# FCC CFR47 CERTIFICATION

**PARTS 22, 24, 90** 

# TEST REPORT

# **FOR**

# CELLULAR & LAND MOBILE RADIO REPEATER

FCC ID:OJFLITENNA0LF0SB0

**ISSUE DATE: OCTOBER 23, 2000** 

Prepared for

FOXCOM WIRELESS LTD. Ofek One Center Building B, Northern Industrial Zone Lod, Israel 71293

Tested by

COMPLIANCE CERTIFICATION SERVICES, INC. 1366 BORDEAUX DRIVE SUNNYVALE, CA 94089, USA TEL: (408) 752-8166

FAX: (408) 752-8168

|     | TABLE OF CONTENTS                                      | PAGE |
|-----|--------------------------------------------------------|------|
| 1.  | FCC CERTIFICATION INFORMATION                          | 1    |
| 2.  | TEST FACILITY                                          | 4    |
| 3.  | ACCREDITATION AND LISTING                              | 4    |
| 4.  | MEASUREMENT INSTRUMENTATION                            | 4    |
| 5.  | MEASURING INSTRUMENT CALIBRATION                       | 4    |
| 6.  | UNITS OF MEASUREMENT                                   | 4    |
| 7.  | FCC 15.207 & 15.209                                    | 5    |
| 8.  | TEST EQUIPMENT LIST                                    | 6    |
| 9.  | EUT SETUP PHOTOS                                       | 7    |
| 10. | EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION            | 8    |
| 11. | CONFIGURATION BLOCK DIAGRAM                            | 9    |
| 12. | PART 2: CERTIFICATION TEST REQUIREMENT:                | 9    |
|     | SECTION 2.1046: RF POWER OUTPUT                        |      |
| S   | SECTION 2.1047: MODULATION CHARACTERISTICS             | 10   |
|     | SECTION 2.1049: OCCUPIED BANDWIDTH                     |      |
|     | SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINALS |      |
|     | SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION   |      |
|     | SECTION 2.1055: FREQUENCY STABILITYCHART OF PLOTS:     |      |
| •   | ~11/11X1 O1 1 LO10                                     |      |

### 1. FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part2, Subpart J, Sections 2.1033 – 2.1055.

2.1033(c)(1) Applicant: Foxcom Wireless Ltd.

Ofek One Center Building B, Northern Industrial Zone Lod, Israel 71293

Contact person: Shlomo Cohen

Telephone number: 972-8-9183818

**2.1033(c)(2)** FCC ID: OJFLITENNA0LF0SB0

### 2.1033(c)(3) Instructions/Installation Manual

Refer to **Attachment**: User's Manual.

# 2.1033(c)(4) Type of emissions

D7W (QAM), DXW (TDMA), F9W (CDMA), F8W(AMPS), F1D (Paging), GXW (iDEN), F3E (SMR)

#### 2.1033(c)(5) Frequency Range

TIDI INIIZ

| UPLINK     | DOWNLINK      | SERVICE            |
|------------|---------------|--------------------|
| 824-849 MH | z 869-894 MHz | AMPS/TDMA/CDMA 800 |
| 896-902 MH | z 935-941 MHz | SMR 900            |
| 896-902 MH | z 929-942 MHz | Paging 900         |

## 2.1033(c)(6) Range of Operation Power

DOMAII INIZ

14 dBm - 21 dBm maximum output, depending on modulation. Refer to Litenna Data Sheet, separate attachment, composite 1 carrier

CEDIACE

(F9W) CDMA: 13.7 dBm (23.4 mW) (F8W) AMPS: 20 dBm (100 mW) (DXW) TDMA: 21.0 dBm (126 mW) (GXW) iDEN: 21 dBm (126 mW) (F3E) SMR: 20.4 dBm (109.6 dBm) (F3E) LMR: 20 dBm (100 mW)

### 2.1033(c)(7) Maximum Power Rating

0.126 WATTS (21 dBm)

**Section 22.913(a); Maximum ERP**. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.

**Section 24.13(a,b); Maximum ERP**. The effective radiated power (ERP) of 901-902 MHz radios and mobile radios must not exceed 7 Watts.

Section 90.205(i,j): Maximum Power. 30-500 watts.

