				
IIIai	(Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4					
5	Yes				
	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	Yes				
20	Yes				
21	Yes				
22	Yes				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	Yes				
28	Yes				
29	Yes				
30	Yes				

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

us Puls	t for FCC Hopping Rada e Width, 333 us PRI, :		1 Burst per Hop	•
	ust 2005 Hopping Se	•	•	
Trial	Starting Index Within Sequence (Base 1)	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	152	5312	2	Yes
2	627	5313	3	Yes
3	1102	5314	5	Yes
4	1577	5315	2	Yes
5	2052	5316	5	Yes
6	2527	5317	4	Yes
7	3002	5318	2	Yes
8	3477	5319	3	Yes
9	3952	5320	6	Yes
10	4427	5321	4	Yes
11	4902	5322	4	Yes
12	5377	5323	3	Yes
13	5852	5324	5	Yes
14	6327	5325	5	Yes
15	6802	5326	5	Yes
16	7277	5327	3	Yes
17	7752	5328	1	Yes
18	8227	5329	3	Yes
19	8702	5312	5	Yes
20	9177	5313	1	Yes
21	9652	5314	3	Yes
22	10127	5315	3	Yes
23	10602	5316	2	Yes
24	11077	5317	5	Yes
25	11552	5318	4	Yes
26	12027	5319	5	Yes
27	12502	5320	1	Yes
28	12977	5321	5	Yes
29	13452	5322	3	Yes
30	13927	5323	4	Yes
31	14402	5324	7	Yes
32	14877	5325	3	Yes
33	15352	5326	2	Yes
34	15827	5327	3	Yes
35	16302	5328	4	Yes
36	16777	5329	5	Yes

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lin	nits for Occupational	//Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

exposure or can not exercise control over their exposure.

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)/d}$$

and

$$S = E^{2}/3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

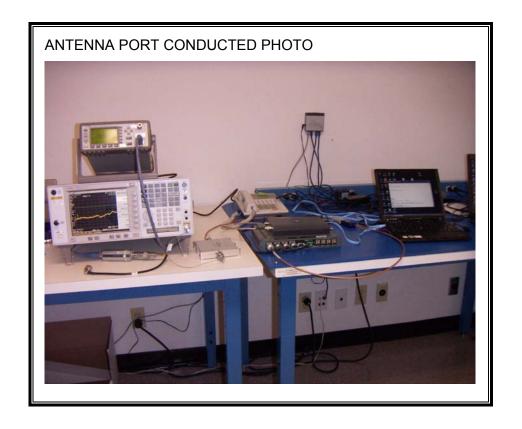
S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

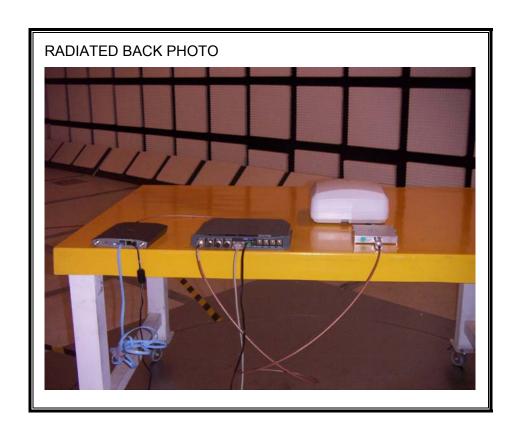
The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

LIMITS


From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

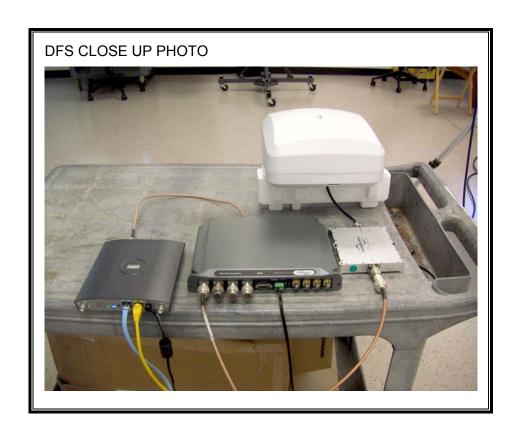
RESULTS

Mode	Band	MPE	Output	Antenna	FCC Power
		Distance	Power	Gain	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)
WLAN	5.3 GHz	20.0	17.98	5.00	0.04
WLAN	5.6 GHz	20.0	17.32	5.00	0.03


12. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

RADIATED RF MEASUREMENT SETUP


POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

DFS MEASUREMENT SETUP

END OF REPORT