## 2.1033(c)(8) Applied voltage and currents into the final transistor elements

Refer to schematic

## 2.1033(c)(9) Tune-up/Optimizations Procedure

Refer to installation manual

## 2.1033(c)(10) Complete Circuit Diagrams and Functional Diagram

Refer to Schematics and Block Diagram . Confidentiality is requested for these items.

### 2.1033(c)(10a) Means for Frequency Stabilization

Not Applicable. Eut is an amplifier type repeater.

# 2.1033(c)(10b) Means for Suppressing of Spurious radiation.

SAW filter. See Repeater description.

## 2.1033(c)(10c) Means for Limiting Modulation.

Not Applicable. Eut is a repeater.

## 2.1033(c)(10d) Means for Limiting Power.

Software control

## 2.1033(c)(11) Equipment Identification

Refer to separate Word attachment

## **2.1033(c)(12) Photographs**

Refer to separate Word attachment

### 2.1033(c)(13) Description of Digital Modulation Techniques

N/A EUT is repeater.

### 2.1033(c)(14) Standard Test Condition

The repeater was tested under the following conditions.

DC Supply from AC-DC adapter: 24 VDC

The amplifier was aligned and tuned up according to manufacturer's alignment procedure, prior to testing. All data presented represents the worst case parameter being measured.

## 2.1033 Description of Various Base Station Configurations

Not Applicable.

# 2.1033 Use of Various Power Supplies

Not Applicable.

| TYPE OF EQUIPMENT:                | CELLULAR and Part 90 REPEATER |
|-----------------------------------|-------------------------------|
| MEASUREMENT DISTANCE:             | 3 METER                       |
| TECHNICAL LIMIT:                  | FCC 22.359, 22.917            |
| FCC RULES:                        | PART 22, 24, 90               |
| EQUIPMENT AUTHORIZATION PROCEDURE | CERTIFICATION                 |
| MODIFICATIONS MADE ON EUT         | ☐ YES ⋈ NO                    |

The above equipment was tested by Compliance Certification Services for compliance with the requirements set forth in the FCC CFR 47, Parts 2, 24, and 90. The results of testing in this report apply to the product/system, which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

| T.N. Cokenias    |  |
|------------------|--|
| Agent for Foxcom |  |

### 2. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

### 3. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code:200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT(1300F2))

### 4. MEASUREMENT INSTRUMENTATION

Radiated emissions were measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, ridged waveguide liner horn. EMI receivers were used for line conducted readings, spectrum analyzers with preselectors and quasi-peak detectors were used to perform radiated measurements. Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specification for "Radio Interference Measuring Apparatus and Measurement Methods," Publication 16.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

## 5. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

## 6. UNITS OF MEASUREMENT

Measurements of radiated interference are reported in terms of dB(uV/m) at a specified distance. The indicated readings on the spectrum analyzer were converted to dB(uV/m) by use of appropriate conversion factors. Measurements of conducted interference are reported in terms of dB(uV).

The field strength is calculated by adding the Antenna Factor and Cable Factors, then by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

Assume a receiver reading of 52.5 dBuV is obtained. The Antenna Factor of 7.4dB/m and a Cable Factor of 1.1dB is added. The Amplifier Gain of 29 dB is subtracted, giving a field strength of 32 dBuV/m. The 32 dBuV/m value was mathematically converted to its corresponding level in uV/m.

$$FS = 52.5 + 7.4 + 1.1 - 29 = 32 dBuV/m$$

Level in uV/m = Common Antilogarithm [(32 dBuV/m)/20] = 39.8 uV/m

### 7. FCC 15.207 & 15.209

NOT APPLICABLE - no digital devices, no unintentional radiators in EUT

# 8. TEST EQUIPMENT LIST

| Equipment         | Manufacturer     | Model No.  | Serial No. Site |     | Cal Date | Due Date |
|-------------------|------------------|------------|-----------------|-----|----------|----------|
| Receiver          | H.P.             | 8546A      | 3520A00259      | A   | 03/00    | 03/01    |
| Bilog Antenna     | CHASE            | CBL6112    | 2049            | A   | 05/00    | 05/01    |
| Spectrum Analyzer | H.P.             | 8566B      | 3014A06685      | N/A | 07/00    | 07/01    |
| Spectrum Analyzer | H.P.             | 8593EM     | 3710A00205      | N/A | 05/00    | 05/01    |
| Horn Antenna      | EMCO             | 3115       | 9001-3245       | N/A | 12/97    | 12/00    |
| Pre-Amp           | H.P. (1-26.5GHz) | 8449B      | 3008A00369      | N/A | 04/00    | 04/01    |
| Power Meter       | H.P.             | 436A       | 2709A29209      | N/A | 02/00    | 02/01    |
| Power Sensor      | H.P.             | 8482A      | 2349A08568      | N/A | 02/00    | 02/01    |
| Horn Antenna      | ARA              | MWH-1826/B | 1013            | N/A | 7/28/00  | 7/28/01  |

# B) SUPPORT EQUIPMENT

| Device Type      | Manufacturer       | Model Number | Serial No. |
|------------------|--------------------|--------------|------------|
| SIGNAL GENERATOR | HP                 | 83732B       | N/A        |
| SIGNAL GENERATOR | Rohde &<br>Schwarz | SMY01        | DE12311    |
| SIGNAL GENERATOR | Rohde &<br>Schwarz | SMIQ03       | N/A        |
| SIGNAL GENERATOR | Rohde &<br>Schwarz | SMIQ03       | N/A        |

# 9. EUT SETUP PHOTOS









# 10. EXTERNAL I/O CABLE DESCRIPTION

| CABLE NO: 1                                                        |                                             |  |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| I/O Port: : ANTENNA OUT                                            | Number of I/O ports of this type: 4         |  |  |  |  |
| Number of Conductors: 4                                            | Connector Type: N-TYPE                      |  |  |  |  |
| Capture Type: SCREW IN                                             | Type of Cable used: SHIELDED (to aanalyzer) |  |  |  |  |
| Cable Connector Type: METAL                                        | Cable Length: 1.5 m (to analyzer)           |  |  |  |  |
| Bundled During Tests: NO                                           | Data Traffic Generated: YES                 |  |  |  |  |
| Remark: 3 terminated 50 ohms, 4 <sup>th</sup> to spectrum analyzer |                                             |  |  |  |  |

| CABLE NO: 2                            |  |  |  |  |  |  |
|----------------------------------------|--|--|--|--|--|--|
| Optical fiber from base to remote unit |  |  |  |  |  |  |
| Remark: N/A                            |  |  |  |  |  |  |

| CABLE NO: 3                                 |                                     |  |  |  |  |  |
|---------------------------------------------|-------------------------------------|--|--|--|--|--|
| I/O Port: : RF IN from building basestation | Number of I/O ports of this type: 1 |  |  |  |  |  |
| Number of Conductors: 2                     | Connector Type: N-TYPE              |  |  |  |  |  |
| Capture Type: SCREW IN                      | Type of Cable used: SHIELDED        |  |  |  |  |  |
| Cable Connector Type: METAL                 | Cable Length: 1.5 M                 |  |  |  |  |  |
| Bundled During Tests: NO                    | Data Traffic Generated: YES         |  |  |  |  |  |
| Remark: N/A                                 |                                     |  |  |  |  |  |

### 11. CONFIGURATION BLOCK DIAGRAM

(two gen for intermod test)

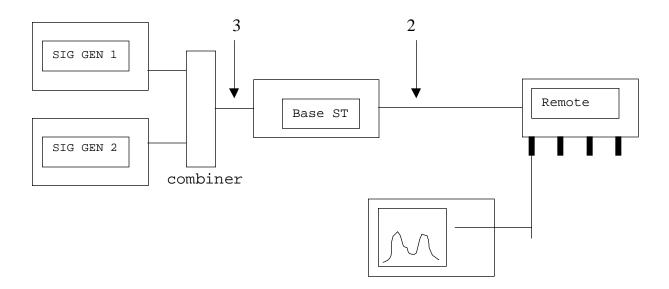



FIGURE 1.

# 12. PART 2: CERTIFICATION TEST REQUIREMENT:

## **SECTION 2.1046: RF POWER OUTPUT**

**Test Setup: Refer to figure #1** 

## **Minimum requirement:**

**Section 22.913(a); Maximum ERP**. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

### **Test procedure:**

**Figure 1.** shows the setup for conducted RF power output measurement. RF power output was measured with a power meter. Set the power amplifier to the maximum output gain.

**Test Result:** maximum measured 21 dBm = .126 watts.

### SECTION 2.1047: MODULATION CHARACTERISTICS

Not applicable. EUT is a repeater.

## **SECTION 2.1049: OCCUPIED BANDWIDTH**

**Test Setup: Refer to figure #1** 

## **Minimum Requirement:**

Section 2.1049(i); transmitters designed for other types of modulation-when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

#### **Test Procedure:**

The Eut's occupied bandwidth is compared to the input source plot (signal generator) and output plot (power amplifier) and check that the input signal bandwidth is not greater at the output of amplifier.

#### **Test results:**

Plots were made for the output of the amplifier and another for the input from signal generator. was used for this test. Refer to chart designating plots.

#### SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINALS

Test Setup: Refer to figure #1 Minimum Requirement: Section 22.917(e):

For transmitters the magnitude of each spurious, harmonic, and intermodulation emissions that can be detected when the equipment is operated under conditions specified in the instruction manual and/or alignment procedure, shall not be more than  $43 + 10 \log (P)$  dBc below the mean power output, which is equivalent to -13 dBm.

### **Section 22.917(f):**

Measured at REV transmit antenna with 849MHz. Input.

### **Test Procedure:**

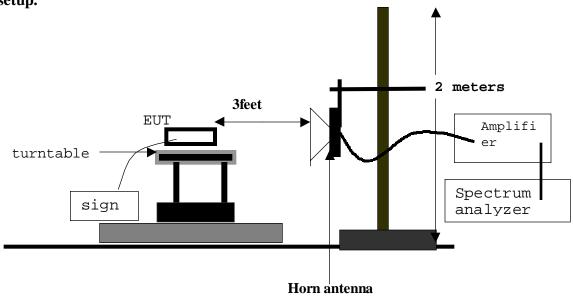
Scan Eut from 1MHz to the 10<sup>th</sup> harmonic of carrier and check for spurious, harmonic, and intermodulation emissions. Set the **RES Bw**: 30kHz, offset analyzer for external attenuation and using the **DISPLAY LINE** place it at –13dBm. Use enough attenuation to prevent overload on the spectrum analyzer input, which can cause overload..

#### **Test results:**

Plots were made for the output of the amplifier and another for the input from signal generator. was used for this test. Refer to chart designating plots.

### SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

## **Measurement Equipment Used:**


HP 8593EM Spectrum Analyzer HP 8449 B Preamplifier, 1-26 GHz

ARA DRG-118/A Double Ridged Horn antenna, 1 - 18 GHz

QIM "The Workhorse" low loss cable, 9 ft (loss: 0.85 dB/ft@ 26 GHz

ARA MWH-1826/B Horn antenna 18/26GHz

**Test setup:** 



Radiated Emissions Configuration

# **Minimum Requirement:**

## **Section 22.917(e):**

The magnitude of each spurious and harmonic emissions detected as being radiated from the EUT must be at a level no more than  $43 + 10 \log$  (mean output power, watts) dB below the mean power output (-13dBm).

Resultant radiated field at 3 meters from –13dBm source feeding isotropic antenna: 82 dBuV/m.

## **Test procedure:**

### 1m test

# FCC ID: OJFLITENNA0LF0SB0

EUT antenna output was terminated with a 50-ohm load. The EUT was placed on a outdoorswooden table. The search antenna placed 1m from the EUT. With the transmitter operating at full power the turntable was slowly rotated to locate the direction of maximum emission. Once maximum direction is determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

## **Test Result:**

Please refer to spreadsheet below.

| larmonic     |         |        |           | NG SEF     |           | ,        |        |        |      |              |        | _       | $\vdash$ |          |
|--------------|---------|--------|-----------|------------|-----------|----------|--------|--------|------|--------------|--------|---------|----------|----------|
| 100111101110 |         | ns     |           |            | ļ         |          |        |        |      |              | Data k | (nabili |          |          |
| 22.917 1     | J/U5/UU |        |           |            |           |          |        |        |      |              | Pete K |         |          |          |
|              |         |        |           |            | 1         |          |        |        |      |              | A Site | (1.0 Me | ter)     |          |
| -02001       | LITENIA | A 000  | AA (TD)   | /A14DC 0   | 1         |          |        |        |      |              |        |         |          |          |
| -OXCOM       | LITENN  | IA CDN | IA/TUMA   | VAMPS 8    | ,0        |          |        |        |      | -            | -      |         |          |          |
| fo= 892.0    | MHz     |        |           |            |           |          |        |        |      | <del> </del> |        |         |          |          |
| 1841-1781    | 1       |        |           |            |           |          |        |        |      |              |        |         |          |          |
| F(MHz)       | READI   | NG     | AF        | CL         | AMP       | DIST     | HPF    | TOTAL  |      | LIMIT        |        | MARG    | IN       |          |
| ,            | (dBuV)  |        | (dB)      | (dB)       | (dB)      | (dB)     | (dB)   | (dBuV/ | m)   | (dBuV        | /m)    | (dB)    |          |          |
| -            | Pk      | Avg    |           |            |           | , , ,    | `      | Pk     | Ávg  | 1            |        | Pk      | Avg      |          |
| 1784V        | 29.2    |        | 26.8      | 2.52       | -35.5     | -9.54    | 4      | 17.48  |      | 82.2         |        | -64.7   |          |          |
| 1784H        | 29.48   |        | 26.8      | 2.52       | -35.5     | -9.54    | 4      | 17.76  |      | 82.2         |        | -64.4   |          |          |
| 2676V        | 28.32   |        | 30        | 3.06       | -35.5     | -9.54    | 1      | 17.34  |      | 82.2         |        | -64.9   |          |          |
| 2676H        | 28.83   |        | 30        | 3.06       | -35.5     | -9.54    | 1      | 17.85  |      | 82.2         |        | -64.4   |          |          |
| 3568V        | 26.12   |        | 33.2      | 3.96       | -35.5     | -9.54    | 1      | 19.24  |      | 82.2         |        | -63     |          |          |
| 3568H        | 28.1    |        | 33.2      | 3.96       | -35.5     | -9.54    | 1      | 21.22  |      | 82.2         |        | -61     |          |          |
| 4460V        | 32.58   |        | 32.3      | 5.04       | -35.5     | -9.54    | 1      | 25.88  |      | 82.2         |        | -56.3   |          |          |
| 4460H        | 31.16   |        | 32.3      | 5.04       | -35.5     | -9.54    | 1      | 24.46  |      | 82.2         |        | -57.7   |          |          |
| 5352V        | 30.43   |        | 35        | 5.4        | -35.5     | -9.54    | 1      | 26.79  |      | 82.2         |        | -55.4   |          |          |
| 5352H        | 29.71   |        | 35        | 5.4        | -35.5     | -9.54    | 1      | 26.07  |      | 82.2         |        | -56.1   |          |          |
| 6244V        | 29.42   |        | 35.3      | 5.76       | -35.5     | -9.54    | 1      | 26.44  |      | 82.2         |        | -55.8   |          |          |
| 6244H        | 27.49   |        | 35.3      | 5.76       | -35.5     | -9.54    | 1      | 24.51  |      | 82.2         |        | -57.7   |          |          |
| 7136V        | 31.47   |        | 36.4      | 6.12       | -35.5     | -9.54    | 1      | 29.95  |      | 82.2         |        | -52.3   |          |          |
| 7136H        | 30.47   |        | 36.4      | 6.12       | -35.5     | -9.54    | 1      | 28.95  |      | 82.2         | -      | -53.3   |          |          |
| 8028V        | 30.26   |        | 37        | 7.46       | -35.5     | -9.54    | 1      | 30.68  |      | 82.2         |        | -51.5   |          |          |
| 8028H        | 32.36   |        | 37        | 7.46       | -35.5     | -9.54    | 1      | 32.78  |      | 82.2         |        | -49.4   |          |          |
| 8920V        | 31.01   |        | 38.2      | 7.92       | -35.5     | -9.54    | 1      | 33.09  |      | 82.2         |        | -49.1   |          |          |
| 8920H        | 31.82   |        | 38.2      | 7.92       | -35.5     | -9.54    | 1      | 33.9   |      | 82.2         |        | -48.3   |          |          |
|              |         |        |           |            |           |          |        |        |      |              |        |         |          |          |
|              |         |        |           |            |           |          |        |        |      |              |        |         |          |          |
|              |         |        |           |            |           |          |        |        |      |              |        |         |          |          |
|              |         |        |           | RED AT 1   |           |          |        |        | 1 ME | TER D        | STANC  | E       |          |          |
|              |         |        | polate re | ading to 3 | m specifi | cation ( | distan | ce     |      |              |        |         |          |          |
| AF: Anten    |         |        |           |            |           |          |        |        |      |              | -      |         | SETTIN   |          |
| AMP: Pre-    | amp ga  | in     |           |            |           |          |        |        |      |              | Res b  | w       | Avg. by  | <u>v</u> |

# **SECTION 2.1055: FREQUENCY STABILITY**

NOT APPLICABLE – EUT is an amplifier-type repeater. No RF oscillators, no frequency determining circuits in EUT.

# **CHART OF PLOTS:**

| AMPS INTERMODS 882MHz, 892 MHz             | 1     |
|--------------------------------------------|-------|
| 3 dBm each input, 12.5 kHz FM, 1 kHz audio |       |
| AMPS OUT OF BAND                           | 2,3   |
| AMPS INTERMODS 891MHz, 892 MHz             | 4     |
| 3 dBm each input, 12.5 kHz FM, 1 kHz audio |       |
| AMPS OUT OF BAND 891/892 MHz               | 5,6   |
| AMPS INTERMODS 892.5MHz, 893 MHz           | 7     |
| 3 dBm each input, 12.5 kHz FM, 1 kHz audio |       |
| AMPS INTERMODS 870MHz, 870.075 MHz         | 8     |
| 3 dBm each input, 12.5 kHz FM, 1 kHz audio |       |
|                                            |       |
| AMPS INTERMODS 870MHz, 871 MHz             | 9     |
| 3 dBm each input, 12.5 kHz FM, 1 kHz audio |       |
| AMPS INTERMODS 892MHz, 893 MHz             | 10    |
| 3 dBm each input, 12.5 kHz FM, 1 kHz audio |       |
| AMPS INTERMODS 892MHz, 893 MHz out of band | 11,12 |
| AMPS INTERMODS 870MHz, 871 MHz out of band | 13    |
| AMPS INTERMODS 870MHz, 871 MHz out of band | 14,   |
| AMPS 892 MHz OUTPUT                        | 15    |
| AMPS 892 MHz INPUT                         | 16    |
|                                            |       |
| CDMA 892 MHz, 888.25 MHz                   | 17    |
| CDMA 892 MHz, 888.25 MHz out of band       | 18,19 |
| CDMA 871 MHz, 874.25 MHz                   | 20    |
| CDMA 871 MHz, 874.25 MHz out of band       | 21,22 |
| TDMA 871 MHz, 871.09 MHz                   | 23    |
| TDMA 871 MHz, 871.09 MHz out of band       | 24,25 |
|                                            |       |
| TDMA 893 MHz, 892.91 MHz                   | 26    |
| TDMA 893 MHz, 892.91 MHz out of band       | 27,28 |
|                                            |       |
| 16QAM 853MHz,853.105 MHz                   | 29    |
| 16QAM 853MHz,853.105 MHz out of band       | 30,31 |
| 16QAM 866MHz,867 MHz                       | 32    |
| 16QAM 866MHz,867 MHz out of band           | 33,34 |
|                                            |       |
|                                            | 35    |
|                                            | •     |

# FCC ID: OJFLITENNA0LF0SB0

|                                                   | 36    |
|---------------------------------------------------|-------|
| TDMA 893 MHz, input                               | 37    |
| , 1                                               |       |
| TDMA 893 MHz, output                              | 38    |
| CMDA 892 MHz output                               | 39    |
| CMDA 892 MHz input                                | 40    |
|                                                   |       |
| iDEN 867.075MHz,867 MHz 12.5 kHz FM, 1 kHz audio  | 41    |
| iDEN 867.075MHz,867 MHz out of band               | 42,43 |
| iDEN 853 MHz,853.075 MHz 12.5 kHz FM, 1 kHz audio | 44    |
| iDEN 853 MHz,853.075 MHz out of band              | 45,46 |
| iDEN 853 MHz,853.075 MHz output                   | 47    |
| iDEN 853 MHz,853.075 MHz input                    | 48    |
|                                                   |       |
| PAGING SMR 939.925 MHz, 940 MHz 12.5 kHz FM       | 49    |
| PAGING SMR 939.925 MHz, 940 MHz out of band       | 50,51 |
| PAGING SMR 936.925 MHz, 937 MHz 12.5 kHz FM       | 52    |
| PAGING SMR 936.925 MHz, 937 MHz out of band       | 53,54 |
| PAGING SMR 930.925 MHz, 931 MHz 12.5 kHz FM       | 55    |
| PAGING SMR 930.925 MHz, 931 MHz out of band       | 56,57 |
| PAGING SMR 938 output                             | 58    |
| PAGING SMR 938 input                              | 59    |